Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)
Introducción: La pirólisis de residuos agroindustriales es una alternativa para generar combustibles líquidos de segunda generación.Objetivo: Determinar la cinética de la pirólisis de residuos industriales de yuca y de formación de productos.Metodología: Se estudió la pirólisis de residuos provenien...
- Autores:
-
Albis Arrieta, Alberto Ricardo
Ortiz Muñoz, Ever
Piñerez Ariza, Ismel
Ariza Barraza, Cindy Skarlett
Díaz Durán, Ana Katherine
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/2433
- Acceso en línea:
- https://hdl.handle.net/11323/2433
https://doi.org/10.17981/ingecuc.14.1.2018.10
https://repositorio.cuc.edu.co/
- Palabra clave:
- Análisis termogravimétrico
Cinética
Espectrometría de masas
Pirólisis
Biomasa
Thermogravimetric analysis
Kinetics
Mass spectroscopy
Pyrolysis
Biomass
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCUC2_acb7a20137a1133674bc027a13f6b903 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/2433 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
dc.title.translated.eng.fl_str_mv |
Evolved gas analysis of cassava (Manihot esculenta) industrial waste |
title |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
spellingShingle |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) Análisis termogravimétrico Cinética Espectrometría de masas Pirólisis Biomasa Thermogravimetric analysis Kinetics Mass spectroscopy Pyrolysis Biomass |
title_short |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
title_full |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
title_fullStr |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
title_full_unstemmed |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
title_sort |
Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta) |
dc.creator.fl_str_mv |
Albis Arrieta, Alberto Ricardo Ortiz Muñoz, Ever Piñerez Ariza, Ismel Ariza Barraza, Cindy Skarlett Díaz Durán, Ana Katherine |
dc.contributor.author.spa.fl_str_mv |
Albis Arrieta, Alberto Ricardo Ortiz Muñoz, Ever Piñerez Ariza, Ismel Ariza Barraza, Cindy Skarlett Díaz Durán, Ana Katherine |
dc.subject.proposal.spa.fl_str_mv |
Análisis termogravimétrico Cinética Espectrometría de masas Pirólisis Biomasa |
topic |
Análisis termogravimétrico Cinética Espectrometría de masas Pirólisis Biomasa Thermogravimetric analysis Kinetics Mass spectroscopy Pyrolysis Biomass |
dc.subject.proposal.eng.fl_str_mv |
Thermogravimetric analysis Kinetics Mass spectroscopy Pyrolysis Biomass |
description |
Introducción: La pirólisis de residuos agroindustriales es una alternativa para generar combustibles líquidos de segunda generación.Objetivo: Determinar la cinética de la pirólisis de residuos industriales de yuca y de formación de productos.Metodología: Se estudió la pirólisis de residuos provenientes de la industria del almidón de yuca utilizando termogravimetría acoplada a espectrometría de masas. Los datos termogravimétricos fueron ajustados al modelo cinético de distribución de energías de activación, siendo necesario el uso de sólo un pseudocomponente.Resultados: La pirólisis de las muestras calentadas a velocidades inferiores a 30 K/min mostró valores de los parámetros cinéticos diferentes a los de la pirólisis de las muestras calentadas a velocidades superiores a 50 K/min, lo cual sugiere un cambio de mecanismo con la velocidad de calentamiento. Los valores obtenidos de los parámetros cinéticos de la pirólisis de los residuos estudiados se encuentran en el rango reportado de la literatura para otros tipos de biomasa. Se identificaron 23 relaciones m/z en los gases desprendidos de la muestra con suficiente relación señal/ruido. Las señales de espectrometría de masas seleccionadas fueron ajustadas con el modelo DAEM utilizando los parámetros cinéticos obtenidos con los datos termogravimétricos.Conclusiones: Se obtuvieron buenos resultados de ajuste con el modelo DAEM de un solo pseudocomponente para la mayoría de las relaciones m/z. La falta de ajuste para las relaciones m/z que no ajustaron se puede atribuir a reacciones secundarias en fase gaseosa. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-01-01 |
dc.date.accessioned.none.fl_str_mv |
2019-02-12T23:26:26Z |
dc.date.available.none.fl_str_mv |
2019-02-12T23:26:26Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
A. R. Albis Arrieta, E. Ortiz Muñoz, I. E. Piñeres Ariza, C. S. Ariza Barraza y A. K. Díaz-Durán, “Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)”, INGE CUC, vol. 14, no. 1, pp. 113-121, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.10 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/2433 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.17981/ingecuc.14.1.2018.10 |
dc.identifier.doi.spa.fl_str_mv |
10.17981/ingecuc.14.1.2018.10 |
dc.identifier.eissn.spa.fl_str_mv |
2382-4700 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.pissn.spa.fl_str_mv |
0122-6517 |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
A. R. Albis Arrieta, E. Ortiz Muñoz, I. E. Piñeres Ariza, C. S. Ariza Barraza y A. K. Díaz-Durán, “Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)”, INGE CUC, vol. 14, no. 1, pp. 113-121, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.10 10.17981/ingecuc.14.1.2018.10 2382-4700 Corporación Universidad de la Costa 0122-6517 REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/2433 https://doi.org/10.17981/ingecuc.14.1.2018.10 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.spa.fl_str_mv |
INGE CUC; Vol. 14, Núm. 1 (2018) |
dc.relation.ispartofjournal.spa.fl_str_mv |
INGE CUC INGE CUC |
dc.relation.references.spa.fl_str_mv |
[1] N. J. Tonukari, “Cassava and the future of starch,” Electron. J. Biotechnol., vol. 7, no. 1, pp. 5-8, 2004. http://dx.doi.org/10.4067/S0717-34582004000100003 [2] S. Mombo, C. Dumat, M. Shahid y E. Schreck, “A socioscientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption,” Environ. Sci. Pollut. Res., pp. 1-15, 2016. https://doi.org/10.1007/s11356-016-8190-z [3] A. Adekunle, V. Orsat y V. Raghavan, “Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels,” Renew. Sustain. Energy Rev., vol. 64, pp. 518-530, 2016. https://doi.org/10.1016/j.rser.2016.06.064 [4] H. A. Acosta Arguello, C. A. Barraza Yance y A. R. Albis Arrieta, “Adsorción de cromo (VI) utilizando cáscara de yuca (Manihot esculenta) como biosorbente: Estudio cinético,” Ingeniería y Desarrollo, vol. 35, no. 1, 2017. http://dx.doi.org/10.14482/inde.33.2.6368 [5] A. R. Albis Arrieta, J. Martínez y P. Santiago, “Remoción de Zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna/Removal of zinc (II) from aqueous solutions using cassavapeel (Manihot esculenta): column experiments,” Prospectiva, vol. 15, no. 1, pp. 16-28, 2017. [6] A. R. Albis Arrieta, J. D. Ortiz Toro y J. E. Martínez De la Rosa, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, pp. 42-52, 2017. http://dx.doi.org/10.17981/ingecuc.13.1.2017.04 [7] E. R. Zanatta et al., “Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 437-445, 2016. https://doi.org/10.1007/s10973-016-5378-x [8] J. Corton et al., “Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes,” Appl Energy, vol. 177, pp. 852-862, 2016. https://doi.org/10.1016/j.apenergy.2016.05.088 [9] O. L. Ki, A. Kurniawan, C. X. Lin, Y.-H. Ju y S. Ismadji, “Bio-oil from cassava peel: a potential renewable energy source,” Bioresour. Technol., vol. 145, pp. 157-161, 2013. https://doi.org/10.1016/j.biortech.2013.01.122 [10] K. Jayaraman, M. V. Kok y I. Gokalp, “Combustion properties and kinetics of different biomass samples using TG–MS technique,” J. Therm. Anal. Calorim., vol. 127, no. 2, pp. 1361-1370, 2017. https://doi.org/10.1007/s10973-016-6042-1 [11] W. Groenewoud y W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique,” Thermochim. Acta, vol. 286, no. 2, pp. 341-354, 1996. https://doi.org/10.1016/0040-6031(96)02940-1 [12] G. Özsin y A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR,” Waste Manag., 2017. https://doi.org/10.1016/j.wasman.2017.03.020 [13] S. Polat, E. Apaydin-Varol y A. E. Pütün, “Thermal decomposition behavior of tobacco stem Part I: TGA– FTIR–MS analysis,” Energy Sourc. A Recov. Util. Environ. Effects, vol. 38, no. 20, pp. 3065-3072, 2016. https://doi.org/10.1080/15567036.2015.1129373 [14] T. Chen, J. Zhang y J. Wu, “Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model,” Bioresour. Technol., vol. 211, pp. 502-508, 2016. https://doi.org/10.1016/j.biortech.2016.03.091 [15] X. Yao, K. Xu y Y. Liang, “Analytical Pyrolysis Study of Peanut Shells using TG-MS Technique and Characterization for the Waste Peanut Shell Ash,” J. Residuals Sci. Technol., vol. 13, no. 4, 2016. [16] A. Malika, N. Jacques, B. Fatima y A. Mohammed, “Pyrolysis investigation of food wastes by TG-MS-DSC technique,” Biomass Convers. Biorefin., vol. 6, no. 2, pp. 161-172, 2016. https://doi.org/10.1007/s13399-015-0171-9 [17] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue,” Korean J. Chem. Eng., vol. 28, no. 12, pp. 2262-2274, 2011. https://doi.org/10.1007/s11814-011-0116-3 [18] A. Pattiya y S. Suttibak, “Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 227-235, 2012. https://doi.org/10.1016/j.jaap.2012.02.010 [19] A. Pattiya, J. O. Titiloye y A. V. Bridgwater, “Fast pyrolysis of agricultural residues from cassava plantation for bio-oil production,” Carbon, vol. 51, p. 51.59, 2009. [20] A. Pattiya, S. Sukkasi y V. Goodwin, “Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor,” Energy, vol. 44, no. 1, pp. 1067-1077, 2012. https://doi.org/10.1016/j.energy.2012.04.035 [21] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass,” Suranaree J. Sci. Technol., vol. 17, no. 4, 2010. [22] G. Várhegyi, P. Szabó y M. J. Antal, “Kinetics of charcoal devolatilization,” Energy fuels, vol. 16, no. 3, pp. 724-731, 2002. https://doi.org/10.1016/S0165-2370(96)00971-0 [23] G. Varhegyi, M. J. Antal Jr, E. Jakab y P. Szabó, “Kinetic modeling of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 42, no. 1, pp. 73-87, 1997. [24] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam y C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric– mass spectrometric experiments,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 310-322, 2009. https://doi.org/10.1016/j.jaap.2009.08.008 [25] G. Várhegyi, P. Szabó, F. Till, B. Zelei, M. J. Antal y X. Dai, “TG, TG-MS, and FTIR characterization of highyield biomass charcoals,” Energy fuels, vol. 12, no. 5, pp. 969-974, 1998. https://doi.org/10.1021/ef9800359 [26] A. Albis, E. Ortiz, A. Suárez y I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum),” J. Therm. Anal. Calorim., pp. 1-9, 2013. https://doi.org/10.1007/s10973-013-3227-8 [27] J. P. S. Veiga, T. L. Valle, J. C. Feltran y W. A. Bizzo, “Characterization and productivity of cassava waste and its use as an energy source,” Renew. energy, vol. 93, pp. 691-699, 2016. https://doi.org/10.1016/j.renene.2016.02.078 [28] J. Yue y C. Zuo, “Study on pyrolysis of cassava residues in N2 atmosphere,” Kezaisheng Nengyuan/Renew.Energy Resour., vol. 27, no. 4, pp. 47-50, 2009. [29] J. Cai, W. Wu y R. Liu, “An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 36, no. 0, pp. 236-246, 2014. http://dx.doi.org/10.1016/j.rser.2014.04.052 [30] F.-X. Collard y J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, no. 0, pp. 594-608, 2014. http://dx.doi.org/10.1016/j.rser.2014.06.013 [31] X. Cao et al., “Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles,” Bioresour. Technol., vol. 155, pp. 21-27, 2014. https://doi.org/10.1016/j.biortech.2013.12.006 [32] J. Cai y L. Ji, “Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass,” J. Math. Chem., vol. 42, no. 3, pp. 547-553, 2007. https://doi.org/10.1007/s10910-006-9130-9 [33] A. Meng, H. Zhou, L. Qin, Y. Zhang y Q. Li, “Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 28-37, 2013. https://doi.org/10.1016/j.jaap.2013.09.013 |
dc.relation.citationendpage.spa.fl_str_mv |
121 113 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.relation.ispartofjournalabbrev.spa.fl_str_mv |
INGE CUC |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
INGE CUC |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/1621 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/00324f72-5363-4bb7-9f9b-cec35ebb834b/download https://repositorio.cuc.edu.co/bitstreams/0083911c-42a8-495f-9846-9fc2ca243540/download https://repositorio.cuc.edu.co/bitstreams/12e0c428-a591-4063-b4fb-626e0b060823/download https://repositorio.cuc.edu.co/bitstreams/e013fd5a-47d1-42fd-8817-4d86af0251f3/download |
bitstream.checksum.fl_str_mv |
e30fbee47ed47477f61428fcc757236e 8a4605be74aa9ea9d79846c1fba20a33 cf9169a60028cfdd77c00282683e7705 70e1e929f1cce098417f7ffb12278872 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760817478041600 |
spelling |
Albis Arrieta, Alberto RicardoOrtiz Muñoz, EverPiñerez Ariza, IsmelAriza Barraza, Cindy SkarlettDíaz Durán, Ana Katherine2019-02-12T23:26:26Z2019-02-12T23:26:26Z2018-01-01A. R. Albis Arrieta, E. Ortiz Muñoz, I. E. Piñeres Ariza, C. S. Ariza Barraza y A. K. Díaz-Durán, “Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)”, INGE CUC, vol. 14, no. 1, pp. 113-121, 2018. DOI: http://doi.org/10.17981/ingecuc.14.1.2018.10https://hdl.handle.net/11323/2433https://doi.org/10.17981/ingecuc.14.1.2018.1010.17981/ingecuc.14.1.2018.102382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introducción: La pirólisis de residuos agroindustriales es una alternativa para generar combustibles líquidos de segunda generación.Objetivo: Determinar la cinética de la pirólisis de residuos industriales de yuca y de formación de productos.Metodología: Se estudió la pirólisis de residuos provenientes de la industria del almidón de yuca utilizando termogravimetría acoplada a espectrometría de masas. Los datos termogravimétricos fueron ajustados al modelo cinético de distribución de energías de activación, siendo necesario el uso de sólo un pseudocomponente.Resultados: La pirólisis de las muestras calentadas a velocidades inferiores a 30 K/min mostró valores de los parámetros cinéticos diferentes a los de la pirólisis de las muestras calentadas a velocidades superiores a 50 K/min, lo cual sugiere un cambio de mecanismo con la velocidad de calentamiento. Los valores obtenidos de los parámetros cinéticos de la pirólisis de los residuos estudiados se encuentran en el rango reportado de la literatura para otros tipos de biomasa. Se identificaron 23 relaciones m/z en los gases desprendidos de la muestra con suficiente relación señal/ruido. Las señales de espectrometría de masas seleccionadas fueron ajustadas con el modelo DAEM utilizando los parámetros cinéticos obtenidos con los datos termogravimétricos.Conclusiones: Se obtuvieron buenos resultados de ajuste con el modelo DAEM de un solo pseudocomponente para la mayoría de las relaciones m/z. La falta de ajuste para las relaciones m/z que no ajustaron se puede atribuir a reacciones secundarias en fase gaseosa.Introduction− The pyrolysis of agro-industrial waste is an alternative to produce second generation liquid fuels.Objective−Determine the kinetics in the pyrolysis process of cassava industrial waste as well as of evolved product formation. Methodology−Pyrolysis of waste from cassava starch processing was studied via thermogravimetric analysis coupled to mass spectrometry. Thermogravimetric data were adjusted to the distributed activation energy model with one pseudocomponent. Results− Pyrolysis of samples heated at ramps below 30 K/min showed kinetics parameters with different values from the ones obtained for the samples heated at ramps above 50 K/min. This suggests a change in the pyrolysis reaction mechanism linked to heating rate. The kinetics parameters obtained in this work are in agreement with values reported for other biomass in literature. From the evolved gases, 23 m/z signals were identified with enough signal/noise ratio. Mass spectrometry signals were also adjusted with the distributed activation energy model us-ing the kinetics parameters obtained from thermogravi-metric data.Conclusions−Satisfactory results were achieved with the DAEM model with one pseudocomponent for most of m/z ratio. The lack of adjustment in some m/z ratio can be attributed to secondary reactions in the gas phase.Albis Arrieta, Alberto Ricardo-d9a81699-355b-4b71-bdd3-ce5463182441-0Ortiz Muñoz, Ever-bd1a9b1c-e2ee-409a-ae3e-5b10f52c5307-0Piñerez Ariza, Ismel-8dff379a-977b-45f8-a162-732397f1b039-0Ariza Barraza, Cindy Skarlett-070c43d1-557f-4275-8fa2-6510cb9583df-0Díaz Durán, Ana Katherine-33d1d742-48db-4433-a85d-0ac416d57f49-09 páginasapplication/pdfspaCorporación Universidad de la CostaINGE CUC; Vol. 14, Núm. 1 (2018)INGE CUCINGE CUC[1] N. J. Tonukari, “Cassava and the future of starch,” Electron. J. Biotechnol., vol. 7, no. 1, pp. 5-8, 2004. http://dx.doi.org/10.4067/S0717-34582004000100003[2] S. Mombo, C. Dumat, M. Shahid y E. Schreck, “A socioscientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption,” Environ. Sci. Pollut. Res., pp. 1-15, 2016. https://doi.org/10.1007/s11356-016-8190-z[3] A. Adekunle, V. Orsat y V. Raghavan, “Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels,” Renew. Sustain. Energy Rev., vol. 64, pp. 518-530, 2016. https://doi.org/10.1016/j.rser.2016.06.064[4] H. A. Acosta Arguello, C. A. Barraza Yance y A. R. Albis Arrieta, “Adsorción de cromo (VI) utilizando cáscara de yuca (Manihot esculenta) como biosorbente: Estudio cinético,” Ingeniería y Desarrollo, vol. 35, no. 1, 2017. http://dx.doi.org/10.14482/inde.33.2.6368[5] A. R. Albis Arrieta, J. Martínez y P. Santiago, “Remoción de Zinc (II) de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna/Removal of zinc (II) from aqueous solutions using cassavapeel (Manihot esculenta): column experiments,” Prospectiva, vol. 15, no. 1, pp. 16-28, 2017.[6] A. R. Albis Arrieta, J. D. Ortiz Toro y J. E. Martínez De la Rosa, “Remoción de cromo hexavalente de soluciones acuosas usando cáscara de yuca (Manihot esculenta): Experimentos en columna,” INGE CUC, vol. 13, no. 1, pp. 42-52, 2017. http://dx.doi.org/10.17981/ingecuc.13.1.2017.04[7] E. R. Zanatta et al., “Kinetic studies of thermal decomposition of sugarcane bagasse and cassava bagasse,” J. Therm. Anal. Calorim., vol. 125, no. 1, pp. 437-445, 2016. https://doi.org/10.1007/s10973-016-5378-x[8] J. Corton et al., “Expanding the biomass resource: sustainable oil production via fast pyrolysis of low input high diversity biomass and the potential integration of thermochemical and biological conversion routes,” Appl Energy, vol. 177, pp. 852-862, 2016. https://doi.org/10.1016/j.apenergy.2016.05.088[9] O. L. Ki, A. Kurniawan, C. X. Lin, Y.-H. Ju y S. Ismadji, “Bio-oil from cassava peel: a potential renewable energy source,” Bioresour. Technol., vol. 145, pp. 157-161, 2013. https://doi.org/10.1016/j.biortech.2013.01.122[10] K. Jayaraman, M. V. Kok y I. Gokalp, “Combustion properties and kinetics of different biomass samples using TG–MS technique,” J. Therm. Anal. Calorim., vol. 127, no. 2, pp. 1361-1370, 2017. https://doi.org/10.1007/s10973-016-6042-1[11] W. Groenewoud y W. De Jong, “The thermogravimetric analyser-coupled-Fourier transform infrared/mass spectrometry technique,” Thermochim. Acta, vol. 286, no. 2, pp. 341-354, 1996. https://doi.org/10.1016/0040-6031(96)02940-1[12] G. Özsin y A. E. Pütün, “Kinetics and evolved gas analysis for pyrolysis of food processing wastes using TGA/MS/FT-IR,” Waste Manag., 2017. https://doi.org/10.1016/j.wasman.2017.03.020[13] S. Polat, E. Apaydin-Varol y A. E. Pütün, “Thermal decomposition behavior of tobacco stem Part I: TGA– FTIR–MS analysis,” Energy Sourc. A Recov. Util. Environ. Effects, vol. 38, no. 20, pp. 3065-3072, 2016. https://doi.org/10.1080/15567036.2015.1129373[14] T. Chen, J. Zhang y J. Wu, “Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model,” Bioresour. Technol., vol. 211, pp. 502-508, 2016. https://doi.org/10.1016/j.biortech.2016.03.091[15] X. Yao, K. Xu y Y. Liang, “Analytical Pyrolysis Study of Peanut Shells using TG-MS Technique and Characterization for the Waste Peanut Shell Ash,” J. Residuals Sci. Technol., vol. 13, no. 4, 2016.[16] A. Malika, N. Jacques, B. Fatima y A. Mohammed, “Pyrolysis investigation of food wastes by TG-MS-DSC technique,” Biomass Convers. Biorefin., vol. 6, no. 2, pp. 161-172, 2016. https://doi.org/10.1007/s13399-015-0171-9[17] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue,” Korean J. Chem. Eng., vol. 28, no. 12, pp. 2262-2274, 2011. https://doi.org/10.1007/s11814-011-0116-3[18] A. Pattiya y S. Suttibak, “Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit,” J. Anal. Appl. Pyrolysis, vol. 95, pp. 227-235, 2012. https://doi.org/10.1016/j.jaap.2012.02.010[19] A. Pattiya, J. O. Titiloye y A. V. Bridgwater, “Fast pyrolysis of agricultural residues from cassava plantation for bio-oil production,” Carbon, vol. 51, p. 51.59, 2009.[20] A. Pattiya, S. Sukkasi y V. Goodwin, “Fast pyrolysis of sugarcane and cassava residues in a free-fall reactor,” Energy, vol. 44, no. 1, pp. 1067-1077, 2012. https://doi.org/10.1016/j.energy.2012.04.035[21] P. Weerachanchai, C. Tangsathitkulchai y M. Tangsathitkulchai, “Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass,” Suranaree J. Sci. Technol., vol. 17, no. 4, 2010.[22] G. Várhegyi, P. Szabó y M. J. Antal, “Kinetics of charcoal devolatilization,” Energy fuels, vol. 16, no. 3, pp. 724-731, 2002. https://doi.org/10.1016/S0165-2370(96)00971-0[23] G. Varhegyi, M. J. Antal Jr, E. Jakab y P. Szabó, “Kinetic modeling of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 42, no. 1, pp. 73-87, 1997.[24] G. Várhegyi, Z. Czégény, E. Jakab, K. McAdam y C. Liu, “Tobacco pyrolysis. Kinetic evaluation of thermogravimetric– mass spectrometric experiments,” J. Anal. Appl. Pyrolysis, vol. 86, no. 2, pp. 310-322, 2009. https://doi.org/10.1016/j.jaap.2009.08.008[25] G. Várhegyi, P. Szabó, F. Till, B. Zelei, M. J. Antal y X. Dai, “TG, TG-MS, and FTIR characterization of highyield biomass charcoals,” Energy fuels, vol. 12, no. 5, pp. 969-974, 1998. https://doi.org/10.1021/ef9800359[26] A. Albis, E. Ortiz, A. Suárez y I. Piñeres, “TG/MS study of the thermal devolatization of Copoazú peels (Theobroma grandiflorum),” J. Therm. Anal. Calorim., pp. 1-9, 2013. https://doi.org/10.1007/s10973-013-3227-8[27] J. P. S. Veiga, T. L. Valle, J. C. Feltran y W. A. Bizzo, “Characterization and productivity of cassava waste and its use as an energy source,” Renew. energy, vol. 93, pp. 691-699, 2016. https://doi.org/10.1016/j.renene.2016.02.078[28] J. Yue y C. Zuo, “Study on pyrolysis of cassava residues in N2 atmosphere,” Kezaisheng Nengyuan/Renew.Energy Resour., vol. 27, no. 4, pp. 47-50, 2009.[29] J. Cai, W. Wu y R. Liu, “An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass,” Renew. Sustain. Energy Rev., vol. 36, no. 0, pp. 236-246, 2014. http://dx.doi.org/10.1016/j.rser.2014.04.052[30] F.-X. Collard y J. Blin, “A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin,” Renew. Sustain. Energy Rev., vol. 38, no. 0, pp. 594-608, 2014. http://dx.doi.org/10.1016/j.rser.2014.06.013[31] X. Cao et al., “Comparative study of the pyrolysis of lignocellulose and its major components: Characterization and overall distribution of their biochars and volatiles,” Bioresour. Technol., vol. 155, pp. 21-27, 2014. https://doi.org/10.1016/j.biortech.2013.12.006[32] J. Cai y L. Ji, “Pattern search method for determination of DAEM kinetic parameters from nonisothermal TGA data of biomass,” J. Math. Chem., vol. 42, no. 3, pp. 547-553, 2007. https://doi.org/10.1007/s10910-006-9130-9[33] A. Meng, H. Zhou, L. Qin, Y. Zhang y Q. Li, “Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis,” J. Anal. Appl. Pyrolysis, vol. 104, pp. 28-37, 2013. https://doi.org/10.1016/j.jaap.2013.09.013121113114INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1621Análisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta)Evolved gas analysis of cassava (Manihot esculenta) industrial wasteArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis termogravimétricoCinéticaEspectrometría de masasPirólisisBiomasaThermogravimetric analysisKineticsMass spectroscopyPyrolysisBiomassPublicationORIGINALAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdfAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdfapplication/pdf958300https://repositorio.cuc.edu.co/bitstreams/00324f72-5363-4bb7-9f9b-cec35ebb834b/downloade30fbee47ed47477f61428fcc757236eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0083911c-42a8-495f-9846-9fc2ca243540/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdf.jpgAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdf.jpgimage/jpeg59602https://repositorio.cuc.edu.co/bitstreams/12e0c428-a591-4063-b4fb-626e0b060823/downloadcf9169a60028cfdd77c00282683e7705MD54TEXTAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdf.txtAnálisis de gases desprendidos de residuos industriales de yuca (Manihot esculenta).pdf.txttext/plain37860https://repositorio.cuc.edu.co/bitstreams/e013fd5a-47d1-42fd-8817-4d86af0251f3/download70e1e929f1cce098417f7ffb12278872MD5511323/2433oai:repositorio.cuc.edu.co:11323/24332024-09-17 12:49:33.628open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |