Parallel algorithm for reduction of data processing time in big data

Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and ap...

Full description

Autores:
Silva, Jesús
H, H
Niebles Núñez, William
Ovallos-Gazabon, David
Varela, Noel
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/6240
Acceso en línea:
https://hdl.handle.net/11323/6240
https://repositorio.cuc.edu.co/
Palabra clave:
Parallel algorithm
Processing time
Big data
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_aa6aa1a4043846e26671c411dd880214
oai_identifier_str oai:repositorio.cuc.edu.co:11323/6240
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Parallel algorithm for reduction of data processing time in big data
title Parallel algorithm for reduction of data processing time in big data
spellingShingle Parallel algorithm for reduction of data processing time in big data
Parallel algorithm
Processing time
Big data
title_short Parallel algorithm for reduction of data processing time in big data
title_full Parallel algorithm for reduction of data processing time in big data
title_fullStr Parallel algorithm for reduction of data processing time in big data
title_full_unstemmed Parallel algorithm for reduction of data processing time in big data
title_sort Parallel algorithm for reduction of data processing time in big data
dc.creator.fl_str_mv Silva, Jesús
H, H
Niebles Núñez, William
Ovallos-Gazabon, David
Varela, Noel
dc.contributor.author.spa.fl_str_mv Silva, Jesús
H, H
Niebles Núñez, William
Ovallos-Gazabon, David
Varela, Noel
dc.subject.spa.fl_str_mv Parallel algorithm
Processing time
Big data
topic Parallel algorithm
Processing time
Big data
description Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-23T16:34:52Z
dc.date.available.none.fl_str_mv 2020-04-23T16:34:52Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1742-6588
1742-6596
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/6240
dc.identifier.doi.spa.fl_str_mv doi:10.1088/1742-6596/1432/1/012095
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1742-6588
1742-6596
doi:10.1088/1742-6596/1432/1/012095
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/6240
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.
[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.
[3] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013.
[4] Hariri S, and M. Parashar.Tools and Enviroments for Parallel and Distributed Computing. John Wiley & Sons. ISBN 0-471-33288-7, pag 229, 2014.
[5] Fernandez A, S. Del Rio, V. Lopez, M. J. Del Jesus and F. Herrera. Big Data with Colud Computing:an insight on the computing enviroment, Map Reduce and programming frameworks. WIREs Data Mining and Knowledge Discovery.John Wiley and Sons, vol 4, pp 380-409, 2014.
[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).
[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.
[8] Pas, R. An Overview of OpenMP 3.0. In., 2009.IWOMP. Tu Dresden (Alemania). Disponible en http://iwomp.zih.tu-dresden.de/downloads/2.Overwiew_OpenMP.pdf.
[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.
[10] Reinders, J. Intel threading building blocks-outfitting C++ for multi-core processor parallelism. OReilly Media. ISBN 978-1449390860, pp 336, 2007.
[11] Kaminsky, A. The Parallel Java 2 Library Parallel Programming in 100 % Java. Rochester Institute of Technology, Department of Computer Science, Rochester, New York, EUA. 2015.
[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.
[13] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.
[14] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technolo- gies in Agriculture, Forestry and Environment, 43-47, 2011
[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.
[16] R. Putha, L. Quadrifoglio, and E. Zechman. Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Computer‐ Aided Civil and Infrastructure Engineering, 27(1), 14-28, 2012.
[17] D. Teodorović, and M. Dell’Orco. Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transportation Planning and Technology, 31(2), 135-152, 2008.
[18] A. L. Bazzan, and F. Klügl. A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review, 29(3), 375-403, 2014.
[19] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.
[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Physics: Conference Series
dc.publisher.program.spa.fl_str_mv Retracted
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7869122e-b088-4976-bef5-0dfa92c37c48/download
https://repositorio.cuc.edu.co/bitstreams/ce5d9906-bafe-4049-aaf4-dcd5dfac9bc2/download
https://repositorio.cuc.edu.co/bitstreams/eb83ede3-d799-48bd-b030-6b1b33db0baf/download
https://repositorio.cuc.edu.co/bitstreams/106da141-bde5-4501-b82a-7ce86ae73fcd/download
https://repositorio.cuc.edu.co/bitstreams/4800cff3-d6fd-4c7d-859f-637633a81732/download
https://repositorio.cuc.edu.co/bitstreams/39040399-56c5-4eaa-96d5-3753ca6f7162/download
https://repositorio.cuc.edu.co/bitstreams/10ba7bc6-14d2-489e-925a-64923f5dad14/download
https://repositorio.cuc.edu.co/bitstreams/1e9175d7-bd43-48b7-9f6f-cbd8856f0190/download
bitstream.checksum.fl_str_mv 18700b3e986b18016ffd31df8b3e87b1
3cfff8ae761e7bbc95c61cded005d41b
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
3558a6235c687df961d1fa5be99f4df5
62cc96c2d0be734f690739991addf82c
dc6054d5a7aa60589481edb1763c4c09
0ade7c2f619607b3f7529384382e4cdf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760699760705536
spelling Silva, JesúsH, HNiebles Núñez, WilliamOvallos-Gazabon, DavidVarela, Noel2020-04-23T16:34:52Z2020-04-23T16:34:52Z20201742-65881742-6596https://hdl.handle.net/11323/6240doi:10.1088/1742-6596/1432/1/012095Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Technological advances have allowed to collect and store large volumes of data over the years. Besides, it is significant that today's applications have high performance and can analyze these large datasets effectively. Today, it remains a challenge for data mining to make its algorithms and applications equally efficient in the need of increasing data size and dimensionality [1]. To achieve this goal, many applications rely on parallelism, because it is an area that allows the reduction of cost depending on the execution time of the algorithms because it takes advantage of the characteristics of current computer architectures to run several processes concurrently [2]. This paper proposes a parallel version of the FuzzyPred algorithm based on the amount of data that can be processed within each of the processing threads, synchronously and independently.Silva, JesúsHernandez Palma, Hugo Gaspar-will be generated-orcid-0000-0002-3873-0530-600Niebles Núñez, WilliamOvallos-Gazabon, DavidVarela, NoelengJournal of Physics: Conference SeriesRetractedCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parallel algorithmProcessing timeBig dataParallel algorithm for reduction of data processing time in big dataArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Chapman B, G. Jost and R Van der Pas. Using OpenMP: Portable Shared Memory Parallel Programming Scientific and Engineering Computation. The MIT Press.Massachusetts Institutte of Technology. ISBN 978-0- 262-53302-7. pp 349. 2008.[2] Jain, Mugdha, and Chakradhar Verma. "Adapting k-means for Clustering in Big Data." International Journal of Computer Applications 101.1 (2014): 19-24.[3] Ceruto T, O. Lapeira, A. Rosete and R. ESPÍN.Discovery of fuzzy predicates in database. Advances in Intelligent Systems Research (AISR Journal), vol. 51, No 1, pp. 45-54, ISSN 19516851, Atlantis Press, 2013.[4] Hariri S, and M. Parashar.Tools and Enviroments for Parallel and Distributed Computing. John Wiley & Sons. ISBN 0-471-33288-7, pag 229, 2014.[5] Fernandez A, S. Del Rio, V. Lopez, M. J. Del Jesus and F. Herrera. Big Data with Colud Computing:an insight on the computing enviroment, Map Reduce and programming frameworks. WIREs Data Mining and Knowledge Discovery.John Wiley and Sons, vol 4, pp 380-409, 2014.[6] Viloria, A. "Commercial strategies providers pharmaceutical chains for logistics cost reduction." Indian Journal of Science and Technology 8, no. 1 (2016).[7] Viloria, A., & Gaitan-Angulo, M. (2016). Statistical Adjustment Module Advanced Optimizer Planner and SAP Generated the Case of a Food Production Company. Indian Journal Of Science And Technology, 9(47). doi:10.17485/ijst/2016/v9i47/107371.[8] Pas, R. An Overview of OpenMP 3.0. In., 2009.IWOMP. Tu Dresden (Alemania). Disponible en http://iwomp.zih.tu-dresden.de/downloads/2.Overwiew_OpenMP.pdf.[9] N. Sapankevych y R. Sankar, “Time Series Prediction Using Support Vector Machines: A Survey”, IEEE Computational Intelligence Magazine, vol. 4, núm. 2, pp. 24–38, may 2009.[10] Reinders, J. Intel threading building blocks-outfitting C++ for multi-core processor parallelism. OReilly Media. ISBN 978-1449390860, pp 336, 2007.[11] Kaminsky, A. The Parallel Java 2 Library Parallel Programming in 100 % Java. Rochester Institute of Technology, Department of Computer Science, Rochester, New York, EUA. 2015.[12] F. Villada, N. Muñoz, y E. García, Aplicación de las Redes Neuronales al Pronóstico de Precios en Mercado de Valores, Información tecnológica, vol. 23, núm. 4, pp. 11–20. 2012.[13] Venugopal K, K.G. Srinivasa and L. M. Patnaik. Soft Computing for Data Mining Applications. Springer Berlin Heidelberg: Springer-Verlag. ISBN 978-3-642-00192-5, pp 354, 2009.[14] Brdar S., Culibrk D., Marinkovic B., Crnobarac J., Crnojevic V. Support Vector Machines with Features Contribution Analysis for Agricultural Yield Prediction, Second International Workshop on Sensing Technolo- gies in Agriculture, Forestry and Environment, 43-47, 2011[15] Choudhury, A. and Jones, J. Crop yield prediction using time series models, Journal of Economics and Economic Education Research., 15, 53-68, 2014.[16] R. Putha, L. Quadrifoglio, and E. Zechman. Comparing ant colony optimization and genetic algorithm approaches for solving traffic signal coordination under oversaturation conditions. Computer‐ Aided Civil and Infrastructure Engineering, 27(1), 14-28, 2012.[17] D. Teodorović, and M. Dell’Orco. Mitigating traffic congestion: solving the ride-matching problem by bee colony optimization. Transportation Planning and Technology, 31(2), 135-152, 2008.[18] A. L. Bazzan, and F. Klügl. A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review, 29(3), 375-403, 2014.[19] Amelec, V., & Alexander, P. (2015). Improvements in the automatic distribution process of finished product for pet food category in multinational company. Advanced Science Letters, 21(5), 1419-1421.[20] Karatzoglou A., Smola A., Hornik K. and Zeileis A. kernlab - An S4 Package for Kernel Methods in R. Journal of Statistical Software, 11(9), 1-20, 2004PublicationORIGINALParallel Algorithm for Reduction of Data Processing Time in.pdfParallel Algorithm for Reduction of Data Processing Time in.pdfapplication/pdf1471926https://repositorio.cuc.edu.co/bitstreams/7869122e-b088-4976-bef5-0dfa92c37c48/download18700b3e986b18016ffd31df8b3e87b1MD55Parallel Algorithm for Reduction of Data Processing Time in Big Data.pdfParallel Algorithm for Reduction of Data Processing Time in Big Data.pdfapplication/pdf745485https://repositorio.cuc.edu.co/bitstreams/ce5d9906-bafe-4049-aaf4-dcd5dfac9bc2/download3cfff8ae761e7bbc95c61cded005d41bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/eb83ede3-d799-48bd-b030-6b1b33db0baf/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/106da141-bde5-4501-b82a-7ce86ae73fcd/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILParallel Algorithm for Reduction of Data Processing Time in Big Data.pdf.jpgParallel Algorithm for Reduction of Data Processing Time in Big Data.pdf.jpgimage/jpeg32157https://repositorio.cuc.edu.co/bitstreams/4800cff3-d6fd-4c7d-859f-637633a81732/download3558a6235c687df961d1fa5be99f4df5MD54Parallel Algorithm for Reduction of Data Processing Time in.pdf.jpgParallel Algorithm for Reduction of Data Processing Time in.pdf.jpgimage/jpeg34058https://repositorio.cuc.edu.co/bitstreams/39040399-56c5-4eaa-96d5-3753ca6f7162/download62cc96c2d0be734f690739991addf82cMD56TEXTParallel Algorithm for Reduction of Data Processing Time in.pdf.txtParallel Algorithm for Reduction of Data Processing Time in.pdf.txttext/plain26057https://repositorio.cuc.edu.co/bitstreams/10ba7bc6-14d2-489e-925a-64923f5dad14/downloaddc6054d5a7aa60589481edb1763c4c09MD57Parallel Algorithm for Reduction of Data Processing Time in Big Data.pdf.txtParallel Algorithm for Reduction of Data Processing Time in Big Data.pdf.txttext/plain23817https://repositorio.cuc.edu.co/bitstreams/1e9175d7-bd43-48b7-9f6f-cbd8856f0190/download0ade7c2f619607b3f7529384382e4cdfMD5811323/6240oai:repositorio.cuc.edu.co:11323/62402024-09-17 10:17:28.653http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=