Simulation and optimization of traffic lights for vehicles flow in high traffic areas

In today’s world, the increase of the population in the cities cause that the transportation of freight and passenger increase also increasing the number of automobiles and vehicles on the streets, directly impacting traffic on the roads and more in the critical points of the street, the intercessio...

Full description

Autores:
Ramirez-Polo, Luis Eduardo
Jimenez Barros, Miguel Angel
Varela Narváez, Vladimir
Parodi, Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9367
Acceso en línea:
https://hdl.handle.net/11323/9367
https://doi.org/10.1016/j.procs.2021.12.284
https://repositorio.cuc.edu.co/
Palabra clave:
Simulation
Optimization
Traffic light scheduling
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_ab78d44b38694441b798a807202d9b34
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9367
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Simulation and optimization of traffic lights for vehicles flow in high traffic areas
title Simulation and optimization of traffic lights for vehicles flow in high traffic areas
spellingShingle Simulation and optimization of traffic lights for vehicles flow in high traffic areas
Simulation
Optimization
Traffic light scheduling
title_short Simulation and optimization of traffic lights for vehicles flow in high traffic areas
title_full Simulation and optimization of traffic lights for vehicles flow in high traffic areas
title_fullStr Simulation and optimization of traffic lights for vehicles flow in high traffic areas
title_full_unstemmed Simulation and optimization of traffic lights for vehicles flow in high traffic areas
title_sort Simulation and optimization of traffic lights for vehicles flow in high traffic areas
dc.creator.fl_str_mv Ramirez-Polo, Luis Eduardo
Jimenez Barros, Miguel Angel
Varela Narváez, Vladimir
Parodi, Carlos
dc.contributor.author.spa.fl_str_mv Ramirez-Polo, Luis Eduardo
Jimenez Barros, Miguel Angel
Varela Narváez, Vladimir
Parodi, Carlos
dc.subject.proposal.eng.fl_str_mv Simulation
Optimization
Traffic light scheduling
topic Simulation
Optimization
Traffic light scheduling
description In today’s world, the increase of the population in the cities cause that the transportation of freight and passenger increase also increasing the number of automobiles and vehicles on the streets, directly impacting traffic on the roads and more in the critical points of the street, the intercessions. To improve mobility at these intersections is necessary to appropriate coordination of signals and traffic lights that regulate traffic in various directions. This research shows the methodology to find the correct time of the lights to reduce the time in traffic of the vehicles on one of the principals and most congested roads in the city of Barranquilla, Colombia, using simulation and optimization techniques, were found the ideal cycle times and the different times of each color of the traffic lights to reduce the time in the line of the vehicles. This paper presents a literature review of similar works, a complete description of the case to be investigated, the construction of the simulation model required for the evaluation of the improvements, the optimization model developed, and the conclusions to which reached in the same way, it proposes a structure that can be replicated in any scenario that handles similar conditions
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-14T16:45:07Z
dc.date.available.none.fl_str_mv 2022-07-14T16:45:07Z
dc.date.issued.none.fl_str_mv 2022-01-26
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Luis Ramirez-Polo, Miguel A. Jimenez-Barros, Vladimir Varela Narváez, Carlos Parodi Daza,Simulation and Optimization of Traffic Lights For Vehicles Flow in High Traffic Areas, Procedia Computer Science, Volume 198, 2022, Pages 548-553, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.284.
dc.identifier.issn.spa.fl_str_mv 18770509
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9367
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.procs.2021.12.284
dc.identifier.doi.spa.fl_str_mv 10.1016/j.procs.2021.12.284
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Luis Ramirez-Polo, Miguel A. Jimenez-Barros, Vladimir Varela Narváez, Carlos Parodi Daza,Simulation and Optimization of Traffic Lights For Vehicles Flow in High Traffic Areas, Procedia Computer Science, Volume 198, 2022, Pages 548-553, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.284.
18770509
10.1016/j.procs.2021.12.284
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9367
https://doi.org/10.1016/j.procs.2021.12.284
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Procedia Computer Science
dc.relation.references.spa.fl_str_mv [1] N. Casas, “Deep deterministic policy gradient for urban traffic light control,” arXiv. arXiv, Mar. 27, 2017.
[2] X. Liang, X. Du, G. Wang, and Z. Han, “Deep reinforcement learning for traffic light control in vehicular networks,” arXiv. 2018, doi: 10.1109/TVT.2018.2890726.
[3] S. S. Mousavi, M. Schukat, and E. Howley, “Traffic light control using deep policy-gradient and value-function-based reinforcement learning,” in IET Intelligent Transport Systems, 2017, vol. 11, no. 7, doi: 10.1049/iet-its.2017.0153.
[4] J. Jin, X. Ma, and I. Kosonen, “An intelligent control system for traffic lights with simulation-based evaluation,” Control Eng. Pract., vol. 58, 2017, doi: 10.1016/j.conengprac.2016.09.009.
[5] Yamanoi et al, “United States Patent: TRAFFIC LIGHT RECOGNITION DEVICE AND TRAFFIC LIGHT RECOGNITION METHOD,” 2019.
[6] M.-A. Lebre, F. Le Mouël, E. Ménard, A. Garnault, B. Bradaï, and V. Picron, “Real scenario and simulations on GLOSA traffic light system for reduced CO2 emissions, waiting time and travel time,” 2015. Accessed: Apr. 21, 2021. [Online]. Available: https://arxiv.org/abs/1506.01965.
[7] C. Suthaputchakun and Z. Sun, “A novel traffic light scheduling based on TLVC and vehicles’ priority for reducing fuel consumption and CO 2 emission,” IEEE Syst. J., vol. 12, no. 2, 2018, doi: 10.1109/JSYST.2015.2500587.
[8] L. Xue, Y. Yang, and D. Dong, “Roadside Infrastructure Planning Scheme for the Urban Vehicular Networks,” Transp. Res. Procedia, vol. 25, pp. 1380–1396, Jan. 2017, doi: 10.1016/J.TRPRO.2017.05.163.
[9] L. Guevara and F. A. Cheein, “The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems,” Sustain. 2020, Vol. 12, Page 6469, vol. 12, no. 16, p. 6469, Aug. 2020, doi: 10.3390/SU12166469.
[10] L. E. Ramírez Polo, A. R. Santander-Mercado, and M. A. Jimenez-Barros, “Development Methodology to Share Vehicles Optimizing the Variability of the Mileage,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Oct. 2020, vol. 12133 LNCS, pp. 426–435, doi: 10.1007/978-3-030-47679-3_36.
[11] P. J. Vidal and A. C. Olivera, “Management of urban traffic flow based on traffic lights scheduling optimization,” IEEE Lat. Am. Trans., vol. 17, no. 1, pp. 102–110, Jan. 2019, doi: 10.1109/TLA.2019.8826701.
[12] M. Lima, M. de Alcantara, A. Rosenthal, and R. Deliza, “Effectiveness of traffic light system on Brazilian consumers perception of food healthfulness,” Food Sci. Hum. Wellness, vol. 8, no. 4, pp. 368–374, Dec. 2019, doi: 10.1016/j.fshw.2019.10.001.
[13] R. Li, C. Zheng, and W. Li, “Optimization Model of Transit Signal Priority Control for Intersection and Downstream Bus Stop,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/9487190.
[14] L. Ramírez-Polo, F. D. J. Medoza Mola, A. Parody, F. Gonzalez Solano, L. J. Castro Bolaño, and M. A. Jimenez Barros, “Simulation model to find the slack time for schedule of the transit operations in off-peak time on the main terminal of massive transport system,” Espacios, vol. 38, no. 13, 2017.
dc.relation.citationendpage.spa.fl_str_mv 553
dc.relation.citationstartpage.spa.fl_str_mv 548
dc.relation.citationvolume.spa.fl_str_mv 198
dc.rights.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 The Authors. Published by Elsevier B.
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 2021 The Authors. Published by Elsevier B.
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 6 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1877050921025230?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ae8affbc-77a6-405f-a976-d76294a7fa81/download
https://repositorio.cuc.edu.co/bitstreams/1d9cf4a7-e05f-4956-9ad5-a6510ca78036/download
https://repositorio.cuc.edu.co/bitstreams/66d3565d-aedc-4061-b81c-abfb8d07a81d/download
https://repositorio.cuc.edu.co/bitstreams/babd4e69-05fc-4561-be1d-9fa71c96e0dc/download
bitstream.checksum.fl_str_mv 24b3a8176163683c15bd1de7a2d0c320
e30e9215131d99561d40d6b0abbe9bad
c3062c78a930053def7cca7fbec52f36
6368d8621c504ad05c199fd3356fe855
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166857293561856
spelling Ramirez-Polo, Luis EduardoJimenez Barros, Miguel AngelVarela Narváez, VladimirParodi, Carlos2022-07-14T16:45:07Z2022-07-14T16:45:07Z2022-01-26Luis Ramirez-Polo, Miguel A. Jimenez-Barros, Vladimir Varela Narváez, Carlos Parodi Daza,Simulation and Optimization of Traffic Lights For Vehicles Flow in High Traffic Areas, Procedia Computer Science, Volume 198, 2022, Pages 548-553, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2021.12.284.18770509https://hdl.handle.net/11323/9367https://doi.org/10.1016/j.procs.2021.12.28410.1016/j.procs.2021.12.284Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In today’s world, the increase of the population in the cities cause that the transportation of freight and passenger increase also increasing the number of automobiles and vehicles on the streets, directly impacting traffic on the roads and more in the critical points of the street, the intercessions. To improve mobility at these intersections is necessary to appropriate coordination of signals and traffic lights that regulate traffic in various directions. This research shows the methodology to find the correct time of the lights to reduce the time in traffic of the vehicles on one of the principals and most congested roads in the city of Barranquilla, Colombia, using simulation and optimization techniques, were found the ideal cycle times and the different times of each color of the traffic lights to reduce the time in the line of the vehicles. This paper presents a literature review of similar works, a complete description of the case to be investigated, the construction of the simulation model required for the evaluation of the improvements, the optimization model developed, and the conclusions to which reached in the same way, it proposes a structure that can be replicated in any scenario that handles similar conditions6 páginasapplication/pdfengElsevier BVNetherlandsAtribución 4.0 Internacional (CC BY 4.0)© 2021 The Authors. Published by Elsevier B.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Simulation and optimization of traffic lights for vehicles flow in high traffic areasArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S1877050921025230?via%3DihubProcedia Computer Science[1] N. Casas, “Deep deterministic policy gradient for urban traffic light control,” arXiv. arXiv, Mar. 27, 2017.[2] X. Liang, X. Du, G. Wang, and Z. Han, “Deep reinforcement learning for traffic light control in vehicular networks,” arXiv. 2018, doi: 10.1109/TVT.2018.2890726.[3] S. S. Mousavi, M. Schukat, and E. Howley, “Traffic light control using deep policy-gradient and value-function-based reinforcement learning,” in IET Intelligent Transport Systems, 2017, vol. 11, no. 7, doi: 10.1049/iet-its.2017.0153.[4] J. Jin, X. Ma, and I. Kosonen, “An intelligent control system for traffic lights with simulation-based evaluation,” Control Eng. Pract., vol. 58, 2017, doi: 10.1016/j.conengprac.2016.09.009.[5] Yamanoi et al, “United States Patent: TRAFFIC LIGHT RECOGNITION DEVICE AND TRAFFIC LIGHT RECOGNITION METHOD,” 2019.[6] M.-A. Lebre, F. Le Mouël, E. Ménard, A. Garnault, B. Bradaï, and V. Picron, “Real scenario and simulations on GLOSA traffic light system for reduced CO2 emissions, waiting time and travel time,” 2015. Accessed: Apr. 21, 2021. [Online]. Available: https://arxiv.org/abs/1506.01965.[7] C. Suthaputchakun and Z. Sun, “A novel traffic light scheduling based on TLVC and vehicles’ priority for reducing fuel consumption and CO 2 emission,” IEEE Syst. J., vol. 12, no. 2, 2018, doi: 10.1109/JSYST.2015.2500587.[8] L. Xue, Y. Yang, and D. Dong, “Roadside Infrastructure Planning Scheme for the Urban Vehicular Networks,” Transp. Res. Procedia, vol. 25, pp. 1380–1396, Jan. 2017, doi: 10.1016/J.TRPRO.2017.05.163.[9] L. Guevara and F. A. Cheein, “The Role of 5G Technologies: Challenges in Smart Cities and Intelligent Transportation Systems,” Sustain. 2020, Vol. 12, Page 6469, vol. 12, no. 16, p. 6469, Aug. 2020, doi: 10.3390/SU12166469.[10] L. E. Ramírez Polo, A. R. Santander-Mercado, and M. A. Jimenez-Barros, “Development Methodology to Share Vehicles Optimizing the Variability of the Mileage,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Oct. 2020, vol. 12133 LNCS, pp. 426–435, doi: 10.1007/978-3-030-47679-3_36.[11] P. J. Vidal and A. C. Olivera, “Management of urban traffic flow based on traffic lights scheduling optimization,” IEEE Lat. Am. Trans., vol. 17, no. 1, pp. 102–110, Jan. 2019, doi: 10.1109/TLA.2019.8826701.[12] M. Lima, M. de Alcantara, A. Rosenthal, and R. Deliza, “Effectiveness of traffic light system on Brazilian consumers perception of food healthfulness,” Food Sci. Hum. Wellness, vol. 8, no. 4, pp. 368–374, Dec. 2019, doi: 10.1016/j.fshw.2019.10.001.[13] R. Li, C. Zheng, and W. Li, “Optimization Model of Transit Signal Priority Control for Intersection and Downstream Bus Stop,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/9487190.[14] L. Ramírez-Polo, F. D. J. Medoza Mola, A. Parody, F. Gonzalez Solano, L. J. Castro Bolaño, and M. A. Jimenez Barros, “Simulation model to find the slack time for schedule of the transit operations in off-peak time on the main terminal of massive transport system,” Espacios, vol. 38, no. 13, 2017.553548198SimulationOptimizationTraffic light schedulingPublicationORIGINAL1-s2.0-S1877050921025230-main.pdf1-s2.0-S1877050921025230-main.pdfapplication/pdf754755https://repositorio.cuc.edu.co/bitstreams/ae8affbc-77a6-405f-a976-d76294a7fa81/download24b3a8176163683c15bd1de7a2d0c320MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1d9cf4a7-e05f-4956-9ad5-a6510ca78036/downloade30e9215131d99561d40d6b0abbe9badMD52TEXT1-s2.0-S1877050921025230-main.pdf.txt1-s2.0-S1877050921025230-main.pdf.txttext/plain29873https://repositorio.cuc.edu.co/bitstreams/66d3565d-aedc-4061-b81c-abfb8d07a81d/downloadc3062c78a930053def7cca7fbec52f36MD53THUMBNAIL1-s2.0-S1877050921025230-main.pdf.jpg1-s2.0-S1877050921025230-main.pdf.jpgimage/jpeg12066https://repositorio.cuc.edu.co/bitstreams/babd4e69-05fc-4561-be1d-9fa71c96e0dc/download6368d8621c504ad05c199fd3356fe855MD5411323/9367oai:repositorio.cuc.edu.co:11323/93672024-09-17 14:18:50.102https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==