Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling

In this research, a functionalization of Physalis peruviana biomass with H2SO4 and its application in the adsorption of ketoprofen and 2,2-dichlorophenoxyactic acid is reported. In particular, the adsorption properties of this biomass were improved through a sulfuric acid treatment to enhance its re...

Full description

Autores:
Dhaouadi, Fatma
Sellaoui, Lotfi
Taamalli, Sonia
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
georgin, jordana
Dison S.P., Franco
Silva Oliveira, Luis Felipe
Bonilla-Petriciolet, Adrian
Rtimi, Sami
Tipo de recurso:
Article of journal
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9467
Acceso en línea:
https://hdl.handle.net/11323/9467
https://doi.org/10.1016/j.cej.2022.136773
https://repositorio.cuc.edu.co/
Palabra clave:
Pharmaceutical compounds
Herbicide
Biomass functionalization
Water depollution
Rights
embargoedAccess
License
© 2022 Elsevier B.V. All rights reserved.
id RCUC2_a9405d2b8536f6961d3cc6039b11cb8b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9467
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
title Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
spellingShingle Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
Pharmaceutical compounds
Herbicide
Biomass functionalization
Water depollution
title_short Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
title_full Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
title_fullStr Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
title_full_unstemmed Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
title_sort Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modeling
dc.creator.fl_str_mv Dhaouadi, Fatma
Sellaoui, Lotfi
Taamalli, Sonia
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
georgin, jordana
Dison S.P., Franco
Silva Oliveira, Luis Felipe
Bonilla-Petriciolet, Adrian
Rtimi, Sami
dc.contributor.author.spa.fl_str_mv Dhaouadi, Fatma
Sellaoui, Lotfi
Taamalli, Sonia
Louis, Florent
Abderrahman, El Bakali
Badawi, Michael
georgin, jordana
Dison S.P., Franco
Silva Oliveira, Luis Felipe
Bonilla-Petriciolet, Adrian
Rtimi, Sami
dc.subject.proposal.eng.fl_str_mv Pharmaceutical compounds
Herbicide
Biomass functionalization
Water depollution
topic Pharmaceutical compounds
Herbicide
Biomass functionalization
Water depollution
description In this research, a functionalization of Physalis peruviana biomass with H2SO4 and its application in the adsorption of ketoprofen and 2,2-dichlorophenoxyactic acid is reported. In particular, the adsorption properties of this biomass were improved through a sulfuric acid treatment to enhance its removal performance of organic molecules. Surface chemistry of this modified biomass was also characterized. Experimental adsorption isotherms of these organic pollutants were determined at 298 – 328 K and pH 2. A multilayer statistical physics model was used in the data modeling to analyze the corresponding adsorption mechanism. Results showed that the endothermic multilayer adsorption of ketoprofen was a multi-molecular process where molecular aggregation could be expected. On the other hand, the adsorption of 2,2-dichlorophenoxyactic acid on this functionalized biomass was multi-anchoring. Adsorption energies (ΔE1) varied from 4.13 to 5.53 kJ/mol for KTP and from 7.54 to 7.96 kJ/mol for 2,4-D herbicide. These results showed that physical adsorption forces were involved in the removal of these organic molecules with this functionalized biomass because the adsorption energies < 40 kJ/mol.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-24T13:12:56Z
dc.date.available.none.fl_str_mv 2022-08-24T13:12:56Z
2024-10-01
dc.date.issued.none.fl_str_mv 2022-10-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
dc.identifier.citation.spa.fl_str_mv Fatma Dhaouadi, Lotfi Sellaoui, Sonia Taamalli, Florent Louis, Abderrahman El Bakali, Michael Badawi, Jordana Georgin, Dison S.P. Franco, Luis F.O. Silva, Adrián Bonilla-Petriciolet, Sami Rtimi, Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: Adsorption properties and statistical physics modeling, Chemical Engineering Journal, Volume 445, 2022, 136773, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2022.136773.
dc.identifier.issn.spa.fl_str_mv 1385-8947
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/9467
dc.identifier.url.spa.fl_str_mv https://doi.org/10.1016/j.cej.2022.136773
dc.identifier.doi.spa.fl_str_mv 10.1016/j.cej.2022.136773
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Fatma Dhaouadi, Lotfi Sellaoui, Sonia Taamalli, Florent Louis, Abderrahman El Bakali, Michael Badawi, Jordana Georgin, Dison S.P. Franco, Luis F.O. Silva, Adrián Bonilla-Petriciolet, Sami Rtimi, Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: Adsorption properties and statistical physics modeling, Chemical Engineering Journal, Volume 445, 2022, 136773, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2022.136773.
1385-8947
10.1016/j.cej.2022.136773
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9467
https://doi.org/10.1016/j.cej.2022.136773
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Chemical Engineering Journal
dc.relation.references.spa.fl_str_mv [1] M.T. Bazana, S.S. da Silva, C.F. Codevilla, C. de Deus, B.N. Lucas, G.A. Ugalde, M. A. Mazutti, E.M. Moraes Flores, J.S. Barin, C. de Bona da Silva, C.R. de Menezes, Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity, Food Res. Int. 125 (2019), 108645, https://doi.org/10.1016/j.foodres.2019.108645.
[2] L.C. C´ardenas-Barboza, A.C. Paredes-Cordoba, ´ L. Serna-Cock, M. GuanchaChalapud, C. Torres-Leon, ´ Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces, Heliyon. 7 (9) (2021) e07988.
[3] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4- dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (1) (2021) 104574.
[4] L.A. Puente, C.A. Pinto-Munoz, ˜ E.S. Castro, M. Cort´es, Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review, Food Res. Int. 44 (2011) 1733–1740, https://doi.org/10.1016/j.foodres.2010.09.034.
[5] L. Franco, Y. Ocampo, H. Gomez, ´ R. De la Puerta, J. Espartero, L. Ospina, Sucrose esters from physalis peruviana calyces with anti-inflammatory activity, Planta Med. 80 (2014) 1605–1614, https://doi.org/10.1055/s-0034-1383192.
[6] A. Giron´es-Vilaplana, N. Baenas, D. Villano, ˜ H. Speisky, C. García-Viguera, D. A. Moreno, Evaluation of Latin-American fruits rich in phytochemicals with biological effects, J. Funct. Foods. 7 (2014) 599–608, https://doi.org/10.1016/j.jff.2013.12.025.
[7] C.A. da S. Ramos, T.L. Soares, N.S. Barroso, C.R. Pelacani, Influence of maturity stage on physical and chemical characteristics of fruit and physiological quality of seeds of Physalis angulata L., Scientia Horticulturae. 284 (2021) 110124. https://doi.org/10.1016/j.scienta.2021.110124.
[8] S.M. Ezzat, H.M.I. Abdallah, N.N. Yassen, R.A. Radwan, E.S. Mostafa, M.M. Salama, M.A. Salem, Phenolics from Physalis peruviana fruits ameliorate streptozotocininduced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression, Biomedicine & Pharmacotherapy. 142 (2021), 111948, https://doi.org/10.1016/j.biopha.2021.111948.
[9] H.E. Balaguera-Lopez, ´ M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Ar´evalo, L. Zacarías, 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits, Postharvest Biol. Technol. 174 (2021), 111467, https://doi.org/10.1016/j.postharvbio.2021.111467.
[10] S.-T. Fang, J.-K. Liu, B. Li, Ten new withanolides from Physalis peruviana, Steroids 77 (2012) 36–44, https://doi.org/10.1016/j.steroids.2011.09.011.
[11] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard. Mater. 149 (2007) 269–274, https://doi.org/10.1016/j.jhazmat.2007.03.074.
[12] L. Sellaoui, F. Dhaouadi, H.E. Reynel-Avila, D.I. Mendoza-Castillo, A. BonillaPetriciolet, R. Trejo-Valencia, S. Taamalli, F. Louis, A. El Bakali, Z. Chen, Physicochemical assessment of anionic dye adsorption on bone char using a multilayer statistical physics model, Environ. Sci. Pollut. Res. 28 (2021) 67248–67255, https://doi.org/10.1007/s11356-021-15264-9.
[13] L. Sellaoui, F. Dhaouadi, S. Taamalli, H.Y.S. AlZahrani, F. Louis, A.E. Bakali, A. Erto, A.B. Lamine, D.R. Lima, E.C. Lima, Z. Chen, Application of a multilayer physical model for the critical analysis of the adsorption of nicotinamide and propranolol on magnetic-activated carbon, Environ. Sci. Pollut. Res. 29 (20) (2022) 30184–30192.
[14] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, Journal of Environmental, Chem. Eng. 9 (4) (2021) 105516.
[15] F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A.B. Lamine, Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model, J. Mol. Liquids. 305 (2020), 112815, https://doi.org/10.1016/j.molliq.2020.112815.
[16] F.C. Wu, P.H. Wu, R.L. Tseng, R.S. Juang, Preparation of novel activated carbons from H2SO4-Pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol, J. Environ. Manag. 92 (2011) 708–713, https://doi.org/10.1016/j.jenvman.2010.10.003.
[17] E.I. El-Shafey, S.N.F. Ali, S. Al-Busafi, H.A.J. Al-Lawati, Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal, Journal of Environmental, Chem. Eng. 4 (2016) 2713–2724, https://doi.org/10.1016/j.jece.2016.05.015.
[18] X. Li, S. Deng, H. Fu, Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract, Corrosion Sci. 62 (2012) 163–175, https://doi.org/10.1016/j.corsci.2012.05.008.
[19] M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies, J. Environ. Radioactivity. 164 (2016) 113–124, https://doi.org/10.1016/j.jenvrad.2016.07.005.
[20] A. Rahman, H.J. Hango, L.S. Daniel, V. Uahengo, S.J. Jaime, S.V.H.S. Bhaskaruni, S.B. Jonnalagadda, Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: An environmentally benevolent approach, J. Clean. Prod. 237 (2019), 117689, https://doi.org/10.1016/j.jclepro.2019.117689.
[21] A.H. Jawad, D.T.A. Al-Heetimi, M.S. Mastuli, Biochar from orange (Citrus sinensis)peels by acid activation for methylene blue adsorption, Iran. J. Chemistry Chem. Eng. 38 (2019) 91–105.
[22] P. Barpanda, G. Fanchini, G.G. Amatucci, Structure, surface morphology and electrochemical properties of brominated activated carbons, Carbon 49 (2011) 2538–2548, https://doi.org/10.1016/j.carbon.2011.02.028.
[23] A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surfaces and Interfaces. 16 (2019) 76–84, https://doi.org/10.1016/j.surfin.2019.04.012.
[24] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah University Sci. 12 (2018) 809–819, https://doi.org/10.1080/16583655.2018.1519893.
[25] L.S. Ferreira, M.S. Rodrigues, J.C.M. de Carvalho, A. Lodi, E. Finocchio, P. Perego, A. Converti, Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems, Chem. Eng. J. 173 (2011) 326–333, https://doi.org/10.1016/j.cej.2011.07.039.
[26] F. Dhaouadi, L. Sellaoui, B. Chavez-Gonz ´ alez, ´ H. Elizabeth Reynel-Avila, ´ L.L. DiazMunoz, ˜ D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A.B. Lamine, Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid, Chem. Eng. J. 417 (2021) 127975.
[27] F. Dhaouadi, L. Sellaoui, H.E. Reynel-Avila, ´ V. Landín-Sandoval, D.I. MendozaCastillo, J.E. Jaime-Leal, E.C. Lima, A. Bonilla-Petriciolet, A.B. Lamine, Adsorption mechanism of Zn 2+, Ni 2+, Cd 2+, and Cu 2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling, Environ. Sci. Pollut. Res. 28 (24) (2021) 30943–30954.
dc.relation.citationendpage.spa.fl_str_mv 8
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 445
dc.rights.spa.fl_str_mv © 2022 Elsevier B.V. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv © 2022 Elsevier B.V. All rights reserved.
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 8 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.publisher.place.spa.fl_str_mv Netherlands
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S1385894722022689
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/65b3e266-ff67-4f50-9732-21f359c80b88/download
https://repositorio.cuc.edu.co/bitstreams/f962c302-e82d-4100-8eb4-083283723088/download
https://repositorio.cuc.edu.co/bitstreams/c5e2c7d5-fb92-488b-a3aa-cc4935345e10/download
https://repositorio.cuc.edu.co/bitstreams/4c54940d-d0d5-48bd-a866-425ed5b73248/download
bitstream.checksum.fl_str_mv 9e46b3bb179274e564a8e3248e811da4
e30e9215131d99561d40d6b0abbe9bad
94ae155214a6f45a3d7a41861d700595
30380847362f2f6d390116b319119ec1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166859794415616
spelling Dhaouadi, FatmaSellaoui, LotfiTaamalli, SoniaLouis, FlorentAbderrahman, El BakaliBadawi, Michaelgeorgin, jordanaDison S.P., FrancoSilva Oliveira, Luis FelipeBonilla-Petriciolet, AdrianRtimi, Sami2022-08-24T13:12:56Z2024-10-012022-08-24T13:12:56Z2022-10-01Fatma Dhaouadi, Lotfi Sellaoui, Sonia Taamalli, Florent Louis, Abderrahman El Bakali, Michael Badawi, Jordana Georgin, Dison S.P. Franco, Luis F.O. Silva, Adrián Bonilla-Petriciolet, Sami Rtimi, Enhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: Adsorption properties and statistical physics modeling, Chemical Engineering Journal, Volume 445, 2022, 136773, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2022.136773.1385-8947https://hdl.handle.net/11323/9467https://doi.org/10.1016/j.cej.2022.13677310.1016/j.cej.2022.136773Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In this research, a functionalization of Physalis peruviana biomass with H2SO4 and its application in the adsorption of ketoprofen and 2,2-dichlorophenoxyactic acid is reported. In particular, the adsorption properties of this biomass were improved through a sulfuric acid treatment to enhance its removal performance of organic molecules. Surface chemistry of this modified biomass was also characterized. Experimental adsorption isotherms of these organic pollutants were determined at 298 – 328 K and pH 2. A multilayer statistical physics model was used in the data modeling to analyze the corresponding adsorption mechanism. Results showed that the endothermic multilayer adsorption of ketoprofen was a multi-molecular process where molecular aggregation could be expected. On the other hand, the adsorption of 2,2-dichlorophenoxyactic acid on this functionalized biomass was multi-anchoring. Adsorption energies (ΔE1) varied from 4.13 to 5.53 kJ/mol for KTP and from 7.54 to 7.96 kJ/mol for 2,4-D herbicide. These results showed that physical adsorption forces were involved in the removal of these organic molecules with this functionalized biomass because the adsorption energies < 40 kJ/mol.8 páginasapplication/pdfengElsevierNetherlands© 2022 Elsevier B.V. All rights reserved.Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4: adsorption properties and statistical physics modelingArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/abs/pii/S1385894722022689Chemical Engineering Journal[1] M.T. Bazana, S.S. da Silva, C.F. Codevilla, C. de Deus, B.N. Lucas, G.A. Ugalde, M. A. Mazutti, E.M. Moraes Flores, J.S. Barin, C. de Bona da Silva, C.R. de Menezes, Development of nanoemulsions containing Physalis peruviana calyx extract: A study on stability and antioxidant capacity, Food Res. Int. 125 (2019), 108645, https://doi.org/10.1016/j.foodres.2019.108645.[2] L.C. C´ardenas-Barboza, A.C. Paredes-Cordoba, ´ L. Serna-Cock, M. GuanchaChalapud, C. Torres-Leon, ´ Quality of Physalis peruviana fruits coated with pectin and pectin reinforced with nanocellulose from P. peruviana calyces, Heliyon. 7 (9) (2021) e07988.[3] J. Georgin, D.S.P. Franco, M. Schadeck Netto, D. Allasia, E.L. Foletto, L.F. S. Oliveira, G.L. Dotto, Transforming shrub waste into a high-efficiency adsorbent: Application of Physalis peruvian chalice treated with strong acid to remove the 2,4- dichlorophenoxyacetic acid herbicide, J. Environ. Chem. Eng. 9 (1) (2021) 104574.[4] L.A. Puente, C.A. Pinto-Munoz, ˜ E.S. Castro, M. Cort´es, Physalis peruviana Linnaeus, the multiple properties of a highly functional fruit: A review, Food Res. Int. 44 (2011) 1733–1740, https://doi.org/10.1016/j.foodres.2010.09.034.[5] L. Franco, Y. Ocampo, H. Gomez, ´ R. De la Puerta, J. Espartero, L. Ospina, Sucrose esters from physalis peruviana calyces with anti-inflammatory activity, Planta Med. 80 (2014) 1605–1614, https://doi.org/10.1055/s-0034-1383192.[6] A. Giron´es-Vilaplana, N. Baenas, D. Villano, ˜ H. Speisky, C. García-Viguera, D. A. Moreno, Evaluation of Latin-American fruits rich in phytochemicals with biological effects, J. Funct. Foods. 7 (2014) 599–608, https://doi.org/10.1016/j.jff.2013.12.025.[7] C.A. da S. Ramos, T.L. Soares, N.S. Barroso, C.R. Pelacani, Influence of maturity stage on physical and chemical characteristics of fruit and physiological quality of seeds of Physalis angulata L., Scientia Horticulturae. 284 (2021) 110124. https://doi.org/10.1016/j.scienta.2021.110124.[8] S.M. Ezzat, H.M.I. Abdallah, N.N. Yassen, R.A. Radwan, E.S. Mostafa, M.M. Salama, M.A. Salem, Phenolics from Physalis peruviana fruits ameliorate streptozotocininduced diabetes and diabetic nephropathy in rats via induction of autophagy and apoptosis regression, Biomedicine & Pharmacotherapy. 142 (2021), 111948, https://doi.org/10.1016/j.biopha.2021.111948.[9] H.E. Balaguera-Lopez, ´ M. Espinal-Ruiz, J.M. Rodríguez-Nieto, A. Herrera-Ar´evalo, L. Zacarías, 1-Methylcyclopropene inhibits ethylene perception and biosynthesis: A theoretical and experimental study on cape gooseberry (Physalis peruviana L.) fruits, Postharvest Biol. Technol. 174 (2021), 111467, https://doi.org/10.1016/j.postharvbio.2021.111467.[10] S.-T. Fang, J.-K. Liu, B. Li, Ten new withanolides from Physalis peruviana, Steroids 77 (2012) 36–44, https://doi.org/10.1016/j.steroids.2011.09.011.[11] M. Khormaei, B. Nasernejad, M. Edrisi, T. Eslamzadeh, Copper biosorption from aqueous solutions by sour orange residue, J. Hazard. Mater. 149 (2007) 269–274, https://doi.org/10.1016/j.jhazmat.2007.03.074.[12] L. Sellaoui, F. Dhaouadi, H.E. Reynel-Avila, D.I. Mendoza-Castillo, A. BonillaPetriciolet, R. Trejo-Valencia, S. Taamalli, F. Louis, A. El Bakali, Z. Chen, Physicochemical assessment of anionic dye adsorption on bone char using a multilayer statistical physics model, Environ. Sci. Pollut. Res. 28 (2021) 67248–67255, https://doi.org/10.1007/s11356-021-15264-9.[13] L. Sellaoui, F. Dhaouadi, S. Taamalli, H.Y.S. AlZahrani, F. Louis, A.E. Bakali, A. Erto, A.B. Lamine, D.R. Lima, E.C. Lima, Z. Chen, Application of a multilayer physical model for the critical analysis of the adsorption of nicotinamide and propranolol on magnetic-activated carbon, Environ. Sci. Pollut. Res. 29 (20) (2022) 30184–30192.[14] L. Sellaoui, F. Dhaouadi, Z. Li, T.R.S. Cadaval, A.V. Igansi, L.A.A. Pinto, G.L. Dotto, A. Bonilla-Petriciolet, D. Pinto, Z. Chen, Implementation of a multilayer statistical physics model to interpret the adsorption of food dyes on a chitosan film, Journal of Environmental, Chem. Eng. 9 (4) (2021) 105516.[15] F. Dhaouadi, L. Sellaoui, G.L. Dotto, A. Bonilla-Petriciolet, A. Erto, A.B. Lamine, Adsorption of methylene blue on comminuted raw avocado seeds: Interpretation of the effect of salts via physical monolayer model, J. Mol. Liquids. 305 (2020), 112815, https://doi.org/10.1016/j.molliq.2020.112815.[16] F.C. Wu, P.H. Wu, R.L. Tseng, R.S. Juang, Preparation of novel activated carbons from H2SO4-Pretreated corncob hulls with KOH activation for quick adsorption of dye and 4-chlorophenol, J. Environ. Manag. 92 (2011) 708–713, https://doi.org/10.1016/j.jenvman.2010.10.003.[17] E.I. El-Shafey, S.N.F. Ali, S. Al-Busafi, H.A.J. Al-Lawati, Preparation and characterization of surface functionalized activated carbons from date palm leaflets and application for methylene blue removal, Journal of Environmental, Chem. Eng. 4 (2016) 2713–2724, https://doi.org/10.1016/j.jece.2016.05.015.[18] X. Li, S. Deng, H. Fu, Inhibition of the corrosion of steel in HCl, H2SO4 solutions by bamboo leaf extract, Corrosion Sci. 62 (2012) 163–175, https://doi.org/10.1016/j.corsci.2012.05.008.[19] M.M. Hamed, M.M.S. Ali, M. Holiel, Preparation of activated carbon from doum stone and its application on adsorption of 60Co and 152+154Eu: Equilibrium, kinetic and thermodynamic studies, J. Environ. Radioactivity. 164 (2016) 113–124, https://doi.org/10.1016/j.jenvrad.2016.07.005.[20] A. Rahman, H.J. Hango, L.S. Daniel, V. Uahengo, S.J. Jaime, S.V.H.S. Bhaskaruni, S.B. Jonnalagadda, Chemical preparation of activated carbon from Acacia erioloba seed pods using H2SO4 as impregnating agent for water treatment: An environmentally benevolent approach, J. Clean. Prod. 237 (2019), 117689, https://doi.org/10.1016/j.jclepro.2019.117689.[21] A.H. Jawad, D.T.A. Al-Heetimi, M.S. Mastuli, Biochar from orange (Citrus sinensis)peels by acid activation for methylene blue adsorption, Iran. J. Chemistry Chem. Eng. 38 (2019) 91–105.[22] P. Barpanda, G. Fanchini, G.G. Amatucci, Structure, surface morphology and electrochemical properties of brominated activated carbons, Carbon 49 (2011) 2538–2548, https://doi.org/10.1016/j.carbon.2011.02.028.[23] A.H. Jawad, R. Razuan, J.N. Appaturi, L.D. Wilson, Adsorption and mechanism study for methylene blue dye removal with carbonized watermelon (Citrullus lanatus) rind prepared via one-step liquid phase H2SO4 activation, Surfaces and Interfaces. 16 (2019) 76–84, https://doi.org/10.1016/j.surfin.2019.04.012.[24] A.H. Jawad, R.A. Rashid, M.A.M. Ishak, K. Ismail, Adsorptive removal of methylene blue by chemically treated cellulosic waste banana (Musa sapientum) peels, J. Taibah University Sci. 12 (2018) 809–819, https://doi.org/10.1080/16583655.2018.1519893.[25] L.S. Ferreira, M.S. Rodrigues, J.C.M. de Carvalho, A. Lodi, E. Finocchio, P. Perego, A. Converti, Adsorption of Ni2+, Zn2+ and Pb2+ onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems, Chem. Eng. J. 173 (2011) 326–333, https://doi.org/10.1016/j.cej.2011.07.039.[26] F. Dhaouadi, L. Sellaoui, B. Chavez-Gonz ´ alez, ´ H. Elizabeth Reynel-Avila, ´ L.L. DiazMunoz, ˜ D.I. Mendoza-Castillo, A. Bonilla-Petriciolet, E.C. Lima, J.C. Tapia-Picazo, A.B. Lamine, Application of a heterogeneous physical model for the adsorption of Cd2+, Ni2+, Zn2+ and Cu2+ ions on flamboyant pods functionalized with citric acid, Chem. Eng. J. 417 (2021) 127975.[27] F. Dhaouadi, L. Sellaoui, H.E. Reynel-Avila, ´ V. Landín-Sandoval, D.I. MendozaCastillo, J.E. Jaime-Leal, E.C. Lima, A. Bonilla-Petriciolet, A.B. Lamine, Adsorption mechanism of Zn 2+, Ni 2+, Cd 2+, and Cu 2+ ions by carbon-based adsorbents: interpretation of the adsorption isotherms via physical modelling, Environ. Sci. Pollut. Res. 28 (24) (2021) 30943–30954.81445Pharmaceutical compoundsHerbicideBiomass functionalizationWater depollutionPublicationORIGINALEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdfEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdfapplication/pdf1198145https://repositorio.cuc.edu.co/bitstreams/65b3e266-ff67-4f50-9732-21f359c80b88/download9e46b3bb179274e564a8e3248e811da4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f962c302-e82d-4100-8eb4-083283723088/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdf.txtEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdf.txttext/plain36028https://repositorio.cuc.edu.co/bitstreams/c5e2c7d5-fb92-488b-a3aa-cc4935345e10/download94ae155214a6f45a3d7a41861d700595MD53THUMBNAILEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdf.jpgEnhanced adsorption of ketoprofen and 2,4-dichlorophenoxyactic acid on Physalis peruviana fruit residue functionalized with H2SO4.pdf.jpgimage/jpeg14224https://repositorio.cuc.edu.co/bitstreams/4c54940d-d0d5-48bd-a866-425ed5b73248/download30380847362f2f6d390116b319119ec1MD5411323/9467oai:repositorio.cuc.edu.co:11323/94672024-09-17 14:19:05.582https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier B.V. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==