Models of multivariate regression for labor accidents in different production sectors: comparative study
The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main o...
- Autores:
-
Bonerge Pineda Lezama, Omar
Varela Izquierdo, Noel
Pérez Fernández, Damayse
Gómez Dorta, Rafael Luciano
Viloria Silva, Amelec Jesus
Romero Marín, Ligia
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_f744
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1689
- Acceso en línea:
- https://hdl.handle.net/11323/1689
https://repositorio.cuc.edu.co/
- Palabra clave:
- Comparative study
Data mining techniques
Labor accident
Multivariate models
Production sectors
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_aa7ea10f867694e4fa6d3f81869b3be3 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1689 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
title |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
spellingShingle |
Models of multivariate regression for labor accidents in different production sectors: comparative study Comparative study Data mining techniques Labor accident Multivariate models Production sectors |
title_short |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
title_full |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
title_fullStr |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
title_full_unstemmed |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
title_sort |
Models of multivariate regression for labor accidents in different production sectors: comparative study |
dc.creator.fl_str_mv |
Bonerge Pineda Lezama, Omar Varela Izquierdo, Noel Pérez Fernández, Damayse Gómez Dorta, Rafael Luciano Viloria Silva, Amelec Jesus Romero Marín, Ligia |
dc.contributor.author.spa.fl_str_mv |
Bonerge Pineda Lezama, Omar Varela Izquierdo, Noel Pérez Fernández, Damayse Gómez Dorta, Rafael Luciano Viloria Silva, Amelec Jesus Romero Marín, Ligia |
dc.subject.eng.fl_str_mv |
Comparative study Data mining techniques Labor accident Multivariate models Production sectors |
topic |
Comparative study Data mining techniques Labor accident Multivariate models Production sectors |
description |
The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main objective is focused on identifying the influential variables and the regression model that best explains the accident in each of these sectors and perform a comparative analysis between them. Among the techniques and tools used (data mining) are those related to multivariate statistics and generalized linear models and through the Akaike information criterion and Bayeciano criterion, it was possible to determine that the best regression model that explains the accident rate in two of the sectors studied is the negative binomial (cement and petroleum refining), while in the electric power sector, the best fit model resulted in Logistic Regression. In turn, for the three sectors in general, the variables that have the most significant impact are related to aspects such as: management commitment, occupational safety climate, safety training, psychosocial aspects and ergonomic sources, this result was corroborated by means of an accident analysis carried out in these three sectors. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-22T01:36:21Z |
dc.date.available.none.fl_str_mv |
2018-11-22T01:36:21Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Documento de Conferencia |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_c94f |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_f744 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/EC |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_f744 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-331993802-8 |
dc.identifier.issn.spa.fl_str_mv |
03029743 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1689 |
dc.identifier.doi.spa.fl_str_mv |
DOI: 10.1007/978-3-319-93803-5_5 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-331993802-8 03029743 DOI: 10.1007/978-3-319-93803-5_5 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1689 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/e0590e9e-55ec-4443-a4c0-29b1b91d0088/download https://repositorio.cuc.edu.co/bitstreams/0bebd47c-2cc2-4e8e-99b9-7ea8c28aae4b/download https://repositorio.cuc.edu.co/bitstreams/b001a038-a8e1-4e6c-a556-d33a44b1e8bc/download https://repositorio.cuc.edu.co/bitstreams/cb8b8578-0a62-44e5-9062-4934bf8d1974/download |
bitstream.checksum.fl_str_mv |
ae694ee6972ad8f969bd340e8e00d4be 8a4605be74aa9ea9d79846c1fba20a33 590073b79fe63c2b1956b882ae228128 cbbdc6675db36d63d33f21c39ec8b713 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166843906392064 |
spelling |
Bonerge Pineda Lezama, OmarVarela Izquierdo, NoelPérez Fernández, DamayseGómez Dorta, Rafael LucianoViloria Silva, Amelec JesusRomero Marín, Ligia2018-11-22T01:36:21Z2018-11-22T01:36:21Z2018978-331993802-803029743https://hdl.handle.net/11323/1689DOI: 10.1007/978-3-319-93803-5_5Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present article shows the results of an investigation carried out on the use of alternatives to carry out work accident studies in an objective manner in three production sectors that are of high risk: the electric power production sector, cement production and oil refining sector, so the main objective is focused on identifying the influential variables and the regression model that best explains the accident in each of these sectors and perform a comparative analysis between them. Among the techniques and tools used (data mining) are those related to multivariate statistics and generalized linear models and through the Akaike information criterion and Bayeciano criterion, it was possible to determine that the best regression model that explains the accident rate in two of the sectors studied is the negative binomial (cement and petroleum refining), while in the electric power sector, the best fit model resulted in Logistic Regression. In turn, for the three sectors in general, the variables that have the most significant impact are related to aspects such as: management commitment, occupational safety climate, safety training, psychosocial aspects and ergonomic sources, this result was corroborated by means of an accident analysis carried out in these three sectors.Bonerge Pineda Lezama, Omar-8c03bfc8-ce51-4777-ba98-f93403d897bd-0Varela Izquierdo, Noel-0000-0001-7036-4414-600Pérez Fernández, Damayse-25c0e0af-7a5a-4ceb-b175-10b27ed6f312-0Gómez Dorta, Rafael Luciano-f4d02d45-7445-48bc-b704-4ecec65b4009-0Viloria Silva, Amelec Jesus-0000-0003-2673-6350-600Romero Marín, Ligia-0000-0002-1216-4489-600engLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)Atribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Comparative studyData mining techniquesLabor accidentMultivariate modelsProduction sectorsModels of multivariate regression for labor accidents in different production sectors: comparative studyDocumento de Conferenciahttp://purl.org/coar/resource_type/c_f744http://purl.org/coar/resource_type/c_c94fTextinfo:eu-repo/semantics/conferenceObjecthttp://purl.org/redcol/resource_type/ECinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALModels of multivariate regression for labor accidents.pdfModels of multivariate regression for labor accidents.pdfapplication/pdf180186https://repositorio.cuc.edu.co/bitstreams/e0590e9e-55ec-4443-a4c0-29b1b91d0088/downloadae694ee6972ad8f969bd340e8e00d4beMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/0bebd47c-2cc2-4e8e-99b9-7ea8c28aae4b/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILModels of multivariate regression for labor accidents.pdf.jpgModels of multivariate regression for labor accidents.pdf.jpgimage/jpeg47008https://repositorio.cuc.edu.co/bitstreams/b001a038-a8e1-4e6c-a556-d33a44b1e8bc/download590073b79fe63c2b1956b882ae228128MD54TEXTModels of multivariate regression for labor accidents.pdf.txtModels of multivariate regression for labor accidents.pdf.txttext/plain1716https://repositorio.cuc.edu.co/bitstreams/cb8b8578-0a62-44e5-9062-4934bf8d1974/downloadcbbdc6675db36d63d33f21c39ec8b713MD5511323/1689oai:repositorio.cuc.edu.co:11323/16892024-09-17 14:17:07.997open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |