Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities

Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this ma...

Full description

Autores:
Awoyera, Paul
Awobayikun, Oyinkansola
Gobinath, Ravindran
amelec, viloria
Ugwu, Emmanuel I.
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6458
Acceso en línea:
https://hdl.handle.net/11323/6458
https://repositorio.cuc.edu.co/
Palabra clave:
Concrete Mixing
Hydration
Mineralogy
Morphology
Rheology
Strength
Water
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_abf3e9ee575aca54f848b5b289046671
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6458
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
dc.title.translated.spa.fl_str_mv Variabilidad reológica, mineralógica y de resistencia del hormigón debido a impurezas del agua de construcción
title Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
spellingShingle Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
Concrete Mixing
Hydration
Mineralogy
Morphology
Rheology
Strength
Water
title_short Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
title_full Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
title_fullStr Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
title_full_unstemmed Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
title_sort Rheological, Mineralogical and Strength Variability of Concrete Due to Construction Water Impurities
dc.creator.fl_str_mv Awoyera, Paul
Awobayikun, Oyinkansola
Gobinath, Ravindran
amelec, viloria
Ugwu, Emmanuel I.
dc.contributor.author.spa.fl_str_mv Awoyera, Paul
Awobayikun, Oyinkansola
Gobinath, Ravindran
amelec, viloria
Ugwu, Emmanuel I.
dc.subject.spa.fl_str_mv Concrete Mixing
Hydration
Mineralogy
Morphology
Rheology
Strength
Water
topic Concrete Mixing
Hydration
Mineralogy
Morphology
Rheology
Strength
Water
description Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this may be detrimental to the quality of the concrete being produced. This study investigates the rheological, mineralogical and strength variability of concrete due to construction water impurities. Water samples were collected from four different construction sites within Southwestern region of Nigeria for production of concrete. The physical and chemical properties of the waters were determined so as to measure their rate of contamination, prior to their use for mixing concrete. The rheological properties of the fresh concrete, compressive strength, split tensile strength, and microscale features of hardened concrete, that were produced with each water sample were determined. From the results, the rheological features of concrete were found not to be affected by water impurities, however, the mechanical test results revealed about 10% reduction in strength between concrete made with water having least and higher concentration of impurities. Also, it was evident from the microscale tests that the water impurities do alter the hydration rate of concrete, which results in strength reduction. The study suggests pretreatment of concrete mixing water before use in order to avoid its damaging effect on concrete life.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-07-04T17:40:25Z
dc.date.available.none.fl_str_mv 2020-07-04T17:40:25Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6458
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/6458
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Kumar S, Rao CVSK (1994) Effect of sulfates on the setting time of cement and strength of concrete. Cem Concr Res 24:1237–1244 . doi: https://doi.org/10.1016/0008-8846(94)90108-2
[2] Adu-Amankwah S, Zajac M, Stabler C, et al (2017) Influence of limestone on the hydration of ternary slag cements. Cem Concr Res 100:96–109 . doi: https://doi.org/10.1016/j.cemconres.2017.05.013
[3] Zajac M, Rossberg A, Saout G Le, Lothenbach B (2014) Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos 46:99–108 . doi: https://doi.org/10.1016/j.cemconcomp.2013.11.007
[4] Zhang M, Chen J, Lv Y, et al (2013) Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr Build Mater 39:26–32 . doi: https://doi.org/10.1016/j.conbuildmat.2012.05.003
[5] Al-Jabri KS, AL-Saidy AH, Taha R, AL-Kemyani AJ (2011) Effect of using Wastewater on the Properties of High Strength Concrete. Procedia Eng 14:370–376 . doi: https://doi.org/10.1016/j.proeng.2011.07.046
[6] Chatveera B, Lertwattanaruk P (2009) Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture. J Environ Manage 90:1901–1908 . doi: https://doi.org/10.1016/j.jenvman.2009.01.008
[7] Rivera-Corral JO, Fajardo G, Arliguie G, et al (2017) Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr Build Mater 147:815–826 . doi: https://doi.org/10.1016/j.conbuildmat.2017.04.186
[8] Kucche KJ, Jamkar SS, Sadgir PA (2015) Quality of Water for Making Concrete : A Review of. Int J Sci Res Publ 5:1–10 . doi: 2250-3153
[9] Mehta PK, Monteiro PJM, Ebrary I (2014) Concrete: microstructure, properties, and materials. McGraw-Hill
[10] Gupta B, Gupta A (2012) Concrete Technology. Standard Publishers ltd, India
[11] Karthik S, Rao PRM, Awoyera PO (2017) Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ - Eng Sci. doi: 10.1016/j.jksues.2016.12.003
[12] Anandaraj S, Rooby J, Awoyera PO, Gobinath R (2019) Structural distress in glass fibre- reinforced concrete under loading and exposure to aggressive environments. Constr Build Mater 197:862–870 . doi: https://doi.org/10.1016/j.conbuildmat.2018.06.090
[13] Sateshkumar S, Awoyera P, Kandasamy T, et al (2018) Impact resistance of high strength chopped basalt fibre-reinforced concrete. Rev la Construcción J Constr 17:240–249
[14] Murthi P, Awoyera P, Selvaraj P, et al (2018) Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment. Aust J Civ Eng 0:1–7 . doi: 10.1080/14488353.2018.1472539
[15] Babu GR, Reddy BM, Ramana NV (2018) Quality of mixing water in cement concrete “a review.” Mater Today Proc 5:1313–1320 . doi: https://doi.org/10.1016/j.matpr.2017.11.216
[16] WHO (2004) Water Sanitation and Health Programme. Managing water in the home: accelerated health gains from improved water sources
[17] AS 1379 (2007) Specification and Supply of Concrete
[18] Akinsola O, Ajibola F, Ounsanmi O (2012) Investigation of Salinity Effect on Compressive Strength of Reinforced Concrete. J Sustain Dev 5:74–82
[19] Singh DDN, Ghosh R, Singh BK (2002) Fluoride induced corrosion of steel rebars in contact with alkaline solutions, cement slurry and concrete mortars. Corros Sci 44:1713–1735 . doi: https://doi.org/10.1016/S0010-938X(01)00179-2
[20] Babu GR, Ramana NV (2018) Feasibility of wastewater as mixing water in cement. Mater Today Proc 5:1607–1614 . doi: https://doi.org/10.1016/j.matpr.2017.11.253
[21] Arif M, Hussain I, Hussain J, et al (2015) GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur district, Rajasthan. Cogent Environ Sci 1: . doi: 10.1080/23311843.2015.1038944
[22] Kucche K, Jamkar S, Sadgir P (2015) Quality of Water for Making Concrete:A Review of Literature. Int J Sci Res Publ 5:1–10
[23] Al-Saleh SA (2015) Analysis of total chloride content in concrete. Case Stud Constr Mater 3:78–82 . doi: https://doi.org/10.1016/j.cscm.2015.06.001
[24] Awoyera PO, Akinmusuru JO, Dawson AR, et al (2018) Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cem Concr Compos 86: . doi: 10.1016/j.cemconcomp.2017.11.017
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c1ef0c87-52f3-435c-be45-8b340b2f1bef/download
https://repositorio.cuc.edu.co/bitstreams/3a831f85-c488-4866-94c2-3172f6b9ca84/download
https://repositorio.cuc.edu.co/bitstreams/e7a7c867-c9a2-42be-aeae-4b7659bf1381/download
https://repositorio.cuc.edu.co/bitstreams/60c004d9-4114-4868-aea1-225e4a01ab71/download
https://repositorio.cuc.edu.co/bitstreams/c031c5f8-72e2-46e7-80c3-3df943235593/download
bitstream.checksum.fl_str_mv 792562ca856e9c4c9d20c4f713939519
934f4ca17e109e0a05eaeaba504d7ce4
e30e9215131d99561d40d6b0abbe9bad
3839d8f97178d4e156e18a2fa6dd92e5
2414102abbf47b5fe4ca86fd8fb1f4ab
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760762427801600
spelling Awoyera, PaulAwobayikun, OyinkansolaGobinath, Ravindranamelec, viloriaUgwu, Emmanuel I.2020-07-04T17:40:25Z2020-07-04T17:40:25Z2020https://hdl.handle.net/11323/6458Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Various national and international standards recommend potable water for mixing concrete; however, the availability of potable water is virtually a daunting task in some developing communities. Concrete workers in such environments tend to utilize any available water for mixing concrete, and this may be detrimental to the quality of the concrete being produced. This study investigates the rheological, mineralogical and strength variability of concrete due to construction water impurities. Water samples were collected from four different construction sites within Southwestern region of Nigeria for production of concrete. The physical and chemical properties of the waters were determined so as to measure their rate of contamination, prior to their use for mixing concrete. The rheological properties of the fresh concrete, compressive strength, split tensile strength, and microscale features of hardened concrete, that were produced with each water sample were determined. From the results, the rheological features of concrete were found not to be affected by water impurities, however, the mechanical test results revealed about 10% reduction in strength between concrete made with water having least and higher concentration of impurities. Also, it was evident from the microscale tests that the water impurities do alter the hydration rate of concrete, which results in strength reduction. The study suggests pretreatment of concrete mixing water before use in order to avoid its damaging effect on concrete life.Department of Civil Engineering, Covenant University, Ota, Nigeria; Centre for Construction Methods and Materials, S R Engineering College, Warangal, India; Universidad Peruana de Ciencias Aplicadas, Lima, Peru; Department of Civil Engineering, Michael Okpara University of Agriculture, Umuahia, NigeriaAwoyera, Paul-will be generated-orcid-0000-0002-6212-5090-600Awobayikun, OyinkansolaGobinath, Ravindranamelec, viloria-will be generated-orcid-0000-0003-2673-6350-600Ugwu, Emmanuel I.engAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Concrete MixingHydrationMineralogyMorphologyRheologyStrengthWaterRheological, Mineralogical and Strength Variability of Concrete Due to Construction Water ImpuritiesVariabilidad reológica, mineralógica y de resistencia del hormigón debido a impurezas del agua de construcciónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Kumar S, Rao CVSK (1994) Effect of sulfates on the setting time of cement and strength of concrete. Cem Concr Res 24:1237–1244 . doi: https://doi.org/10.1016/0008-8846(94)90108-2[2] Adu-Amankwah S, Zajac M, Stabler C, et al (2017) Influence of limestone on the hydration of ternary slag cements. Cem Concr Res 100:96–109 . doi: https://doi.org/10.1016/j.cemconres.2017.05.013[3] Zajac M, Rossberg A, Saout G Le, Lothenbach B (2014) Influence of limestone and anhydrite on the hydration of Portland cements. Cem Concr Compos 46:99–108 . doi: https://doi.org/10.1016/j.cemconcomp.2013.11.007[4] Zhang M, Chen J, Lv Y, et al (2013) Study on the expansion of concrete under attack of sulfate and sulfate–chloride ions. Constr Build Mater 39:26–32 . doi: https://doi.org/10.1016/j.conbuildmat.2012.05.003[5] Al-Jabri KS, AL-Saidy AH, Taha R, AL-Kemyani AJ (2011) Effect of using Wastewater on the Properties of High Strength Concrete. Procedia Eng 14:370–376 . doi: https://doi.org/10.1016/j.proeng.2011.07.046[6] Chatveera B, Lertwattanaruk P (2009) Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture. J Environ Manage 90:1901–1908 . doi: https://doi.org/10.1016/j.jenvman.2009.01.008[7] Rivera-Corral JO, Fajardo G, Arliguie G, et al (2017) Corrosion behavior of steel reinforcement bars embedded in concrete exposed to chlorides: Effect of surface finish. Constr Build Mater 147:815–826 . doi: https://doi.org/10.1016/j.conbuildmat.2017.04.186[8] Kucche KJ, Jamkar SS, Sadgir PA (2015) Quality of Water for Making Concrete : A Review of. Int J Sci Res Publ 5:1–10 . doi: 2250-3153[9] Mehta PK, Monteiro PJM, Ebrary I (2014) Concrete: microstructure, properties, and materials. McGraw-Hill[10] Gupta B, Gupta A (2012) Concrete Technology. Standard Publishers ltd, India[11] Karthik S, Rao PRM, Awoyera PO (2017) Strength properties of bamboo and steel reinforced concrete containing manufactured sand and mineral admixtures. J King Saud Univ - Eng Sci. doi: 10.1016/j.jksues.2016.12.003[12] Anandaraj S, Rooby J, Awoyera PO, Gobinath R (2019) Structural distress in glass fibre- reinforced concrete under loading and exposure to aggressive environments. Constr Build Mater 197:862–870 . doi: https://doi.org/10.1016/j.conbuildmat.2018.06.090[13] Sateshkumar S, Awoyera P, Kandasamy T, et al (2018) Impact resistance of high strength chopped basalt fibre-reinforced concrete. Rev la Construcción J Constr 17:240–249[14] Murthi P, Awoyera P, Selvaraj P, et al (2018) Using silica mineral waste as aggregate in a green high strength concrete: workability, strength, failure mode, and morphology assessment. Aust J Civ Eng 0:1–7 . doi: 10.1080/14488353.2018.1472539[15] Babu GR, Reddy BM, Ramana NV (2018) Quality of mixing water in cement concrete “a review.” Mater Today Proc 5:1313–1320 . doi: https://doi.org/10.1016/j.matpr.2017.11.216[16] WHO (2004) Water Sanitation and Health Programme. Managing water in the home: accelerated health gains from improved water sources[17] AS 1379 (2007) Specification and Supply of Concrete[18] Akinsola O, Ajibola F, Ounsanmi O (2012) Investigation of Salinity Effect on Compressive Strength of Reinforced Concrete. J Sustain Dev 5:74–82[19] Singh DDN, Ghosh R, Singh BK (2002) Fluoride induced corrosion of steel rebars in contact with alkaline solutions, cement slurry and concrete mortars. Corros Sci 44:1713–1735 . doi: https://doi.org/10.1016/S0010-938X(01)00179-2[20] Babu GR, Ramana NV (2018) Feasibility of wastewater as mixing water in cement. Mater Today Proc 5:1607–1614 . doi: https://doi.org/10.1016/j.matpr.2017.11.253[21] Arif M, Hussain I, Hussain J, et al (2015) GIS-based inverse distance weighting spatial interpolation technique for fluoride distribution in south west part of Nagaur district, Rajasthan. Cogent Environ Sci 1: . doi: 10.1080/23311843.2015.1038944[22] Kucche K, Jamkar S, Sadgir P (2015) Quality of Water for Making Concrete:A Review of Literature. Int J Sci Res Publ 5:1–10[23] Al-Saleh SA (2015) Analysis of total chloride content in concrete. Case Stud Constr Mater 3:78–82 . doi: https://doi.org/10.1016/j.cscm.2015.06.001[24] Awoyera PO, Akinmusuru JO, Dawson AR, et al (2018) Microstructural characteristics, porosity and strength development in ceramic-laterized concrete. Cem Concr Compos 86: . doi: 10.1016/j.cemconcomp.2017.11.017PublicationORIGINALJERA.48.78 PRE.pdfJERA.48.78 PRE.pdfapplication/pdf852571https://repositorio.cuc.edu.co/bitstreams/c1ef0c87-52f3-435c-be45-8b340b2f1bef/download792562ca856e9c4c9d20c4f713939519MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/3a831f85-c488-4866-94c2-3172f6b9ca84/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e7a7c867-c9a2-42be-aeae-4b7659bf1381/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILJERA.48.78 PRE.pdf.jpgJERA.48.78 PRE.pdf.jpgimage/jpeg89543https://repositorio.cuc.edu.co/bitstreams/60c004d9-4114-4868-aea1-225e4a01ab71/download3839d8f97178d4e156e18a2fa6dd92e5MD54TEXTJERA.48.78 PRE.pdf.txtJERA.48.78 PRE.pdf.txttext/plain35512https://repositorio.cuc.edu.co/bitstreams/c031c5f8-72e2-46e7-80c3-3df943235593/download2414102abbf47b5fe4ca86fd8fb1f4abMD5511323/6458oai:repositorio.cuc.edu.co:11323/64582024-09-17 11:02:13.064http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==