Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas
Introducción: Los Sistemas Ciber-físicos (CPS) requieren cambio en ciberseguridad por amenazas cibernéticas y la llegada de computación cuántica. A pesar del interés, obstáculos principales para adopción son ciberseguridad y protección dinámica. Investigación busca caracterizar Modelo de Referencia...
- Autores:
-
Amador Donado, Siler
Pardo Calvache, César Jesús
Mazo Peña, Raul Ivan
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13885
- Palabra clave:
- Cybersecurity
CPS
cyber-physical systems
quantum
reference model
critical infrastructure
network attack
Ciberseguridad
CPS
Sistemas ciberfísicos
Cuántico
Modelo de referencia
Infraestructura crítica
Ataques de red
- Rights
- openAccess
- License
- Inge CuC - 2024
id |
RCUC2_ab1e30ff974c43fb506ce2faaf146060 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13885 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
dc.title.translated.eng.fl_str_mv |
Preliminary Review: Cybersecurity for Operation Technology in Quantum Age Against Network Attacks to Critical Infrastructures |
title |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
spellingShingle |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas Cybersecurity CPS cyber-physical systems quantum reference model critical infrastructure network attack Ciberseguridad CPS Sistemas ciberfísicos Cuántico Modelo de referencia Infraestructura crítica Ataques de red |
title_short |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
title_full |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
title_fullStr |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
title_full_unstemmed |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
title_sort |
Revisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras Críticas |
dc.creator.fl_str_mv |
Amador Donado, Siler Pardo Calvache, César Jesús Mazo Peña, Raul Ivan |
dc.contributor.author.spa.fl_str_mv |
Amador Donado, Siler Pardo Calvache, César Jesús Mazo Peña, Raul Ivan |
dc.subject.eng.fl_str_mv |
Cybersecurity CPS cyber-physical systems quantum reference model critical infrastructure network attack |
topic |
Cybersecurity CPS cyber-physical systems quantum reference model critical infrastructure network attack Ciberseguridad CPS Sistemas ciberfísicos Cuántico Modelo de referencia Infraestructura crítica Ataques de red |
dc.subject.spa.fl_str_mv |
Ciberseguridad CPS Sistemas ciberfísicos Cuántico Modelo de referencia Infraestructura crítica Ataques de red |
description |
Introducción: Los Sistemas Ciber-físicos (CPS) requieren cambio en ciberseguridad por amenazas cibernéticas y la llegada de computación cuántica. A pesar del interés, obstáculos principales para adopción son ciberseguridad y protección dinámica. Investigación busca caracterizar Modelo de Referencia de Ciberseguridad para CPS en Infraestructuras Críticas, considerando limitaciones. Objetivo: Caracterizar el modelo de referencia de ciberseguridad que prevenga ataques en CPS en infraestructuras críticas ante la llegada de la computación cuántica. Se analizan estudios primarios para identificar desarrollo de ciberseguridad en CPS. Metodología: Proceso incluye objetivos, preguntas, estrategias de búsqueda, criterios, calidad de estudios y datos. Se usaron métodos como Goal Question Metrics (GQM) y el modelo Population Intervention Comparison Outcome (PICO). Resultados: De 630 estudios iniciales, 133 se consideraron relevantes, finalmente se seleccionaron 33 primarios. Se identificaron 3 tipos de vulnerabilidades, 25 desafíos, 8 tipos de ataques y 20 tipos de razones en ciberseguridad de CPS en la era cuántica, incluido impacto en criptografía. Aún no hay ataques a CPS mediante equipos cuánticos conocidos, pero hay riesgos potenciales. Conclusiones: La ciberseguridad de CPS en la era cuántica se ve comprometida por desafíos en criptografía. Transición esencial a algoritmos resistentes, pero la falta de preparación y comprensión de la comunidad de ciberseguridad es un gran obstáculo. Se enfatiza en la colaboración para abordar desafíos cuánticos. Se requiere respuesta integral para proteger CPS en la era cuántica. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-21 19:36:40 2024-12-06T08:30:16Z |
dc.date.available.none.fl_str_mv |
2024-10-21 19:36:40 2024-12-06T08:30:16Z |
dc.date.issued.none.fl_str_mv |
2024-10-21 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13885 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.20.2.2024.06 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.20.2.2024.06 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.20.2.2024.06 2382-4700 |
url |
https://hdl.handle.net/11323/13885 https://doi.org/10.17981/ingecuc.20.2.2024.06 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge CuC |
dc.relation.references.eng.fl_str_mv |
A. Souag, C. Salinesi, R. Mazo, and I. Comyn-Wattiau, “A security ontology for security requirements elicitation”, en Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 8978, pp. 157–177, doi: 10.1007/978-3-319-15618-7_13. [2] A. A. Nazarenko and G. A. Safdar, “Survey on security and privacy issues in cyber physical systems”, AIMS Electronics and Electrical Engineering, vol. 3, núm. 2. American Institute of Mathematical Sciences, pp. 111–143, abr. 16, 2019, doi: 10.3934/ElectrEng.2019.2.111. [3] A. Sundararajan, A. Chavan, D. Saleem, y A. Sarwat, “A Survey of Protocol-Level Challenges and Solutions for Distributed Energy Resource Cyber-Physical Security”, Energies, vol. 11, núm. 9, p. 2360, sep. 2018, doi: 10.3390/en11092360. [4] M. P. Barrett, “Framework for improving critical infrastructure cybersecurity”, Natl. Inst. Stand. …, 2018, [En línea]. Available in: https://n9.cl/ozj9u. [5] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software Engineering”, in BASE - Revista de Administração e Contabilidade da Unisinos, jun. 2008, pp. 1–10, doi: 10.14236/ewic/EASE2008.8. [6] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software engineering”. UK, 2007. [7] D. Budgen y P. Brereton, “Performing systematic literature reviews in software engineering”, ACM, New York, NY, USA, may 2006. doi: 10.1145/1134285.1134500. [8] R. van Solingen, V. Basili, G. Caldiera, y H. D. Rombach, “Goal Question Metric (GQM) Approach”, in Encyclopedia of Software Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002. [9] S. Edded, S. Ben Sassi, R. Mazo, C. Salinesi, and H. Ben Ghezala, “Collaborative configuration approaches in software product lines engineering: A systematic mapping study”, J. Syst. Softw., vol. 158, p. 110422, dic. 2019, doi: 10.1016/j.jss.2019.110422. [10] M. B. Eriksen and T. F. Frandsen, “The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review”, J. Med. Libr. Assoc., vol. 106, num. 4, oct. 2018, doi: 10.5195/jmla.2018.345. [11] L. Yang et al., “Quality Assessment in Systematic Literature Reviews: A Software Engineering Perspective”, Inf. Softw. Technol., vol. 130, p. 106397, feb. 2021, doi: 10.1016/j.infsof.2020.106397. [12] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial relevance of technology evaluations”, Empir. Softw. Eng., vol. 16, num. 3, pp. 365–395, jun. 2011, doi: 10.1007/s10664-010-9146-4. [13] D. Chen, Y. Peng, and H. Wang, “Development of a Testbed for Process Control System Cybersecurity Research”, in Proceedings of the 3rd International Conference on Electric and Electronics, nov. 2013, vol. 69, doi: 10.2991/eeic-13.2013.37. [14] T. Cruz et al., “A Cybersecurity Detection Framework for Supervisory Control and Data Acquisition Systems”, IEEE Trans. Ind. Informatics, vol. 12, num. 6, pp. 2236–2246, dec. 2016, doi: 10.1109/TII.2016.2599841. [15] A. Cook, A. Nicholson, H. Janicke, L. Maglaras, and R. Smith, “Attribution of Cyber Attacks on Industrial Control Systems”, EAI Endorsed Trans. Ind. Networks Intell. Syst., vol. 3, num. 7, p. 151158, apr. 2016, doi: 10.4108/eai.21-4-2016.151158. [16] G. Gonzalez-Granadillo et al., “Dynamic risk management response system to handle cyber threats”, Futur. Gener. Comput. Syst., vol. 83, pp. 535–552, 2018, doi: 10.1016/j.future.2017.05.043. [17] R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, “Cyber-physical systems and their security issues”, Comput. Ind., vol. 100, pp. 212–223, sep. 2018, doi: 10.1016/j.compind.2018.04.017. [18] S. Hussain, M. Meraj, M. Abughalwa, and A. Shikfa, “Smart Grid Cybersecurity: Standards and Technical Countermeasures”, in 2018 International Conference on Computer and Applications (ICCA), aug. 2018, pp. 136–140, doi: 10.1109/COMAPP.2018.8460390. [19] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and A. Martin, “Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues”, IEEE Commun. Surv. Tutorials, vol. 21, num. 3, pp. 2886–2927, 2019, doi: 10.1109/COMST.2019.2899354. [20] S. Paul and M. Niethammer, “On the importance of cryptographic agility for industrial automation”, - Autom., vol. 67, núm. 5, pp. 402–416, may 2019, doi: 10.1515/auto-2019-0019. [21] S. N. Islam, Z. Baig, and S. Zeadally, “Physical Layer Security for the Smart Grid: Vulnerabilities, Threats, and Countermeasures”, IEEE Trans. Ind. Informatics, vol. 15, num. 12, pp. 6522–6530, dic. 2019, doi: 10.1109/TII.2019.2931436. [22] S. Ghosh and S. Sampalli, “A Survey of Security in SCADA Networks: Current Issues and Future Challenges”, IEEE Access, vol. 7, pp. 135812–135831, 2019, doi: 10.1109/ACCESS.2019.2926441. [23] M. K. Choi, C. Y. Yeun, and P. H. Seong, “A Novel Monitoring System for the Data Integrity of Reactor Protection System Using Blockchain Technology”, IEEE Access, vol. 8, pp. 118732–118740, 2020, doi: 10.1109/ACCESS.2020.3005134. [24] G. Sharkov, “Assessing the Maturity of National Cybersecurity and Resilience”, Connect. Q. J., vol. 19, num. 4, pp. 5–24, 2020, doi: 10.11610/Connections.19.4.01. [25] B. W. Tuinema, J. L. R. Torres, A. I. Stefanov, and ..., “Cyber-physical system modeling for assessment and enhancement of power grid cyber security, resilience, and reliability”, … Reliab. Anal. …, 2020, doi: 10.1007/978-3-030-43498-4_8. [26] T. M. Fernández-Caramés and P. Fraga-Lamas, “Use Case Based Blended Teaching of IIoT Cybersecurity in the Industry 4.0 Era”, Appl. Sci., vol. 10, núm. 16, p. 5607, aug. 2020, doi: 10.3390/app10165607. [27] A. Homay, C. Chrysoulas, B. El Boudani, M. de Sousa, and M. Wollschlaeger, “A security and authentication layer for SCADA/DCS applications”, Microprocess. Microsyst., vol. 87, num. November, p. 103479, 2021, doi: 10.1016/j.micpro.2020.103479. [28] A. Mohammad, “Development of the concept of electronic government construction in the conditions of synergetic threats”, Technol. Audit Prod. Reserv., vol. 3, num. 2(53), pp. 42–46, jun. 2020, doi: 10.15587/2706-5448.2020.207066. [29] J. P. A. J.-P. A. Yaacoub, O. Salman, H. N. H. N. Noura, N. Kaaniche, A. Chehab, and M. Malli, “Cyber-physical systems security: Limitations, issues and future trends”, Microprocess. Microsyst., vol. 77, p. 103201, sep. 2020, doi: 10.1016/j.micpro.2020.103201. [30] P. G. Evans et al., “Trusted Node QKD at an Electrical Utility”, IEEE Access, vol. 9, pp. 105220–105229, 2021, doi: 10.1109/ACCESS.2021.3070222. [31] C. Hemminghaus, J. Bauer, and K. Wolsing, “SIGMAR: Ensuring Integrity and Authenticity of Maritime Systems using Digital Signatures”, in 2021 International Symposium on Networks, Computers and Communications (ISNCC), oct. 2021, pp. 1–6, doi: 10.1109/ISNCC52172.2021.9615738. [32] A. N. Ahmadi, “A comprehensive cybersecurity framework for afghanistan’s cyberspace”, Int. J. Eng. Appl. Sci. Technol., vol. 6, num. 2, jun. 2021, doi: 10.33564/ijeast.2021.v06i02.032. [33] O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, S. Rimer, and K. O. A. Alimi, “A Review of Research Works on Supervised Learning Algorithms for SCADA Intrusion Detection and Classification”, Sustainability, vol. 13, num. 17, p. 9597, aug. 2021, doi: 10.3390/su13179597. [34] C. Sandeepa, B. Siniarski, N. Kourtellis, S. Wang, and ..., “A Survey on Privacy for B5G/6G: New Privacy Goals, Challenges, and Research Directions”, arXiv Prepr. arXiv …, 2022, [On line]. Available in: https://arxiv.org/abs/2203.04264. [35] J. Pöyhönen, “Cyber Security of an Electric Power System in Critical Infrastructure”, pp. 217–239, 2022, doi: 10.1007/978-3-030-91293-2_9. [36] A. Konev, A. Shelupanov, M. Kataev, V. Ageeva, and ..., “A Survey on Threat-Modeling Techniques: Protected Objects and Classification of Threats”, Symmetry (Basel)., 2022, [On line]. Available in: https://www.mdpi.com/1532736. [37] M. Alshowkan, P. G. Evans, M. Starke, D. Earl, and N. A. Peters, “Authentication of smart grid communications using quantum key distribution”, Sci. Rep., vol. 12, num. 1, p. 12731, jul. 2022, doi: 10.1038/s41598-022-16090-w. [38] P.-Y. Kong, “A Review of Quantum Key Distribution Protocols in the Perspective of Smart Grid Communication Security”, IEEE Syst. J., vol. 16, núm. 1, pp. 41–54, mar. 2022, doi: 10.1109/JSYST.2020.3024956. [39] P. Vähäkainu, M. Lehto, and A. Kariluoto, “Cyberattacks Against Critical Infrastructure Facilities and Corresponding Countermeasures”, en Cyber Security, Springer, 2022, pp. 255–292. [40] D. Rosch-Grace y J. Straub, “Analysis of the likelihood of quantum computing proliferation”, Technol. Soc., vol. 68, feb. 2022, doi: 10.1016/j.techsoc.2022.101880. |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
20 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/5329/5476 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2024 : (Julio-Diciembre) |
dc.rights.eng.fl_str_mv |
Inge CuC - 2024 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Inge CuC - 2024 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/5329 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d1d8d307-5c96-4056-acdf-f24bc2c37143/download |
bitstream.checksum.fl_str_mv |
b3bc99dd3c0638a8db3539001d722f9c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166887128694784 |
spelling |
Amador Donado, SilerPardo Calvache, César JesúsMazo Peña, Raul Ivan2024-10-21 19:36:402024-12-06T08:30:16Z2024-10-21 19:36:402024-12-06T08:30:16Z2024-10-210122-6517https://hdl.handle.net/11323/13885https://doi.org/10.17981/ingecuc.20.2.2024.0610.17981/ingecuc.20.2.2024.062382-4700Introducción: Los Sistemas Ciber-físicos (CPS) requieren cambio en ciberseguridad por amenazas cibernéticas y la llegada de computación cuántica. A pesar del interés, obstáculos principales para adopción son ciberseguridad y protección dinámica. Investigación busca caracterizar Modelo de Referencia de Ciberseguridad para CPS en Infraestructuras Críticas, considerando limitaciones. Objetivo: Caracterizar el modelo de referencia de ciberseguridad que prevenga ataques en CPS en infraestructuras críticas ante la llegada de la computación cuántica. Se analizan estudios primarios para identificar desarrollo de ciberseguridad en CPS. Metodología: Proceso incluye objetivos, preguntas, estrategias de búsqueda, criterios, calidad de estudios y datos. Se usaron métodos como Goal Question Metrics (GQM) y el modelo Population Intervention Comparison Outcome (PICO). Resultados: De 630 estudios iniciales, 133 se consideraron relevantes, finalmente se seleccionaron 33 primarios. Se identificaron 3 tipos de vulnerabilidades, 25 desafíos, 8 tipos de ataques y 20 tipos de razones en ciberseguridad de CPS en la era cuántica, incluido impacto en criptografía. Aún no hay ataques a CPS mediante equipos cuánticos conocidos, pero hay riesgos potenciales. Conclusiones: La ciberseguridad de CPS en la era cuántica se ve comprometida por desafíos en criptografía. Transición esencial a algoritmos resistentes, pero la falta de preparación y comprensión de la comunidad de ciberseguridad es un gran obstáculo. Se enfatiza en la colaboración para abordar desafíos cuánticos. Se requiere respuesta integral para proteger CPS en la era cuántica.Introduction: Cyber-Physical Systems (CPS) require change in cybersecurity due to cyber threats and the advent of quantum computing. Despite the interest, main obstacles for adoption are cybersecurity and dynamic protection. Research seeks to characterize Cybersecurity Reference Model for CPS in Critical Infrastructures, considering limitations. Objective: To characterize the cybersecurity reference model to prevent CPS attacks in critical infrastructures in the face of the advent of quantum computing. Primary studies are analyzed to identify the development of cybersecurity in CPS. Methodology: Process includes research objectives, research questions, search strategies, inclusion and exclusion criteria, quality of studies and data. Methods such as Goal Question Metrics (GQM) and the Population Intervention Comparison Outcome (PICO) model were used. Results: From 630 initial studies, 133 were considered relevant, and 33 primary studies were finally selected. We identified 3 types of vulnerabilities, 25 challenges, 8 types of attacks and 20 types of reasons in CPS cybersecurity in the quantum era, including impact on cryptography. There are no known attacks on CPS using quantum equipment yet, but there are potential risks. Conclusions: CPS cybersecurity in the quantum era is compromised by challenges in cryptography. Essential transition to resilient algorithms, but lack of preparedness and understanding of the cybersecurity community is a major obstacle. Emphasis on collaboration to address quantum challenges. Comprehensive response required to protect CPS in the quantum era.application/pdfengUniversidad de la CostaInge CuC - 2024http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/5329CybersecurityCPScyber-physical systemsquantumreference modelcritical infrastructurenetwork attackCiberseguridadCPSSistemas ciberfísicosCuánticoModelo de referenciaInfraestructura críticaAtaques de redRevisión Preliminar: Ciberseguridad Para Tecnología de la Operación en la Era Cuántica Contra Ataques De Red a Infraestructuras CríticasPreliminary Review: Cybersecurity for Operation Technology in Quantum Age Against Network Attacks to Critical InfrastructuresArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge CuCA. Souag, C. Salinesi, R. Mazo, and I. Comyn-Wattiau, “A security ontology for security requirements elicitation”, en Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 8978, pp. 157–177, doi: 10.1007/978-3-319-15618-7_13. [2] A. A. Nazarenko and G. A. Safdar, “Survey on security and privacy issues in cyber physical systems”, AIMS Electronics and Electrical Engineering, vol. 3, núm. 2. American Institute of Mathematical Sciences, pp. 111–143, abr. 16, 2019, doi: 10.3934/ElectrEng.2019.2.111. [3] A. Sundararajan, A. Chavan, D. Saleem, y A. Sarwat, “A Survey of Protocol-Level Challenges and Solutions for Distributed Energy Resource Cyber-Physical Security”, Energies, vol. 11, núm. 9, p. 2360, sep. 2018, doi: 10.3390/en11092360. [4] M. P. Barrett, “Framework for improving critical infrastructure cybersecurity”, Natl. Inst. Stand. …, 2018, [En línea]. Available in: https://n9.cl/ozj9u. [5] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software Engineering”, in BASE - Revista de Administração e Contabilidade da Unisinos, jun. 2008, pp. 1–10, doi: 10.14236/ewic/EASE2008.8. [6] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software engineering”. UK, 2007. [7] D. Budgen y P. Brereton, “Performing systematic literature reviews in software engineering”, ACM, New York, NY, USA, may 2006. doi: 10.1145/1134285.1134500. [8] R. van Solingen, V. Basili, G. Caldiera, y H. D. Rombach, “Goal Question Metric (GQM) Approach”, in Encyclopedia of Software Engineering, Hoboken, NJ, USA: John Wiley & Sons, Inc., 2002. [9] S. Edded, S. Ben Sassi, R. Mazo, C. Salinesi, and H. Ben Ghezala, “Collaborative configuration approaches in software product lines engineering: A systematic mapping study”, J. Syst. Softw., vol. 158, p. 110422, dic. 2019, doi: 10.1016/j.jss.2019.110422. [10] M. B. Eriksen and T. F. Frandsen, “The impact of patient, intervention, comparison, outcome (PICO) as a search strategy tool on literature search quality: a systematic review”, J. Med. Libr. Assoc., vol. 106, num. 4, oct. 2018, doi: 10.5195/jmla.2018.345. [11] L. Yang et al., “Quality Assessment in Systematic Literature Reviews: A Software Engineering Perspective”, Inf. Softw. Technol., vol. 130, p. 106397, feb. 2021, doi: 10.1016/j.infsof.2020.106397. [12] M. Ivarsson and T. Gorschek, “A method for evaluating rigor and industrial relevance of technology evaluations”, Empir. Softw. Eng., vol. 16, num. 3, pp. 365–395, jun. 2011, doi: 10.1007/s10664-010-9146-4. [13] D. Chen, Y. Peng, and H. Wang, “Development of a Testbed for Process Control System Cybersecurity Research”, in Proceedings of the 3rd International Conference on Electric and Electronics, nov. 2013, vol. 69, doi: 10.2991/eeic-13.2013.37. [14] T. Cruz et al., “A Cybersecurity Detection Framework for Supervisory Control and Data Acquisition Systems”, IEEE Trans. Ind. Informatics, vol. 12, num. 6, pp. 2236–2246, dec. 2016, doi: 10.1109/TII.2016.2599841. [15] A. Cook, A. Nicholson, H. Janicke, L. Maglaras, and R. Smith, “Attribution of Cyber Attacks on Industrial Control Systems”, EAI Endorsed Trans. Ind. Networks Intell. Syst., vol. 3, num. 7, p. 151158, apr. 2016, doi: 10.4108/eai.21-4-2016.151158. [16] G. Gonzalez-Granadillo et al., “Dynamic risk management response system to handle cyber threats”, Futur. Gener. Comput. Syst., vol. 83, pp. 535–552, 2018, doi: 10.1016/j.future.2017.05.043. [17] R. Alguliyev, Y. Imamverdiyev, and L. Sukhostat, “Cyber-physical systems and their security issues”, Comput. Ind., vol. 100, pp. 212–223, sep. 2018, doi: 10.1016/j.compind.2018.04.017. [18] S. Hussain, M. Meraj, M. Abughalwa, and A. Shikfa, “Smart Grid Cybersecurity: Standards and Technical Countermeasures”, in 2018 International Conference on Computer and Applications (ICCA), aug. 2018, pp. 136–140, doi: 10.1109/COMAPP.2018.8460390. [19] P. Kumar, Y. Lin, G. Bai, A. Paverd, J. S. Dong, and A. Martin, “Smart Grid Metering Networks: A Survey on Security, Privacy and Open Research Issues”, IEEE Commun. Surv. Tutorials, vol. 21, num. 3, pp. 2886–2927, 2019, doi: 10.1109/COMST.2019.2899354. [20] S. Paul and M. Niethammer, “On the importance of cryptographic agility for industrial automation”, - Autom., vol. 67, núm. 5, pp. 402–416, may 2019, doi: 10.1515/auto-2019-0019. [21] S. N. Islam, Z. Baig, and S. Zeadally, “Physical Layer Security for the Smart Grid: Vulnerabilities, Threats, and Countermeasures”, IEEE Trans. Ind. Informatics, vol. 15, num. 12, pp. 6522–6530, dic. 2019, doi: 10.1109/TII.2019.2931436. [22] S. Ghosh and S. Sampalli, “A Survey of Security in SCADA Networks: Current Issues and Future Challenges”, IEEE Access, vol. 7, pp. 135812–135831, 2019, doi: 10.1109/ACCESS.2019.2926441. [23] M. K. Choi, C. Y. Yeun, and P. H. Seong, “A Novel Monitoring System for the Data Integrity of Reactor Protection System Using Blockchain Technology”, IEEE Access, vol. 8, pp. 118732–118740, 2020, doi: 10.1109/ACCESS.2020.3005134. [24] G. Sharkov, “Assessing the Maturity of National Cybersecurity and Resilience”, Connect. Q. J., vol. 19, num. 4, pp. 5–24, 2020, doi: 10.11610/Connections.19.4.01. [25] B. W. Tuinema, J. L. R. Torres, A. I. Stefanov, and ..., “Cyber-physical system modeling for assessment and enhancement of power grid cyber security, resilience, and reliability”, … Reliab. Anal. …, 2020, doi: 10.1007/978-3-030-43498-4_8. [26] T. M. Fernández-Caramés and P. Fraga-Lamas, “Use Case Based Blended Teaching of IIoT Cybersecurity in the Industry 4.0 Era”, Appl. Sci., vol. 10, núm. 16, p. 5607, aug. 2020, doi: 10.3390/app10165607. [27] A. Homay, C. Chrysoulas, B. El Boudani, M. de Sousa, and M. Wollschlaeger, “A security and authentication layer for SCADA/DCS applications”, Microprocess. Microsyst., vol. 87, num. November, p. 103479, 2021, doi: 10.1016/j.micpro.2020.103479. [28] A. Mohammad, “Development of the concept of electronic government construction in the conditions of synergetic threats”, Technol. Audit Prod. Reserv., vol. 3, num. 2(53), pp. 42–46, jun. 2020, doi: 10.15587/2706-5448.2020.207066. [29] J. P. A. J.-P. A. Yaacoub, O. Salman, H. N. H. N. Noura, N. Kaaniche, A. Chehab, and M. Malli, “Cyber-physical systems security: Limitations, issues and future trends”, Microprocess. Microsyst., vol. 77, p. 103201, sep. 2020, doi: 10.1016/j.micpro.2020.103201. [30] P. G. Evans et al., “Trusted Node QKD at an Electrical Utility”, IEEE Access, vol. 9, pp. 105220–105229, 2021, doi: 10.1109/ACCESS.2021.3070222. [31] C. Hemminghaus, J. Bauer, and K. Wolsing, “SIGMAR: Ensuring Integrity and Authenticity of Maritime Systems using Digital Signatures”, in 2021 International Symposium on Networks, Computers and Communications (ISNCC), oct. 2021, pp. 1–6, doi: 10.1109/ISNCC52172.2021.9615738. [32] A. N. Ahmadi, “A comprehensive cybersecurity framework for afghanistan’s cyberspace”, Int. J. Eng. Appl. Sci. Technol., vol. 6, num. 2, jun. 2021, doi: 10.33564/ijeast.2021.v06i02.032. [33] O. A. Alimi, K. Ouahada, A. M. Abu-Mahfouz, S. Rimer, and K. O. A. Alimi, “A Review of Research Works on Supervised Learning Algorithms for SCADA Intrusion Detection and Classification”, Sustainability, vol. 13, num. 17, p. 9597, aug. 2021, doi: 10.3390/su13179597. [34] C. Sandeepa, B. Siniarski, N. Kourtellis, S. Wang, and ..., “A Survey on Privacy for B5G/6G: New Privacy Goals, Challenges, and Research Directions”, arXiv Prepr. arXiv …, 2022, [On line]. Available in: https://arxiv.org/abs/2203.04264. [35] J. Pöyhönen, “Cyber Security of an Electric Power System in Critical Infrastructure”, pp. 217–239, 2022, doi: 10.1007/978-3-030-91293-2_9. [36] A. Konev, A. Shelupanov, M. Kataev, V. Ageeva, and ..., “A Survey on Threat-Modeling Techniques: Protected Objects and Classification of Threats”, Symmetry (Basel)., 2022, [On line]. Available in: https://www.mdpi.com/1532736. [37] M. Alshowkan, P. G. Evans, M. Starke, D. Earl, and N. A. Peters, “Authentication of smart grid communications using quantum key distribution”, Sci. Rep., vol. 12, num. 1, p. 12731, jul. 2022, doi: 10.1038/s41598-022-16090-w. [38] P.-Y. Kong, “A Review of Quantum Key Distribution Protocols in the Perspective of Smart Grid Communication Security”, IEEE Syst. J., vol. 16, núm. 1, pp. 41–54, mar. 2022, doi: 10.1109/JSYST.2020.3024956. [39] P. Vähäkainu, M. Lehto, and A. Kariluoto, “Cyberattacks Against Critical Infrastructure Facilities and Corresponding Countermeasures”, en Cyber Security, Springer, 2022, pp. 255–292. [40] D. Rosch-Grace y J. Straub, “Analysis of the likelihood of quantum computing proliferation”, Technol. Soc., vol. 68, feb. 2022, doi: 10.1016/j.techsoc.2022.101880.220https://revistascientificas.cuc.edu.co/ingecuc/article/download/5329/5476Núm. 2 , Año 2024 : (Julio-Diciembre)OREORE.xmltext/xml2747https://repositorio.cuc.edu.co/bitstreams/d1d8d307-5c96-4056-acdf-f24bc2c37143/downloadb3bc99dd3c0638a8db3539001d722f9cMD5111323/13885oai:repositorio.cuc.edu.co:11323/138852024-12-06 03:30:16.939http://creativecommons.org/licenses/by-nc-nd/4.0Inge CuC - 2024metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |