Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this ma...
- Autores:
-
Awoyera, Paul
Awobayikun, Oyinkansola
Gobinath, Ravindran
amelec, viloria
Ugwu, Emmanuel I.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6458
- Acceso en línea:
- https://hdl.handle.net/11323/6458
https://repositorio.cuc.edu.co/
- Palabra clave:
- Concrete Mixing
Hydration
Mineralogy
Morphology
Rheology
Strength
Water
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_abf3e9ee575aca54f848b5b289046671 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6458 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
dc.title.translated.spa.fl_str_mv |
Variabilidad reológica, mineralógica y de resistencia del hormigón debido a impurezas del agua de construcción |
title |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
spellingShingle |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities Concrete Mixing Hydration Mineralogy Morphology Rheology Strength Water |
title_short |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
title_full |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
title_fullStr |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
title_full_unstemmed |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
title_sort |
Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities |
dc.creator.fl_str_mv |
Awoyera, Paul Awobayikun, Oyinkansola Gobinath, Ravindran amelec, viloria Ugwu, Emmanuel I. |
dc.contributor.author.spa.fl_str_mv |
Awoyera, Paul Awobayikun, Oyinkansola Gobinath, Ravindran amelec, viloria Ugwu, Emmanuel I. |
dc.subject.spa.fl_str_mv |
Concrete Mixing Hydration Mineralogy Morphology Rheology Strength Water |
topic |
Concrete Mixing Hydration Mineralogy Morphology Rheology Strength Water |
description |
Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this may be detrimental to the quality of the concrete being produced. This study investigates the rheological, mineralogical and strength variability of concrete due to construction water impurities. Water samples were collected from four different construction sites within Southwestern region of Nigeria for production of concrete. The physical and chemical properties of the waters were determined so as to measure their rate of contamination, prior to their use for mixing concrete. The rheological properties of the fresh concrete, compressive strength, split tensile strength, and microscale features of hardened concrete, that were produced with each water sample were determined. From the results, the rheological features of concrete were found not to be affected by water impurities, however, the mechanical test results revealed about 10% reduction in strength between concrete made with water having least and higher concentration of impurities. Also, it was evident from the microscale tests that the water impurities do alter the hydration rate of concrete, which results in strength reduction. The study suggests pretreatment of concrete mixing water before use in order to avoid its damaging effect on concrete life. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-07-04T17:40:25Z |
dc.date.available.none.fl_str_mv |
2020-07-04T17:40:25Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6458 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6458 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Kumar S, Rao CVSK (1994) Effect of sulfates on the setting time of cement and strength of concrete. Cem Concr Res 24:1237–1244 . doi: https://doi.org/10.1016/0008-8846(94)90108-2 [2] Adu-Amankwah S, Zajac M, Stabler C, et al (2017) Influence of limestone on the hydration of ternary slag cements. Cem Concr Res 100:96–109 . doi: https://doi.org/10.1016/j.cemconres.2017.05.013 [3] Zajac M, Rossberg A, Saout G Le, Lothenbach B (2014) Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos 46:99–108 . doi: https://doi.org/10.1016/j.cemconcomp.2013.11.007 [4] Zhang M, Chen J, Lv Y, et al (2013) Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr Build Mater 39:26–32 . doi: https://doi.org/10.1016/j.conbuildmat.2012.05.003 [5] Al-Jabri KS, AL-Saidy AH, Taha R, AL-Kemyani AJ (2011) Effect of using Wastewater on the Properties of High Strength Concrete. Procedia Eng 14:370–376 . doi: https://doi.org/10.1016/j.proeng.2011.07.046 [6] Chatveera B, Lertwattanaruk P (2009) Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture. J Environ Manage 90:1901–1908 . doi: https://doi.org/10.1016/j.jenvman.2009.01.008 [7] Rivera-Corral JO, Fajardo G, Arliguie G, et al (2017) Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr Build Mater 147:815–826 . doi: https://doi.org/10.1016/j.conbuildmat.2017.04.186 [8] Kucche KJ, Jamkar SS, Sadgir PA (2015) Quality of Water for Making Concrete : A Review of. Int J Sci Res Publ 5:1–10 . doi: 2250-3153 [9] Mehta PK, Monteiro PJM, Ebrary I (2014) Concrete: microstructure, properties, and materials. McGraw-Hill [10] Gupta B, Gupta A (2012) Concrete Technology. Standard Publishers ltd, India [11] Karthik S, Rao PRM, Awoyera PO (2017) Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ - Eng Sci. doi: 10.1016/j.jksues.2016.12.003 [12] Anandaraj S, Rooby J, Awoyera PO, Gobinath R (2019) Structural distress in glass fibre- reinforced concrete under loading and exposure to aggressive environments. Constr Build Mater 197:862–870 . doi: https://doi.org/10.1016/j.conbuildmat.2018.06.090 [13] Sateshkumar S, Awoyera P, Kandasamy T, et al (2018) Impact resistance of high strength chopped basalt fibre-reinforced concrete. Rev la Construcción J Constr 17:240–249 [14] Murthi P, Awoyera P, Selvaraj P, et al (2018) Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment. Aust J Civ Eng 0:1–7 . doi: 10.1080/14488353.2018.1472539 [15] Babu GR, Reddy BM, Ramana NV (2018) Quality of mixing water in cement concrete “a review.” Mater Today Proc 5:1313–1320 . doi: https://doi.org/10.1016/j.matpr.2017.11.216 [16] WHO (2004) Water Sanitation and Health Programme. Managing water in the home: accelerated health gains from improved water sources [17] AS 1379 (2007) Specification and Supply of Concrete [18] Akinsola O, Ajibola F, Ounsanmi O (2012) Investigation of Salinity Effect on Compressive Strength of Reinforced Concrete. J Sustain Dev 5:74–82 [19] Singh DDN, Ghosh R, Singh BK (2002) Fluoride induced corrosion of steel rebars in contact with alkaline solutions, cement slurry and concrete mortars. Corros Sci 44:1713–1735 . doi: https://doi.org/10.1016/S0010-938X(01)00179-2 [20] Babu GR, Ramana NV (2018) Feasibility of wastewater as mixing water in cement. Mater Today Proc 5:1607–1614 . doi: https://doi.org/10.1016/j.matpr.2017.11.253 [21] Arif M, Hussain I, Hussain J, et al (2015) GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur district, Rajasthan. Cogent Environ Sci 1: . doi: 10.1080/23311843.2015.1038944 [22] Kucche K, Jamkar S, Sadgir P (2015) Quality of Water for Making Concrete:A Review of Literature. Int J Sci Res Publ 5:1–10 [23] Al-Saleh SA (2015) Analysis of total chloride content in concrete. Case Stud Constr Mater 3:78–82 . doi: https://doi.org/10.1016/j.cscm.2015.06.001 [24] Awoyera PO, Akinmusuru JO, Dawson AR, et al (2018) Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cem Concr Compos 86: . doi: 10.1016/j.cemconcomp.2017.11.017 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c1ef0c87-52f3-435c-be45-8b340b2f1bef/download https://repositorio.cuc.edu.co/bitstreams/3a831f85-c488-4866-94c2-3172f6b9ca84/download https://repositorio.cuc.edu.co/bitstreams/e7a7c867-c9a2-42be-aeae-4b7659bf1381/download https://repositorio.cuc.edu.co/bitstreams/60c004d9-4114-4868-aea1-225e4a01ab71/download https://repositorio.cuc.edu.co/bitstreams/c031c5f8-72e2-46e7-80c3-3df943235593/download |
bitstream.checksum.fl_str_mv |
792562ca856e9c4c9d20c4f713939519 934f4ca17e109e0a05eaeaba504d7ce4 e30e9215131d99561d40d6b0abbe9bad 3839d8f97178d4e156e18a2fa6dd92e5 2414102abbf47b5fe4ca86fd8fb1f4ab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760762427801600 |
spelling |
Awoyera, PaulAwobayikun, OyinkansolaGobinath, Ravindranamelec, viloriaUgwu, Emmanuel I.2020-07-04T17:40:25Z2020-07-04T17:40:25Z2020https://hdl.handle.net/11323/6458Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this may be detrimental to the quality of the concrete being produced. This study investigates the rheological, mineralogical and strength variability of concrete due to construction water impurities. Water samples were collected from four different construction sites within Southwestern region of Nigeria for production of concrete. The physical and chemical properties of the waters were determined so as to measure their rate of contamination, prior to their use for mixing concrete. The rheological properties of the fresh concrete, compressive strength, split tensile strength, and microscale features of hardened concrete, that were produced with each water sample were determined. From the results, the rheological features of concrete were found not to be affected by water impurities, however, the mechanical test results revealed about 10% reduction in strength between concrete made with water having least and higher concentration of impurities. Also, it was evident from the microscale tests that the water impurities do alter the hydration rate of concrete, which results in strength reduction. The study suggests pretreatment of concrete mixing water before use in order to avoid its damaging effect on concrete life.Department of Civil Engineering, Covenant University, Ota, Nigeria; Centre for Construction Methods and Materials, S R Engineering College, Warangal, India; Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Department of Civil Engineering, Michael Okpara University of Agriculture, Umuahia, NigeriaAwoyera, Paul-will be generated-orcid-0000-0002-6212-5090-600Awobayikun, OyinkansolaGobinath, Ravindranamelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Ugwu, Emmanuel I.engAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Concrete MixingHydrationMineralogyMorphologyRheologyStrengthWaterRheological, Mineralogical and Strength Variability of Concrete Due to Construction Water ImpuritiesVariabilidad reológica, mineralógica y de resistencia del hormigón debido a impurezas del agua de construcciónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Kumar S, Rao CVSK (1994) Effect of sulfates on the setting time of cement and strength of concrete. Cem Concr Res 24:1237–1244 . doi: https://doi.org/10.1016/0008-8846(94)90108-2[2] Adu-Amankwah S, Zajac M, Stabler C, et al (2017) Influence of limestone on the hydration of ternary slag cements. Cem Concr Res 100:96–109 . doi: https://doi.org/10.1016/j.cemconres.2017.05.013[3] Zajac M, Rossberg A, Saout G Le, Lothenbach B (2014) Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos 46:99–108 . doi: https://doi.org/10.1016/j.cemconcomp.2013.11.007[4] Zhang M, Chen J, Lv Y, et al (2013) Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr Build Mater 39:26–32 . doi: https://doi.org/10.1016/j.conbuildmat.2012.05.003[5] Al-Jabri KS, AL-Saidy AH, Taha R, AL-Kemyani AJ (2011) Effect of using Wastewater on the Properties of High Strength Concrete. Procedia Eng 14:370–376 . doi: https://doi.org/10.1016/j.proeng.2011.07.046[6] Chatveera B, Lertwattanaruk P (2009) Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture. J Environ Manage 90:1901–1908 . doi: https://doi.org/10.1016/j.jenvman.2009.01.008[7] Rivera-Corral JO, Fajardo G, Arliguie G, et al (2017) Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr Build Mater 147:815–826 . doi: https://doi.org/10.1016/j.conbuildmat.2017.04.186[8] Kucche KJ, Jamkar SS, Sadgir PA (2015) Quality of Water for Making Concrete : A Review of. Int J Sci Res Publ 5:1–10 . doi: 2250-3153[9] Mehta PK, Monteiro PJM, Ebrary I (2014) Concrete: microstructure, properties, and materials. McGraw-Hill[10] Gupta B, Gupta A (2012) Concrete Technology. Standard Publishers ltd, India[11] Karthik S, Rao PRM, Awoyera PO (2017) Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ - Eng Sci. doi: 10.1016/j.jksues.2016.12.003[12] Anandaraj S, Rooby J, Awoyera PO, Gobinath R (2019) Structural distress in glass fibre- reinforced concrete under loading and exposure to aggressive environments. Constr Build Mater 197:862–870 . doi: https://doi.org/10.1016/j.conbuildmat.2018.06.090[13] Sateshkumar S, Awoyera P, Kandasamy T, et al (2018) Impact resistance of high strength chopped basalt fibre-reinforced concrete. Rev la Construcción J Constr 17:240–249[14] Murthi P, Awoyera P, Selvaraj P, et al (2018) Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment. Aust J Civ Eng 0:1–7 . doi: 10.1080/14488353.2018.1472539[15] Babu GR, Reddy BM, Ramana NV (2018) Quality of mixing water in cement concrete “a review.” Mater Today Proc 5:1313–1320 . doi: https://doi.org/10.1016/j.matpr.2017.11.216[16] WHO (2004) Water Sanitation and Health Programme. Managing water in the home: accelerated health gains from improved water sources[17] AS 1379 (2007) Specification and Supply of Concrete[18] Akinsola O, Ajibola F, Ounsanmi O (2012) Investigation of Salinity Effect on Compressive Strength of Reinforced Concrete. J Sustain Dev 5:74–82[19] Singh DDN, Ghosh R, Singh BK (2002) Fluoride induced corrosion of steel rebars in contact with alkaline solutions, cement slurry and concrete mortars. Corros Sci 44:1713–1735 . doi: https://doi.org/10.1016/S0010-938X(01)00179-2[20] Babu GR, Ramana NV (2018) Feasibility of wastewater as mixing water in cement. Mater Today Proc 5:1607–1614 . doi: https://doi.org/10.1016/j.matpr.2017.11.253[21] Arif M, Hussain I, Hussain J, et al (2015) GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur district, Rajasthan. Cogent Environ Sci 1: . doi: 10.1080/23311843.2015.1038944[22] Kucche K, Jamkar S, Sadgir P (2015) Quality of Water for Making Concrete:A Review of Literature. Int J Sci Res Publ 5:1–10[23] Al-Saleh SA (2015) Analysis of total chloride content in concrete. Case Stud Constr Mater 3:78–82 . doi: https://doi.org/10.1016/j.cscm.2015.06.001[24] Awoyera PO, Akinmusuru JO, Dawson AR, et al (2018) Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cem Concr Compos 86: . doi: 10.1016/j.cemconcomp.2017.11.017PublicationORIGINALJERA.48.78 PRE.pdfJERA.48.78 PRE.pdfapplication/pdf852571https://repositorio.cuc.edu.co/bitstreams/c1ef0c87-52f3-435c-be45-8b340b2f1bef/download792562ca856e9c4c9d20c4f713939519MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/3a831f85-c488-4866-94c2-3172f6b9ca84/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e7a7c867-c9a2-42be-aeae-4b7659bf1381/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILJERA.48.78 PRE.pdf.jpgJERA.48.78 PRE.pdf.jpgimage/jpeg89543https://repositorio.cuc.edu.co/bitstreams/60c004d9-4114-4868-aea1-225e4a01ab71/download3839d8f97178d4e156e18a2fa6dd92e5MD54TEXTJERA.48.78 PRE.pdf.txtJERA.48.78 PRE.pdf.txttext/plain35512https://repositorio.cuc.edu.co/bitstreams/c031c5f8-72e2-46e7-80c3-3df943235593/download2414102abbf47b5fe4ca86fd8fb1f4abMD5511323/6458oai:repositorio.cuc.edu.co:11323/64582024-09-17 11:02:13.064http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |