Models of multivariate regression for labor accidents in different production sectors: comparative study

The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main o...

Full description

Autores:
Bonerge Pineda Lezama, Omar
Varela Izquierdo, Noel
Pérez Fernández, Damayse
Gómez Dorta, Rafael Luciano
Viloria Silva, Amelec Jesus
Romero Marín, Ligia
Tipo de recurso:
http://purl.org/coar/resource_type/c_f744
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1689
Acceso en línea:
https://hdl.handle.net/11323/1689
https://repositorio.cuc.edu.co/
Palabra clave:
Comparative study
Data mining techniques
Labor accident
Multivariate models
Production sectors
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_aa7ea10f867694e4fa6d3f81869b3be3
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1689
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Models of multivariate regression for labor accidents in different production sectors: comparative study
title Models of multivariate regression for labor accidents in different production sectors: comparative study
spellingShingle Models of multivariate regression for labor accidents in different production sectors: comparative study
Comparative study
Data mining techniques
Labor accident
Multivariate models
Production sectors
title_short Models of multivariate regression for labor accidents in different production sectors: comparative study
title_full Models of multivariate regression for labor accidents in different production sectors: comparative study
title_fullStr Models of multivariate regression for labor accidents in different production sectors: comparative study
title_full_unstemmed Models of multivariate regression for labor accidents in different production sectors: comparative study
title_sort Models of multivariate regression for labor accidents in different production sectors: comparative study
dc.creator.fl_str_mv Bonerge Pineda Lezama, Omar
Varela Izquierdo, Noel
Pérez Fernández, Damayse
Gómez Dorta, Rafael Luciano
Viloria Silva, Amelec Jesus
Romero Marín, Ligia
dc.contributor.author.spa.fl_str_mv Bonerge Pineda Lezama, Omar
Varela Izquierdo, Noel
Pérez Fernández, Damayse
Gómez Dorta, Rafael Luciano
Viloria Silva, Amelec Jesus
Romero Marín, Ligia
dc.subject.eng.fl_str_mv Comparative study
Data mining techniques
Labor accident
Multivariate models
Production sectors
topic Comparative study
Data mining techniques
Labor accident
Multivariate models
Production sectors
description The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main objective is focused on identifying the influential variables and the regression model that best explains the accident in each of these sectors and perform a comparative analysis between them. Among the techniques and tools used (data mining) are those related to multivariate statistics and generalized linear models and through the Akaike information criterion and Bayeciano criterion, it was possible to determine that the best regression model that explains the accident rate in two of the sectors studied is the negative binomial (cement and petroleum refining), while in the electric power sector, the best fit model resulted in Logistic Regression. In turn, for the three sectors in general, the variables that have the most significant impact are related to aspects such as: management commitment, occupational safety climate, safety training, psychosocial aspects and ergonomic sources, this result was corroborated by means of an accident analysis carried out in these three sectors.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-22T01:36:21Z
dc.date.available.none.fl_str_mv 2018-11-22T01:36:21Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Documento de Conferencia
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_c94f
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_f744
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/EC
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_f744
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-331993802-8
dc.identifier.issn.spa.fl_str_mv 03029743
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1689
dc.identifier.doi.spa.fl_str_mv DOI: 10.1007/978-3-319-93803-5_5
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-331993802-8
03029743
DOI: 10.1007/978-3-319-93803-5_5
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1689
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/e0590e9e-55ec-4443-a4c0-29b1b91d0088/download
https://repositorio.cuc.edu.co/bitstreams/0bebd47c-2cc2-4e8e-99b9-7ea8c28aae4b/download
https://repositorio.cuc.edu.co/bitstreams/b001a038-a8e1-4e6c-a556-d33a44b1e8bc/download
https://repositorio.cuc.edu.co/bitstreams/cb8b8578-0a62-44e5-9062-4934bf8d1974/download
bitstream.checksum.fl_str_mv ae694ee6972ad8f969bd340e8e00d4be
8a4605be74aa9ea9d79846c1fba20a33
590073b79fe63c2b1956b882ae228128
cbbdc6675db36d63d33f21c39ec8b713
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166843906392064
spelling Bonerge Pineda Lezama, OmarVarela Izquierdo, NoelPérez Fernández, DamayseGómez Dorta, Rafael LucianoViloria Silva, Amelec JesusRomero Marín, Ligia2018-11-22T01:36:21Z2018-11-22T01:36:21Z2018978-331993802-803029743https://hdl.handle.net/11323/1689DOI: 10.1007/978-3-319-93803-5_5Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main objective is focused on identifying the influential variables and the regression model that best explains the accident in each of these sectors and perform a comparative analysis between them. Among the techniques and tools used (data mining) are those related to multivariate statistics and generalized linear models and through the Akaike information criterion and Bayeciano criterion, it was possible to determine that the best regression model that explains the accident rate in two of the sectors studied is the negative binomial (cement and petroleum refining), while in the electric power sector, the best fit model resulted in Logistic Regression. In turn, for the three sectors in general, the variables that have the most significant impact are related to aspects such as: management commitment, occupational safety climate, safety training, psychosocial aspects and ergonomic sources, this result was corroborated by means of an accident analysis carried out in these three sectors.Bonerge Pineda Lezama, Omar-8c03bfc8-ce51-4777-ba98-f93403d897bd-0Varela Izquierdo, Noel-0000-0001-7036-4414-600Pérez Fernández, Damayse-25c0e0af-7a5a-4ceb-b175-10b27ed6f312-0Gómez Dorta, Rafael Luciano-f4d02d45-7445-48bc-b704-4ecec65b4009-0Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Romero Marín, Ligia-0000-0002-1216-4489-600engLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comparative studyData mining techniquesLabor accidentMultivariate modelsProduction sectorsModels of multivariate regression for labor accidents in different production sectors: comparative studyDocumento de Conferenciahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/redcol/resource_type/ECinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALModels of multivariate regression for labor accidents.pdfModels of multivariate regression for labor accidents.pdfapplication/pdf180186https://repositorio.cuc.edu.co/bitstreams/e0590e9e-55ec-4443-a4c0-29b1b91d0088/downloadae694ee6972ad8f969bd340e8e00d4beMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0bebd47c-2cc2-4e8e-99b9-7ea8c28aae4b/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILModels of multivariate regression for labor accidents.pdf.jpgModels of multivariate regression for labor accidents.pdf.jpgimage/jpeg47008https://repositorio.cuc.edu.co/bitstreams/b001a038-a8e1-4e6c-a556-d33a44b1e8bc/download590073b79fe63c2b1956b882ae228128MD54TEXTModels of multivariate regression for labor accidents.pdf.txtModels of multivariate regression for labor accidents.pdf.txttext/plain1716https://repositorio.cuc.edu.co/bitstreams/cb8b8578-0a62-44e5-9062-4934bf8d1974/downloadcbbdc6675db36d63d33f21c39ec8b713MD5511323/1689oai:repositorio.cuc.edu.co:11323/16892024-09-17 14:17:07.997open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=