Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages
In the refining and petrochemical industrial sector, large amounts of energy are used, so using the concept of exergy allows a rational use of this resource. In the different exergy and exergoeconomics studies applied in petrochemical plants, parameters of interest have been determined to evaluate t...
- Autores:
-
Buelvas Hernández, Ana
Fajardo, Juan Gabriel
Barreto, Deibys
Carrillo Caballero, Gaylord Enrique
Cardenas Escorcia, Yulineth
Vidal Tovar, Carlos Ramón
Gordon, Yimy
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8773
- Acceso en línea:
- https://hdl.handle.net/11323/8773
https://doi.org/10.1016/j.csite.2021.101214
https://repositorio.cuc.edu.co/
- Palabra clave:
- Exergoconomy
Endogenous exergy
Exogenous exergy
Avoidable exergy
Inevitable exergy
Exergo-economic indicators
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_ab92430cba96156ad2514893ebedd699 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8773 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
title |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
spellingShingle |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages Exergoconomy Endogenous exergy Exogenous exergy Avoidable exergy Inevitable exergy Exergo-economic indicators |
title_short |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
title_full |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
title_fullStr |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
title_full_unstemmed |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
title_sort |
Conventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages |
dc.creator.fl_str_mv |
Buelvas Hernández, Ana Fajardo, Juan Gabriel Barreto, Deibys Carrillo Caballero, Gaylord Enrique Cardenas Escorcia, Yulineth Vidal Tovar, Carlos Ramón Gordon, Yimy |
dc.contributor.author.spa.fl_str_mv |
Buelvas Hernández, Ana Fajardo, Juan Gabriel Barreto, Deibys Carrillo Caballero, Gaylord Enrique Cardenas Escorcia, Yulineth Vidal Tovar, Carlos Ramón Gordon, Yimy |
dc.subject.spa.fl_str_mv |
Exergoconomy Endogenous exergy Exogenous exergy Avoidable exergy Inevitable exergy Exergo-economic indicators |
topic |
Exergoconomy Endogenous exergy Exogenous exergy Avoidable exergy Inevitable exergy Exergo-economic indicators |
description |
In the refining and petrochemical industrial sector, large amounts of energy are used, so using the concept of exergy allows a rational use of this resource. In the different exergy and exergoeconomics studies applied in petrochemical plants, parameters of interest have been determined to evaluate the thermal efficiency, the potential for process improvement, the irreversibilities produced by the interaction between the components of the system and the operation of each one, and the energy costs associated with each of these irreversibilities. This paper presents an advanced exergy analysis and an exergy-economic analysis applied to a nitric acid production plant with an installed capacity of 350 metric tons per day, whose operating principle is based on the Ostwald method, and both the behavior of endogenous exergy destruction and the behavior of exogenous, avoidable and unavoidable exergy destruction are studied, exogenous, avoidable and unavoidable exergy destruction and the associated exergy costs in each of the heat transfer equipment and reactive equipment that make up the plant, about the cooling temperature in the intermediate stages of the compression train are studied using a mathematical model. The chemical reactions involved in the production process are the points of interest in the research of this work. Some of the results show that 54 % of the total exergy destruction can be recovered by intervening in the components. On the other hand, in the Catalytic Converter (CONV), it is convenient to consider the investment costs to reduce the exergy destruction costs. Similarly, in the Tail Gas Heater (TGH), it is beneficial to reduce the total investment to improve the process economics. On the other hand, the cost of exergy destruction of the plant resulted in 770.77 USD/h. In addition, it could be determined that the interactions between the components significantly affect the investment costs. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-04T16:41:38Z |
dc.date.available.none.fl_str_mv |
2021-10-04T16:41:38Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2214-157X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8773 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.csite.2021.101214 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2214-157X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8773 https://doi.org/10.1016/j.csite.2021.101214 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] K. Iftekhar, F. Alam y, Q. Alam, The global climate change and its effect on power generation, Energy Pol. (2013) 1460–1470. [2] R. Rivero, Application of the exergy concept in the petroleum refining and petrochemical industry, Energy Convers. Manag. 43 (2002) 1199–1220. [3] A. Valero, M.A. Lozano, M. Munoz, ˜ A General Theory of Exergy Saving I, II and III, ASME, New York, 1986. [4] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Designing and Optimization, New York, John Wiley & Sons, 1996. [5] P. Ifaei, A. Ataei y, C. Yoo, Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillersPart 2: thermoeconomic and environmental analysis, Energy Convers. Manag. 123 (2016) 625–642. [6] C. Yan, L. Lv, S. Wei, A. Eslamimanesh, W. Shen, Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant, Appl. Therm. Eng. 154 (2019) 637–649. [7] O.J. Odejobi, Exergy and economic analyses of crude oil distillation unit, Afr. J. Eng. Res. 3 (2015) 44–55. [8] K. Altayib, I. Dincer, Analysis and assessment of using an integrated solar energy-based system in a crude oil refinery, Appl. Therm. Eng. 159 (2019) 12. [9] Z. Nur Izyan y, M. Shuhaimi, Exergy analysis for fuel reduction strategies in crude distillation unit, Energy 66 (2014) 801–807. [10] D. Barreto, J. Fajardo y, J. Campillo, Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis, de ASME Int. Mechan. Eng. Congr. Exposit., Proc., Salt Lake City 6 (2019). Energy. [11] A. Buelvas, H. Valle y, J. Fajardo, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, de ASME 2018 Int. Mechan. Eng. Congr. Exposit., Pennsylvania 6B (2018). Energy. [12] L. Tock, F. Marechal, Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization, Energy 45 (2012) 339–349. [13] P. Caliandro, L. Tock, A.V. Ensinas, F. Marechal, Thermo-economic optimization of a solid oxide fuel cell- gas turbine system fuelled with gasified lignocellulosic biomass, Energy Convers. Manag. 85 (2014) 764–773. [14] D. Brown, M. Gassner, T. Fuchino, F. Mar´echal, Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems, Appl. Therm. Eng. 29 (2009) 2137–2152. [15] M. Rivarolo, B. D, M. A, A. Massardo, Hydro-methane and methanol combined production from hydroelectricity and biomass: thermo-economic analysis in Paraguay, Energy Convers. Manag. 79 (2014) 74–84. [16] G. Singh, P. Singh, V. Tyagi, P. Barnwal, A. Pandey, Exergy and thermo-economic analysis of ghee production plant in the dairy industry, Energy 167 (2019) 602–618. [17] A. Abusoglu, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 2 – Application, Appl. Therm. Eng. 29 (2009) 242–249. [18] X. Zhang, R. Zeng, K. Mu, X. Liu, X. Sun, H. Li, Exergectic and exergoeconomic evaluation of co-firing biomass with natural gas in CCHP system integrated with ground source heat pump, Energy Convers. Manag. 180 (2019) 622–640. [19] S. Seyyedi, M. Hashemi-Tilehnoee, M.A. Rosen, Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater, Ann. Nucl. Energy 115 (2018) 161–172. [20] L. Castellon, J. Fajardo, B. Sarria, Thermoeconomic analysis of wheat flour agroindustrial planta, in: Proceedings of the 15 the International Mechanical Engineering Congress and Exposition, Texas, Houston, 2015. [21] M. Bin Shams, E. Elkanzi, Z. Ramadhan, S. Rahma y, M. Khamis, Gas turbine inlet air cooling system for enhancing propane recovery in a gas plant: theorical and cost analyses, Nat. Gas Sci. Eng. (2017) 34. [22] M. Callak, F. Balkan, A. Hepbalsi, Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and heat recovery steam generator, Energy Convers. Manag. 98 (2015) 54–58. [23] H. Nami, A. Nemati, F.J. Fard, Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC), Appl. Therm. Eng. (2017) 46. [24] O. Balli, Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous, Appl. Therm. Eng. 111 (2017) 152–169. [25] M. Yari, S.M. Mahmoudi, M. Fallah, Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell, Energy 141 (2017) 1097–1112. [26] Z. Wang, W. Xion, D.S.-K. Ting, R. Carriveau, Z. Wang, Conventional and advanced exergy analyses of an underwater compressed air energy storage system, Appl. Energy 180 (2016) 810–822. [27] S. Fellaou, T. Bounahmidi, Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis, Energy 154 (2018) 190–200. [28] A. Pazildar y, S. Sadrameli, Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant, Energy Convers. Manag. 138 (2017) 474–485. [29] A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, A. Vatani, Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas, Energy 168 (2019) 542–557. [30] M. Mehrpooya, H. Ansarinasab, Advanced exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes, J. Nat. Gas Sci. Eng. 26 (2015) 782–791. [31] M. Mehrpooya, S. Ali Mousavi, Advanced exergoeconomic assessment of a solar-driven Kalina cycle, Energy Convers. Manag. 178 (2018) 78–91. [32] H. Ansarinasab, M. Mehrpooya, M. Pouriman, Advanced exergoeconomic evaluation of a new cryogenic Helium recovery process from natural gas based on the flash separation - APCI modified process, Appl. Therm. Eng. 132 (5) (2017) 368–380. [33] D. Barreto, J. Fajardo, G. Carrillo y, Y. Cardenas, Advanced and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine, Energy Technol. 9 (2021) 16. [34] Y. Cengel, Termodinámica, Mexico, 2011. [35] S. Turn, An introduction to combustion concepts and application, 2000. [36] A. Buelvas, J. Fajardo y, H. Valle, Conventional and advanced exergoeconomic analysis in a nitric acid production plant, Int. Mechan. Eng. Congr. Exposit., Salt Lake City 6 (2020). Energy. [37] J. Egzergia Szargut, Poradnik obliczania I stosowania, Editor: widawnictwo politechniki shlaskej, Gliwice, 2007, 129 pages. [38] A. Abusoglu y, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered, Appl. Therm. Eng. 29 (2008) 234–241. [39] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Design & Optimization, JOHN WILEY & SONS, INC, Toronto, 1996. [40] L. Wang, Y. Yang, T. Morosuk y, G. Tsatsaronis, Advanced thermodynamic analysis and evaluation of a supercritical power plant, Energies 5 (2012) 1850–1863. [41] G. Tsatsaronis, K. Solange y, T. Morosuk, Endogenous and exogenous exergy destruction in thermal systems, in: Proceedings of International Mechanical Engineering Congress and Exposition-IMECE, vol. 2006, 2006, pp. 311–317. [42] G. Tsatsaronis y, M. Park, On Avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy Convers. Manag. 43 (2002) 1259–1270. [43] J. Couper, W. Penney, J. Fair y, S. Walas, Chemical Process Equipment: Selection and Design, Butterworth-Heinemann, 2010. [44] G. Towler y, R. Sinnott, Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design, Butterworth-Heinemann, 2013. [45] J. Fajardo, H. Valley, A. Buelvas, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, ASME Int. Mechan. Eng. Congr. Exposit., Pittsburgh 6B (2018). Energy. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Case Studies in Thermal Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2214157X21003774 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e50cb672-b37b-4bc6-a699-5d162efbef96/download https://repositorio.cuc.edu.co/bitstreams/a2fa0ca5-1501-4a05-8689-f9a7be28e581/download https://repositorio.cuc.edu.co/bitstreams/6c12a835-dc5a-45b1-9fe0-d1a7ac101468/download https://repositorio.cuc.edu.co/bitstreams/b596a28f-4d58-4210-b80b-46e2bc1845d1/download https://repositorio.cuc.edu.co/bitstreams/633f1b34-53dc-4652-975e-6f31e6de8723/download |
bitstream.checksum.fl_str_mv |
785716cdabc711b14afdb0b991152d01 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 70a0142848b13d399e7916395216951a 18f1e8837c971a6fe7dc58db4fc59671 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166818098839552 |
spelling |
Buelvas Hernández, AnaFajardo, Juan GabrielBarreto, DeibysCarrillo Caballero, Gaylord EnriqueCardenas Escorcia, YulinethVidal Tovar, Carlos RamónGordon, Yimy2021-10-04T16:41:38Z2021-10-04T16:41:38Z20212214-157Xhttps://hdl.handle.net/11323/8773https://doi.org/10.1016/j.csite.2021.101214Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the refining and petrochemical industrial sector, large amounts of energy are used, so using the concept of exergy allows a rational use of this resource. In the different exergy and exergoeconomics studies applied in petrochemical plants, parameters of interest have been determined to evaluate the thermal efficiency, the potential for process improvement, the irreversibilities produced by the interaction between the components of the system and the operation of each one, and the energy costs associated with each of these irreversibilities. This paper presents an advanced exergy analysis and an exergy-economic analysis applied to a nitric acid production plant with an installed capacity of 350 metric tons per day, whose operating principle is based on the Ostwald method, and both the behavior of endogenous exergy destruction and the behavior of exogenous, avoidable and unavoidable exergy destruction are studied, exogenous, avoidable and unavoidable exergy destruction and the associated exergy costs in each of the heat transfer equipment and reactive equipment that make up the plant, about the cooling temperature in the intermediate stages of the compression train are studied using a mathematical model. The chemical reactions involved in the production process are the points of interest in the research of this work. Some of the results show that 54 % of the total exergy destruction can be recovered by intervening in the components. On the other hand, in the Catalytic Converter (CONV), it is convenient to consider the investment costs to reduce the exergy destruction costs. Similarly, in the Tail Gas Heater (TGH), it is beneficial to reduce the total investment to improve the process economics. On the other hand, the cost of exergy destruction of the plant resulted in 770.77 USD/h. In addition, it could be determined that the interactions between the components significantly affect the investment costs.Buelvas Hernández, AnaFajardo, Juan GabrielBarreto, Deibys-will be generated-orcid-0000-0003-3275-3659-600Carrillo Caballero, Gaylord Enrique-will be generated-orcid-0000-0002-4268-8945-600Cardenas Escorcia, Yulineth-will be generated-orcid-0000-0002-9841-701X-600Vidal Tovar, Carlos RamónGordon, Yimy-will be generated-orcid-0000-0002-6156-0971-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Case Studies in Thermal Engineeringhttps://www.sciencedirect.com/science/article/pii/S2214157X21003774ExergoconomyEndogenous exergyExogenous exergyAvoidable exergyInevitable exergyExergo-economic indicatorsConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stagesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] K. Iftekhar, F. Alam y, Q. Alam, The global climate change and its effect on power generation, Energy Pol. (2013) 1460–1470.[2] R. Rivero, Application of the exergy concept in the petroleum refining and petrochemical industry, Energy Convers. Manag. 43 (2002) 1199–1220.[3] A. Valero, M.A. Lozano, M. Munoz, ˜ A General Theory of Exergy Saving I, II and III, ASME, New York, 1986.[4] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Designing and Optimization, New York, John Wiley & Sons, 1996.[5] P. Ifaei, A. Ataei y, C. Yoo, Thermoeconomic and environmental analyses of a low water consumption combined steam power plant and refrigeration chillersPart 2: thermoeconomic and environmental analysis, Energy Convers. Manag. 123 (2016) 625–642.[6] C. Yan, L. Lv, S. Wei, A. Eslamimanesh, W. Shen, Application of retrofitted design and optimization framework based on the exergy analysis to a crude oil distillation plant, Appl. Therm. Eng. 154 (2019) 637–649.[7] O.J. Odejobi, Exergy and economic analyses of crude oil distillation unit, Afr. J. Eng. Res. 3 (2015) 44–55.[8] K. Altayib, I. Dincer, Analysis and assessment of using an integrated solar energy-based system in a crude oil refinery, Appl. Therm. Eng. 159 (2019) 12.[9] Z. Nur Izyan y, M. Shuhaimi, Exergy analysis for fuel reduction strategies in crude distillation unit, Energy 66 (2014) 801–807.[10] D. Barreto, J. Fajardo y, J. Campillo, Determination of the optimal range of the compressor inlet air temperature in a power plant with stig cycle through of advanced exergetic analysis, de ASME Int. Mechan. Eng. Congr. Exposit., Proc., Salt Lake City 6 (2019). Energy.[11] A. Buelvas, H. Valle y, J. Fajardo, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, de ASME 2018 Int. Mechan. Eng. Congr. Exposit., Pennsylvania 6B (2018). Energy.[12] L. Tock, F. Marechal, Co-production of hydrogen and electricity from lignocellulosic biomass: process design and thermo-economic optimization, Energy 45 (2012) 339–349.[13] P. Caliandro, L. Tock, A.V. Ensinas, F. Marechal, Thermo-economic optimization of a solid oxide fuel cell- gas turbine system fuelled with gasified lignocellulosic biomass, Energy Convers. Manag. 85 (2014) 764–773.[14] D. Brown, M. Gassner, T. Fuchino, F. Mar´echal, Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems, Appl. Therm. Eng. 29 (2009) 2137–2152.[15] M. Rivarolo, B. D, M. A, A. Massardo, Hydro-methane and methanol combined production from hydroelectricity and biomass: thermo-economic analysis in Paraguay, Energy Convers. Manag. 79 (2014) 74–84.[16] G. Singh, P. Singh, V. Tyagi, P. Barnwal, A. Pandey, Exergy and thermo-economic analysis of ghee production plant in the dairy industry, Energy 167 (2019) 602–618.[17] A. Abusoglu, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered cogeneration: Part 2 – Application, Appl. Therm. Eng. 29 (2009) 242–249.[18] X. Zhang, R. Zeng, K. Mu, X. Liu, X. Sun, H. Li, Exergectic and exergoeconomic evaluation of co-firing biomass with natural gas in CCHP system integrated with ground source heat pump, Energy Convers. Manag. 180 (2019) 622–640.[19] S. Seyyedi, M. Hashemi-Tilehnoee, M.A. Rosen, Exergy and exergoeconomic analyses of a novel integration of a 1000 MW pressurized water reactor power plant and a gas turbine cycle through a superheater, Ann. Nucl. Energy 115 (2018) 161–172.[20] L. Castellon, J. Fajardo, B. Sarria, Thermoeconomic analysis of wheat flour agroindustrial planta, in: Proceedings of the 15 the International Mechanical Engineering Congress and Exposition, Texas, Houston, 2015.[21] M. Bin Shams, E. Elkanzi, Z. Ramadhan, S. Rahma y, M. Khamis, Gas turbine inlet air cooling system for enhancing propane recovery in a gas plant: theorical and cost analyses, Nat. Gas Sci. Eng. (2017) 34.[22] M. Callak, F. Balkan, A. Hepbalsi, Avoidable and unavoidable exergy destructions of a fluidized bed coal combustor and heat recovery steam generator, Energy Convers. Manag. 98 (2015) 54–58.[23] H. Nami, A. Nemati, F.J. Fard, Conventional and advanced exergy analyses of a geothermal driven dual fluid organic Rankine cycle (ORC), Appl. Therm. Eng. (2017) 46.[24] O. Balli, Advanced exergy analyses to evaluate the performance of a military aircraft turbojet engine (TJE) with afterburner system: splitting exergy destruction into unavoidable/avoidable and endogenous/exogenous, Appl. Therm. Eng. 111 (2017) 152–169.[25] M. Yari, S.M. Mahmoudi, M. Fallah, Advanced exergy analysis for an anode gas recirculation solid oxide fuel cell, Energy 141 (2017) 1097–1112.[26] Z. Wang, W. Xion, D.S.-K. Ting, R. Carriveau, Z. Wang, Conventional and advanced exergy analyses of an underwater compressed air energy storage system, Appl. Energy 180 (2016) 810–822.[27] S. Fellaou, T. Bounahmidi, Analyzing thermodynamic improvement potential of a selected cement manufacturing process: advanced exergy analysis, Energy 154 (2018) 190–200.[28] A. Pazildar y, S. Sadrameli, Conventional and advanced exergoeconomic analyses applied to ethylene refrigeration system of an existing olefin plant, Energy Convers. Manag. 138 (2017) 474–485.[29] A. Palizdar, T. Ramezani, Z. Nargessi, S. AmirAfshar, M. Abbasi, A. Vatani, Advanced exergoeconomic evaluation of a mini-scale nitrogen dual expander process for liquefaction of natural gas, Energy 168 (2019) 542–557.[30] M. Mehrpooya, H. Ansarinasab, Advanced exergoeconomic evaluation of single mixed refrigerant natural gas liquefaction processes, J. Nat. Gas Sci. Eng. 26 (2015) 782–791.[31] M. Mehrpooya, S. Ali Mousavi, Advanced exergoeconomic assessment of a solar-driven Kalina cycle, Energy Convers. Manag. 178 (2018) 78–91.[32] H. Ansarinasab, M. Mehrpooya, M. Pouriman, Advanced exergoeconomic evaluation of a new cryogenic Helium recovery process from natural gas based on the flash separation - APCI modified process, Appl. Therm. Eng. 132 (5) (2017) 368–380.[33] D. Barreto, J. Fajardo, G. Carrillo y, Y. Cardenas, Advanced and exergoeconomic analysis of a gas power system with steam injection and air cooling with a compression refrigeration machine, Energy Technol. 9 (2021) 16.[34] Y. Cengel, Termodinámica, Mexico, 2011.[35] S. Turn, An introduction to combustion concepts and application, 2000.[36] A. Buelvas, J. Fajardo y, H. Valle, Conventional and advanced exergoeconomic analysis in a nitric acid production plant, Int. Mechan. Eng. Congr. Exposit., Salt Lake City 6 (2020). Energy.[37] J. Egzergia Szargut, Poradnik obliczania I stosowania, Editor: widawnictwo politechniki shlaskej, Gliwice, 2007, 129 pages.[38] A. Abusoglu y, M. Kanoglu, Exergetic and thermoeconomic analyses of diesel engine powered, Appl. Therm. Eng. 29 (2008) 234–241.[39] A. Bejan, G. Tsatsaronis y, M. Moran, Thermal Design & Optimization, JOHN WILEY & SONS, INC, Toronto, 1996.[40] L. Wang, Y. Yang, T. Morosuk y, G. Tsatsaronis, Advanced thermodynamic analysis and evaluation of a supercritical power plant, Energies 5 (2012) 1850–1863.[41] G. Tsatsaronis, K. Solange y, T. Morosuk, Endogenous and exogenous exergy destruction in thermal systems, in: Proceedings of International Mechanical Engineering Congress and Exposition-IMECE, vol. 2006, 2006, pp. 311–317.[42] G. Tsatsaronis y, M. Park, On Avoidable and unavoidable exergy destructions and investment costs in thermal systems, Energy Convers. Manag. 43 (2002) 1259–1270.[43] J. Couper, W. Penney, J. Fair y, S. Walas, Chemical Process Equipment: Selection and Design, Butterworth-Heinemann, 2010.[44] G. Towler y, R. Sinnott, Chemical Engineering Design: Principles, Practice, and Economics of Plant and Process Design, Butterworth-Heinemann, 2013.[45] J. Fajardo, H. Valley, A. Buelvas, Avoidable and unavoidable exergetic destruction analysis of a nitric acid production plant, ASME Int. Mechan. Eng. Congr. Exposit., Pittsburgh 6B (2018). Energy.PublicationORIGINALConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdfConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdfapplication/pdf4911529https://repositorio.cuc.edu.co/bitstreams/e50cb672-b37b-4bc6-a699-5d162efbef96/download785716cdabc711b14afdb0b991152d01MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/a2fa0ca5-1501-4a05-8689-f9a7be28e581/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/6c12a835-dc5a-45b1-9fe0-d1a7ac101468/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdf.jpgConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdf.jpgimage/jpeg51605https://repositorio.cuc.edu.co/bitstreams/b596a28f-4d58-4210-b80b-46e2bc1845d1/download70a0142848b13d399e7916395216951aMD54TEXTConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdf.txtConventional and advanced exergoeconomic indicators of a nitric acid production plant concerning the cooling temperature in compression Train's intermediate stages.pdf.txttext/plain81086https://repositorio.cuc.edu.co/bitstreams/633f1b34-53dc-4652-975e-6f31e6de8723/download18f1e8837c971a6fe7dc58db4fc59671MD5511323/8773oai:repositorio.cuc.edu.co:11323/87732024-09-17 14:13:31.94http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |