Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city
NO2 ambient concentrations were measured in a coastal Caribbean city. Barranquilla is a Caribbean city located in the North of Colombia that has approximately 1.200.000 inhabitants and possesses a warm, humid climate. In order to obtain the concentration of the contaminant in an adequate resolution,...
- Autores:
-
Agudelo-Castañeda, Dayana Milena
De Paoli, Fabrício
MORGADO GAMERO, WENDY BEATRIZ
Mendoza Hernandez, Martha
Parody, Alexander
Maturana, Aymer
Calesso Teixeira, Elba
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6157
- Acceso en línea:
- https://hdl.handle.net/11323/6157
https://repositorio.cuc.edu.co/
- Palabra clave:
- NO2
Spatial variability
Regression model
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a93710f01acc74c47edc0a564ce6fa71 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6157 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
title |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
spellingShingle |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city NO2 Spatial variability Regression model |
title_short |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
title_full |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
title_fullStr |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
title_full_unstemmed |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
title_sort |
Assessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city |
dc.creator.fl_str_mv |
Agudelo-Castañeda, Dayana Milena De Paoli, Fabrício MORGADO GAMERO, WENDY BEATRIZ Mendoza Hernandez, Martha Parody, Alexander Maturana, Aymer Calesso Teixeira, Elba |
dc.contributor.author.spa.fl_str_mv |
Agudelo-Castañeda, Dayana Milena De Paoli, Fabrício MORGADO GAMERO, WENDY BEATRIZ Mendoza Hernandez, Martha Parody, Alexander Maturana, Aymer Calesso Teixeira, Elba |
dc.subject.spa.fl_str_mv |
NO2 Spatial variability Regression model |
topic |
NO2 Spatial variability Regression model |
description |
NO2 ambient concentrations were measured in a coastal Caribbean city. Barranquilla is a Caribbean city located in the North of Colombia that has approximately 1.200.000 inhabitants and possesses a warm, humid climate. In order to obtain the concentration of the contaminant in an adequate resolution, 137 passive diffusion tubes from Gradko© were installed. Diffusion passive tubes prepared with 20% TEA/water were located at the roadside between 1 and 5 m from the kerb edge. The sampling period was two weeks, from 3/16/2019 to 3/30/2019. Samples were analyzed on the UV CARY1 spectrophotometer by Gradko©. Results showed an average of 19.92 ±11.50 µg/m3 , with a maximum and minimum value of 70.27 and 0.57 µg/m3 , respectively. Spatial NO2 correlation with low traffic load was higher than with maximum traffic. The expected results include analyzing the areas of the city with high concentrations of this pollutant that exceed the WHO guidelines in six (6) points. Overall, the multiregression analysis is a very effective method to enrich the understanding of NO2 distributions. It can provide scientific evidence for the relationship between NO2 and traffic, beneficial for developing the targeted policies and measures to reduce NO2 pollution levels in hot spots. This research may subsidize knowledge to serve as a tool for environmental and health authorities. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-04-09T19:44:48Z |
dc.date.available.none.fl_str_mv |
2020-04-09T19:44:48Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6157 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6157 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Achakulwisut, P., Brauer, M., Hystad, P., Anenberg, S.C., 2019. Global, national, and urban burdens of pediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planet. Heal. 3, e166–e178. https://doi.org/10.1016/S25425196(19)30046-4 Adame, J.A., Serrano, E., Bolívar, J.P., de la Morena, B.A., 2010. On the tropospheric ozone variations in a coastal area of Southwestern Europe under a mesoscale circulation. J. Appl. Meteorol. Climatol. 49, 748–759. https://doi.org/10.1175/2009JAMC2097.1 Coughlin, J.G., Yu, Z., Elliott, E.M., 2017. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions. Rapid Commun. Mass Spectrom. 31, 1211–1220. https://doi.org/10.1002/rcm.7885 Cyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Dimakopoulou, K., Eriksen, K., Galassi, C., Graulevičiene, R., Grivas, G., Gruzieva, O., Gustafsson, A.H., Hoffmann, B., Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., Madsen, C., Meliefste, K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., Oldenwening, M., Peters, A., Pontet, S., ProbstHensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., Tsai, M.Y., Vaskövi, É., Villani, S., Wang, M., Brunekreef, B., Hoek, G., 2012. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 62, 374–390. https://doi.org/10.1016/j.atmosenv.2012.07.080 Felix, E., Gidhagen, L., Alonso, M.F., Nahirny, E.P., Alves, B.L., Segersson, D., Amorim, J.H., 2019. Passive sampling as a feasible tool for mapping and model evaluation of the spatial distribution of nitrogen oxides in the city of Curitiba, Brazil. Air Qual. Atmos. Heal. 12, 837– 846. https://doi.org/10.1007/s11869-019-00701-z Geddes, J.A., Martin, R. V., Boys, B.L., van Donkelaar, A., 2016. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289. https://doi.org/10.1289/ehp.1409567 Kimbrough, S., Chris Owen, R., Snyder, M., Richmond-Bryant, J., 2017. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements. Atmos. Environ. 165, 23–34. https://doi.org/10.1016/j.atmosenv.2017.06.027 Lanzafame, R., Monforte, P., Scandura Pier, F., 2016. Comparative Analyses of Urban Air Quality Monitoring Systems: Passive Sampling and Continuous Monitoring Stations. Energy Procedia 101, 321–328. https://doi.org/10.1016/j.egypro.2016.11.041 ul-Haq, Z., Tariq, S., Ali, M., Mahmood, K., Batool, S.A., Rana, A.D., 2014. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Pollut. Res. 5, 709–720. https://doi.org/10.5094/APR.2014.080 Zhang, L., Lee, C.S., Zhang, R., Chen, L., 2017. Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2and SO2concentrations in Henan Province, China. Atmos. Environ. 154, 151–166. https://doi.org/10.1016/j.atmosenv.2016.11.067 IDEAM. Atlas climatológico de Colombia. http://atlas.ideam.gov.co/visorAtlasClimatologico.html Barranquilla, 2018. Alcaldía de Barranquilla. [WWW Document]. URL http://www.barranquilla.gov.co/index.php?option=com_content&view=article&id=27&Ite mid=118. (accessed 7.31.18). Morgado Gamero W.B., Ramírez M.C., Parody A., Viloria A., López M.H.A., Kamatkar S.J. (2018) Concentrations and Size Distributions of Fungal Bioaerosols in a Municipal Landfill. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, Cham |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/bd657344-191a-4b23-a420-6ae3f78c4107/download https://repositorio.cuc.edu.co/bitstreams/18d44e4d-e7d8-404f-b15f-069f3b87c58a/download https://repositorio.cuc.edu.co/bitstreams/ed629ca6-5140-4aee-858f-98dcf4c8d6f5/download https://repositorio.cuc.edu.co/bitstreams/73d26966-ef7f-4e25-9c7e-7876f0526ff4/download https://repositorio.cuc.edu.co/bitstreams/f608e1c0-c283-497b-b1e6-198b073a1f1d/download |
bitstream.checksum.fl_str_mv |
1fac63d9f848a90a5df46c65b8514d27 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 42efde349960b53ef01fee1a53b959de 9078b838d14b3441b1f82ec6bf66bb2c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760794373718016 |
spelling |
Agudelo-Castañeda, Dayana MilenaDe Paoli, FabrícioMORGADO GAMERO, WENDY BEATRIZMendoza Hernandez, MarthaParody, AlexanderMaturana, AymerCalesso Teixeira, Elba2020-04-09T19:44:48Z2020-04-09T19:44:48Z2020https://hdl.handle.net/11323/6157Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/NO2 ambient concentrations were measured in a coastal Caribbean city. Barranquilla is a Caribbean city located in the North of Colombia that has approximately 1.200.000 inhabitants and possesses a warm, humid climate. In order to obtain the concentration of the contaminant in an adequate resolution, 137 passive diffusion tubes from Gradko© were installed. Diffusion passive tubes prepared with 20% TEA/water were located at the roadside between 1 and 5 m from the kerb edge. The sampling period was two weeks, from 3/16/2019 to 3/30/2019. Samples were analyzed on the UV CARY1 spectrophotometer by Gradko©. Results showed an average of 19.92 ±11.50 µg/m3 , with a maximum and minimum value of 70.27 and 0.57 µg/m3 , respectively. Spatial NO2 correlation with low traffic load was higher than with maximum traffic. The expected results include analyzing the areas of the city with high concentrations of this pollutant that exceed the WHO guidelines in six (6) points. Overall, the multiregression analysis is a very effective method to enrich the understanding of NO2 distributions. It can provide scientific evidence for the relationship between NO2 and traffic, beneficial for developing the targeted policies and measures to reduce NO2 pollution levels in hot spots. This research may subsidize knowledge to serve as a tool for environmental and health authorities.Agudelo-Castañeda, Dayana Milena-will be generated-orcid-0000-0002-6589-6835-600De Paoli, Fabrício-will be generated-orcid-0000-0003-4322-6416-600MORGADO GAMERO, WENDY BEATRIZ-will be generated-orcid-0000-0003-2394-2589-600Mendoza Hernandez, MarthaParody, AlexanderMaturana, AymerCalesso Teixeira, Elba-will be generated-orcid-0000-0002-0382-5898-600engUniversidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2NO2Spatial variabilityRegression modelAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal cityPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionAchakulwisut, P., Brauer, M., Hystad, P., Anenberg, S.C., 2019. Global, national, and urban burdens of pediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets. Lancet Planet. Heal. 3, e166–e178. https://doi.org/10.1016/S25425196(19)30046-4Adame, J.A., Serrano, E., Bolívar, J.P., de la Morena, B.A., 2010. On the tropospheric ozone variations in a coastal area of Southwestern Europe under a mesoscale circulation. J. Appl. Meteorol. Climatol. 49, 748–759. https://doi.org/10.1175/2009JAMC2097.1Coughlin, J.G., Yu, Z., Elliott, E.M., 2017. Efficacy of passive sampler collection for atmospheric NO2 isotopes under simulated environmental conditions. Rapid Commun. Mass Spectrom. 31, 1211–1220. https://doi.org/10.1002/rcm.7885Cyrys, J., Eeftens, M., Heinrich, J., Ampe, C., Armengaud, A., Beelen, R., Bellander, T., Beregszaszi, T., Birk, M., Cesaroni, G., Cirach, M., de Hoogh, K., De Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Dimakopoulou, K., Eriksen, K., Galassi, C., Graulevičiene, R., Grivas, G., Gruzieva, O., Gustafsson, A.H., Hoffmann, B., Iakovides, M., Ineichen, A., Krämer, U., Lanki, T., Lozano, P., Madsen, C., Meliefste, K., Modig, L., Mölter, A., Mosler, G., Nieuwenhuijsen, M., Nonnemacher, M., Oldenwening, M., Peters, A., Pontet, S., ProbstHensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Sugiri, D., Stephanou, E.G., Taimisto, P., Tsai, M.Y., Vaskövi, É., Villani, S., Wang, M., Brunekreef, B., Hoek, G., 2012. Variation of NO2 and NOx concentrations between and within 36 European study areas: Results from the ESCAPE study. Atmos. Environ. 62, 374–390. https://doi.org/10.1016/j.atmosenv.2012.07.080Felix, E., Gidhagen, L., Alonso, M.F., Nahirny, E.P., Alves, B.L., Segersson, D., Amorim, J.H., 2019. Passive sampling as a feasible tool for mapping and model evaluation of the spatial distribution of nitrogen oxides in the city of Curitiba, Brazil. Air Qual. Atmos. Heal. 12, 837– 846. https://doi.org/10.1007/s11869-019-00701-zGeddes, J.A., Martin, R. V., Boys, B.L., van Donkelaar, A., 2016. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289. https://doi.org/10.1289/ehp.1409567Kimbrough, S., Chris Owen, R., Snyder, M., Richmond-Bryant, J., 2017. NO to NO2 conversion rate analysis and implications for dispersion model chemistry methods using Las Vegas, Nevada near-road field measurements. Atmos. Environ. 165, 23–34. https://doi.org/10.1016/j.atmosenv.2017.06.027Lanzafame, R., Monforte, P., Scandura Pier, F., 2016. Comparative Analyses of Urban Air Quality Monitoring Systems: Passive Sampling and Continuous Monitoring Stations. Energy Procedia 101, 321–328. https://doi.org/10.1016/j.egypro.2016.11.041 ul-Haq, Z., Tariq, S., Ali, M., Mahmood, K., Batool, S.A., Rana, A.D., 2014. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Pollut. Res. 5, 709–720. https://doi.org/10.5094/APR.2014.080Zhang, L., Lee, C.S., Zhang, R., Chen, L., 2017. Spatial and temporal evaluation of long term trend (2005–2014) of OMI retrieved NO2and SO2concentrations in Henan Province, China. Atmos. Environ. 154, 151–166. https://doi.org/10.1016/j.atmosenv.2016.11.067IDEAM. Atlas climatológico de Colombia. http://atlas.ideam.gov.co/visorAtlasClimatologico.htmlBarranquilla, 2018. Alcaldía de Barranquilla. [WWW Document]. URL http://www.barranquilla.gov.co/index.php?option=com_content&view=article&id=27&Ite mid=118. (accessed 7.31.18).Morgado Gamero W.B., Ramírez M.C., Parody A., Viloria A., López M.H.A., Kamatkar S.J. (2018) Concentrations and Size Distributions of Fungal Bioaerosols in a Municipal Landfill. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, vol 10943. Springer, ChamPublicationORIGINALAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdfAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdfapplication/pdf361169https://repositorio.cuc.edu.co/bitstreams/bd657344-191a-4b23-a420-6ae3f78c4107/download1fac63d9f848a90a5df46c65b8514d27MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/18d44e4d-e7d8-404f-b15f-069f3b87c58a/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ed629ca6-5140-4aee-858f-98dcf4c8d6f5/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdf.jpgAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdf.jpgimage/jpeg57684https://repositorio.cuc.edu.co/bitstreams/73d26966-ef7f-4e25-9c7e-7876f0526ff4/download42efde349960b53ef01fee1a53b959deMD54TEXTAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdf.txtAssessment of the NO2 distribution and relationship with traffic load in the Caribbean coastal city.pdf.txttext/plain23205https://repositorio.cuc.edu.co/bitstreams/f608e1c0-c283-497b-b1e6-198b073a1f1d/download9078b838d14b3441b1f82ec6bf66bb2cMD5511323/6157oai:repositorio.cuc.edu.co:11323/61572024-09-17 12:44:09.44http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |