Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the...
- Autores:
-
Lazarotto, Joseane
da Boit Martinello, Kátia
georgin, jordana
Franco, Dison S. P.
Netto, Matias S.
Piccilli, Daniel G. A.
Silva Oliveira, Luis Felipe
Lima, Eder Claudio
Dotto, Guilherme Luiz
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8998
- Acceso en línea:
- https://hdl.handle.net/11323/8998
https://doi.org/10.1016/j.jece.2021.106843
https://repositorio.cuc.edu.co/
- Palabra clave:
- Activated carbon
Adsorption
Agaricus bisporus
2
4-dichlorophenoxyacetic acid
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_aabdd0923254b516daca69caf4e92a12 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8998 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
title |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
spellingShingle |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide Activated carbon Adsorption Agaricus bisporus 2 4-dichlorophenoxyacetic acid |
title_short |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
title_full |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
title_fullStr |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
title_full_unstemmed |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
title_sort |
Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide |
dc.creator.fl_str_mv |
Lazarotto, Joseane da Boit Martinello, Kátia georgin, jordana Franco, Dison S. P. Netto, Matias S. Piccilli, Daniel G. A. Silva Oliveira, Luis Felipe Lima, Eder Claudio Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Lazarotto, Joseane da Boit Martinello, Kátia georgin, jordana Franco, Dison S. P. Netto, Matias S. Piccilli, Daniel G. A. Silva Oliveira, Luis Felipe Lima, Eder Claudio Dotto, Guilherme Luiz |
dc.subject.spa.fl_str_mv |
Activated carbon Adsorption Agaricus bisporus 2 4-dichlorophenoxyacetic acid |
topic |
Activated carbon Adsorption Agaricus bisporus 2 4-dichlorophenoxyacetic acid |
description |
The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the removal of 2,4-D—the developed adsorbent showed a microporous structure with several spaces on the surface. The FTIR analysis showed that the activated carbon has functional groups such as aromatic rings, carboxylate, hydroxyl. It was found that the optimum adsorption of the 2,4-D occurs at pH 4 and adsorbent dosage of 0.4 g L−1; The equilibrium data were better fitted to the Freundlich model. However, for calculating the thermodynamic parameters, it was considered the Langmuir equilibrium constant (KL). The value of Langmuir Qmax was 241.7 mg g−1 at 298 K. The thermodynamic behavior indicated a spontaneous and favorable, and exothermic. The magnitude of the adsorption enthalpy is in agreement with physical adsorption. System equilibrium was attained before 30 min regardless of 2,4-D concentration. The kinetic curves showed good statistical adjustment to the linear driving force (LDF) model, with capacity values close to the experimental ones (qexp = 194.6 mg g−1; qpred = 187.3 mg g−1), at 100 mg L−1 of 2,4-D. The adsorbent removed up to 70% of the simulated effluent when using the Jacuí river as the sample. Regeneration studies showed that the activated carbon could be used up to 9 times without losing significant efficiency. Last, the process cost production was estimated to be 2.39 USD kg−1 of activated carbon. Therefore, it can be concluded that activated carbon developed from edible mushroom residues is a promising alternative as an adsorbent for the treatment of actual effluents containing 2,4-D herbicide. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-01-22T21:48:57Z |
dc.date.available.none.fl_str_mv |
2022-01-22T21:48:57Z |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2213-3437 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8998 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.jece.2021.106843 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2213-3437 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8998 https://doi.org/10.1016/j.jece.2021.106843 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S2213343721018200 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/abcc809a-d257-4b86-a085-8a7cb97c628d/download https://repositorio.cuc.edu.co/bitstreams/efb1e9b0-525b-4592-a8da-744339e7047a/download https://repositorio.cuc.edu.co/bitstreams/c79ee88a-54bd-4e8b-8809-276bf9db0561/download https://repositorio.cuc.edu.co/bitstreams/8f83012f-620b-4a94-96b7-fb9591393923/download https://repositorio.cuc.edu.co/bitstreams/af75230d-3ac8-439f-96bb-8a24fc90c23a/download |
bitstream.checksum.fl_str_mv |
c325ee07b19b43e6b658b5cacd6eecf2 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad e2caa2b3a5385db71ed10775d3775917 2ebe2224b48d7439fe10bc7ac6e9838d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760818698584064 |
spelling |
Lazarotto, Joseaneda Boit Martinello, Kátiageorgin, jordanaFranco, Dison S. P.Netto, Matias S.Piccilli, Daniel G. A.Silva Oliveira, Luis FelipeLima, Eder ClaudioDotto, Guilherme Luiz2022-01-22T21:48:57Z2022-01-22T21:48:57Z20212213-3437https://hdl.handle.net/11323/8998https://doi.org/10.1016/j.jece.2021.106843Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the removal of 2,4-D—the developed adsorbent showed a microporous structure with several spaces on the surface. The FTIR analysis showed that the activated carbon has functional groups such as aromatic rings, carboxylate, hydroxyl. It was found that the optimum adsorption of the 2,4-D occurs at pH 4 and adsorbent dosage of 0.4 g L−1; The equilibrium data were better fitted to the Freundlich model. However, for calculating the thermodynamic parameters, it was considered the Langmuir equilibrium constant (KL). The value of Langmuir Qmax was 241.7 mg g−1 at 298 K. The thermodynamic behavior indicated a spontaneous and favorable, and exothermic. The magnitude of the adsorption enthalpy is in agreement with physical adsorption. System equilibrium was attained before 30 min regardless of 2,4-D concentration. The kinetic curves showed good statistical adjustment to the linear driving force (LDF) model, with capacity values close to the experimental ones (qexp = 194.6 mg g−1; qpred = 187.3 mg g−1), at 100 mg L−1 of 2,4-D. The adsorbent removed up to 70% of the simulated effluent when using the Jacuí river as the sample. Regeneration studies showed that the activated carbon could be used up to 9 times without losing significant efficiency. Last, the process cost production was estimated to be 2.39 USD kg−1 of activated carbon. Therefore, it can be concluded that activated carbon developed from edible mushroom residues is a promising alternative as an adsorbent for the treatment of actual effluents containing 2,4-D herbicide.Lazarotto, Joseane-will be generated-orcid-0000-0002-1060-8728-600da Boit Martinello, Kátiageorgin, jordana-will be generated-orcid-0000-0003-1692-565X-600Franco, Dison S. P.Netto, Matias S.Piccilli, Daniel G. A.Silva Oliveira, Luis FelipeLima, Eder Claudio-will be generated-orcid-0000-0002-8734-1208-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/abs/pii/S2213343721018200Activated carbonAdsorptionAgaricus bisporus24-dichlorophenoxyacetic acidPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicidePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdfPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdfapplication/pdf96660https://repositorio.cuc.edu.co/bitstreams/abcc809a-d257-4b86-a085-8a7cb97c628d/downloadc325ee07b19b43e6b658b5cacd6eecf2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/efb1e9b0-525b-4592-a8da-744339e7047a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c79ee88a-54bd-4e8b-8809-276bf9db0561/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.jpgPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.jpgimage/jpeg64745https://repositorio.cuc.edu.co/bitstreams/8f83012f-620b-4a94-96b7-fb9591393923/downloade2caa2b3a5385db71ed10775d3775917MD54TEXTPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.txtPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.txttext/plain2338https://repositorio.cuc.edu.co/bitstreams/af75230d-3ac8-439f-96bb-8a24fc90c23a/download2ebe2224b48d7439fe10bc7ac6e9838dMD5511323/8998oai:repositorio.cuc.edu.co:11323/89982024-09-17 12:50:03.191http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |