Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide

The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the...

Full description

Autores:
Lazarotto, Joseane
da Boit Martinello, Kátia
georgin, jordana
Franco, Dison S. P.
Netto, Matias S.
Piccilli, Daniel G. A.
Silva Oliveira, Luis Felipe
Lima, Eder Claudio
Dotto, Guilherme Luiz
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8998
Acceso en línea:
https://hdl.handle.net/11323/8998
https://doi.org/10.1016/j.jece.2021.106843
https://repositorio.cuc.edu.co/
Palabra clave:
Activated carbon
Adsorption
Agaricus bisporus
2
4-dichlorophenoxyacetic acid
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_aabdd0923254b516daca69caf4e92a12
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8998
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
title Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
spellingShingle Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
Activated carbon
Adsorption
Agaricus bisporus
2
4-dichlorophenoxyacetic acid
title_short Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
title_full Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
title_fullStr Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
title_full_unstemmed Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
title_sort Preparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide
dc.creator.fl_str_mv Lazarotto, Joseane
da Boit Martinello, Kátia
georgin, jordana
Franco, Dison S. P.
Netto, Matias S.
Piccilli, Daniel G. A.
Silva Oliveira, Luis Felipe
Lima, Eder Claudio
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Lazarotto, Joseane
da Boit Martinello, Kátia
georgin, jordana
Franco, Dison S. P.
Netto, Matias S.
Piccilli, Daniel G. A.
Silva Oliveira, Luis Felipe
Lima, Eder Claudio
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv Activated carbon
Adsorption
Agaricus bisporus
2
4-dichlorophenoxyacetic acid
topic Activated carbon
Adsorption
Agaricus bisporus
2
4-dichlorophenoxyacetic acid
description The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the removal of 2,4-D—the developed adsorbent showed a microporous structure with several spaces on the surface. The FTIR analysis showed that the activated carbon has functional groups such as aromatic rings, carboxylate, hydroxyl. It was found that the optimum adsorption of the 2,4-D occurs at pH 4 and adsorbent dosage of 0.4 g L−1; The equilibrium data were better fitted to the Freundlich model. However, for calculating the thermodynamic parameters, it was considered the Langmuir equilibrium constant (KL). The value of Langmuir Qmax was 241.7 mg g−1 at 298 K. The thermodynamic behavior indicated a spontaneous and favorable, and exothermic. The magnitude of the adsorption enthalpy is in agreement with physical adsorption. System equilibrium was attained before 30 min regardless of 2,4-D concentration. The kinetic curves showed good statistical adjustment to the linear driving force (LDF) model, with capacity values close to the experimental ones (qexp = 194.6 mg g−1; qpred = 187.3 mg g−1), at 100 mg L−1 of 2,4-D. The adsorbent removed up to 70% of the simulated effluent when using the Jacuí river as the sample. Regeneration studies showed that the activated carbon could be used up to 9 times without losing significant efficiency. Last, the process cost production was estimated to be 2.39 USD kg−1 of activated carbon. Therefore, it can be concluded that activated carbon developed from edible mushroom residues is a promising alternative as an adsorbent for the treatment of actual effluents containing 2,4-D herbicide.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-01-22T21:48:57Z
dc.date.available.none.fl_str_mv 2022-01-22T21:48:57Z
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2213-3437
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8998
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jece.2021.106843
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2213-3437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8998
https://doi.org/10.1016/j.jece.2021.106843
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S2213343721018200
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/abcc809a-d257-4b86-a085-8a7cb97c628d/download
https://repositorio.cuc.edu.co/bitstreams/efb1e9b0-525b-4592-a8da-744339e7047a/download
https://repositorio.cuc.edu.co/bitstreams/c79ee88a-54bd-4e8b-8809-276bf9db0561/download
https://repositorio.cuc.edu.co/bitstreams/8f83012f-620b-4a94-96b7-fb9591393923/download
https://repositorio.cuc.edu.co/bitstreams/af75230d-3ac8-439f-96bb-8a24fc90c23a/download
bitstream.checksum.fl_str_mv c325ee07b19b43e6b658b5cacd6eecf2
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
e2caa2b3a5385db71ed10775d3775917
2ebe2224b48d7439fe10bc7ac6e9838d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760818698584064
spelling Lazarotto, Joseaneda Boit Martinello, Kátiageorgin, jordanaFranco, Dison S. P.Netto, Matias S.Piccilli, Daniel G. A.Silva Oliveira, Luis FelipeLima, Eder ClaudioDotto, Guilherme Luiz2022-01-22T21:48:57Z2022-01-22T21:48:57Z20212213-3437https://hdl.handle.net/11323/8998https://doi.org/10.1016/j.jece.2021.106843Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The production of the edible mushroom Agaricus bisporus occurs on a world scale, where tons are constantly produced. At the same time, this production generates a large amount of waste that needs to be adequately conditioned. Therefore, mushroom residues were used to develop activated carbon for the removal of 2,4-D—the developed adsorbent showed a microporous structure with several spaces on the surface. The FTIR analysis showed that the activated carbon has functional groups such as aromatic rings, carboxylate, hydroxyl. It was found that the optimum adsorption of the 2,4-D occurs at pH 4 and adsorbent dosage of 0.4 g L−1; The equilibrium data were better fitted to the Freundlich model. However, for calculating the thermodynamic parameters, it was considered the Langmuir equilibrium constant (KL). The value of Langmuir Qmax was 241.7 mg g−1 at 298 K. The thermodynamic behavior indicated a spontaneous and favorable, and exothermic. The magnitude of the adsorption enthalpy is in agreement with physical adsorption. System equilibrium was attained before 30 min regardless of 2,4-D concentration. The kinetic curves showed good statistical adjustment to the linear driving force (LDF) model, with capacity values close to the experimental ones (qexp = 194.6 mg g−1; qpred = 187.3 mg g−1), at 100 mg L−1 of 2,4-D. The adsorbent removed up to 70% of the simulated effluent when using the Jacuí river as the sample. Regeneration studies showed that the activated carbon could be used up to 9 times without losing significant efficiency. Last, the process cost production was estimated to be 2.39 USD kg−1 of activated carbon. Therefore, it can be concluded that activated carbon developed from edible mushroom residues is a promising alternative as an adsorbent for the treatment of actual effluents containing 2,4-D herbicide.Lazarotto, Joseane-will be generated-orcid-0000-0002-1060-8728-600da Boit Martinello, Kátiageorgin, jordana-will be generated-orcid-0000-0003-1692-565X-600Franco, Dison S. P.Netto, Matias S.Piccilli, Daniel G. A.Silva Oliveira, Luis FelipeLima, Eder Claudio-will be generated-orcid-0000-0002-8734-1208-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/abs/pii/S2213343721018200Activated carbonAdsorptionAgaricus bisporus24-dichlorophenoxyacetic acidPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicidePre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdfPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdfapplication/pdf96660https://repositorio.cuc.edu.co/bitstreams/abcc809a-d257-4b86-a085-8a7cb97c628d/downloadc325ee07b19b43e6b658b5cacd6eecf2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/efb1e9b0-525b-4592-a8da-744339e7047a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/c79ee88a-54bd-4e8b-8809-276bf9db0561/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.jpgPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.jpgimage/jpeg64745https://repositorio.cuc.edu.co/bitstreams/8f83012f-620b-4a94-96b7-fb9591393923/downloade2caa2b3a5385db71ed10775d3775917MD54TEXTPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.txtPreparation of activated carbon from the residues of the mushroom (Agaricus bisporus) production chain for the adsorption of the 2,4-dichlorophenoxyacetic herbicide.pdf.txttext/plain2338https://repositorio.cuc.edu.co/bitstreams/af75230d-3ac8-439f-96bb-8a24fc90c23a/download2ebe2224b48d7439fe10bc7ac6e9838dMD5511323/8998oai:repositorio.cuc.edu.co:11323/89982024-09-17 12:50:03.191http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==