Predicting new potential antimalarial compounds by using Zagreb topological indices
Molecular topology allows describing molecular structures following a two-dimensional approach by taking into account how the atoms are arranged internally through a connection matrix between the atoms that are part of a structure. Various molecular indices (unique for each molecule) can be determin...
- Autores:
-
Brito, Daniel
Marquez Brazon, Edgar Alexander
ROSAS, ENNIS
Rosas, Félix Oscar
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9350
- Acceso en línea:
- https://hdl.handle.net/11323/9350
https://doi.org/10.1063/5.0089325
https://repositorio.cuc.edu.co/
- Palabra clave:
- Physical chemistry
Topology
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a7b55c8e3eeb572d7e7635a7002fcac4 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9350 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
title |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
spellingShingle |
Predicting new potential antimalarial compounds by using Zagreb topological indices Physical chemistry Topology |
title_short |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
title_full |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
title_fullStr |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
title_full_unstemmed |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
title_sort |
Predicting new potential antimalarial compounds by using Zagreb topological indices |
dc.creator.fl_str_mv |
Brito, Daniel Marquez Brazon, Edgar Alexander ROSAS, ENNIS Rosas, Félix Oscar |
dc.contributor.author.spa.fl_str_mv |
Brito, Daniel Marquez Brazon, Edgar Alexander ROSAS, ENNIS Rosas, Félix Oscar |
dc.subject.proposal.eng.fl_str_mv |
Physical chemistry Topology |
topic |
Physical chemistry Topology |
description |
Molecular topology allows describing molecular structures following a two-dimensional approach by taking into account how the atoms are arranged internally through a connection matrix between the atoms that are part of a structure. Various molecular indices (unique for each molecule) can be determined, such as Zagreb, Balaban, and topological indices. These indices have been correlated with physical chemistry properties such as molecular weight, boiling point, and electron density. Furthermore, their relationship with a specific biological activity has been found in other reports. Therefore, its knowledge and interpretation could be critical in the rational design of new compounds, saving time and money in their development process. In this research, the molecular graph of antimalarials already in the pharmaceutical market, such as chloroquine, primaquine, quinine, and artemisinin, was calculated and used to compute the Zagreb indices; a relationship between these indices and the antimalarial activities was found. According to the results reported in this work, the smaller the Zagreb indices, the higher the antimalarial activity. This relationship works very well for other compounds series. Therefore, it seems to be a fundamental structural requirement for this activity. Three triazole-modified structures are proposed as possible potential antimalarials based on this hypothesis. Finally, this work shows that the Zag |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-08T13:05:18Z |
dc.date.available.none.fl_str_mv |
2022-07-08T13:05:18Z |
dc.date.issued.none.fl_str_mv |
2022-04-13 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Daniel Brito, Edgar Marquez, Felix Rosas, and Ennis Rosas , "Predicting new potential antimalarial compounds by using Zagreb topological indices", AIP Advances 12, 045017 (2022) https://doi.org/10.1063/5.0089325 |
dc.identifier.issn.spa.fl_str_mv |
2158-3226 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9350 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1063/5.0089325 |
dc.identifier.doi.spa.fl_str_mv |
10.1063/5.0089325 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Daniel Brito, Edgar Marquez, Felix Rosas, and Ennis Rosas , "Predicting new potential antimalarial compounds by using Zagreb topological indices", AIP Advances 12, 045017 (2022) https://doi.org/10.1063/5.0089325 2158-3226 10.1063/5.0089325 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9350 https://doi.org/10.1063/5.0089325 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
AIP Advances |
dc.relation.references.spa.fl_str_mv |
2World Health Organization, World Malaria Report: 20 Years of Global Progress and Challenges, World Health 2020, WHO/HTM/GM, p. 299. 3R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature 434, 214–217 (2005). 4C. J. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman, D. Haring, N. Fullman, M. Naghavi, R. Lozano, and A. D. Lopez, “Global malaria mortality between 1980 and 2010: A systematic analysis,” Lancet 379, 413–431 (2012). 5 F. Di Gennaro, C. Marotta, P. Locantore, D. Pizzol, and G. Putoto, “Malaria and COVID-19: Common and different findings,” Trop. Med. Infect. Dis. 5, 141 (2020). 6 Health policy and system support to optimize community health worker programmes for HIV, TB and malaria services: An evidence guide, 2020. 7 R. K. Sharma, H. Rajvanshi, P. K. Bharti, S. Nisar, H. Jayswar, A. K. Mishra, K. B. Saha, M. M. Shukla, A. Das, H. Kaur et al., “Socio-economic determinants of malaria in tribal dominated Mandla district enrolled in Malaria Elimination Demonstration Project in Madhya Pradesh,” Malar. J. 20(1), 7 (2021). 8 P. K. Nkegbe, N. Kuunibe, and S. Sekyi, “Poverty and malaria morbidity in the Jirapa district of Ghana: A count regression approach,” Cogent Econ. Finance 5, 1293472 (2017), http://www.editorialmanager.com/cogentecon. 9 W. P. O’Meara, A. Noor, H. Gatakaa, B. Tsofa, F. E. McKenzie, and K. Marsh, “The impact of primary health care on malaria morbidity—Defining access by disease burden,” Trop. Med. Int. Health 14, 29–35 (2009). 10N. R. Ngatu, S. Kanbara, A. Renzaho, R. Wumba, E. P. Mbelambela, S. M. J. Muchanga, B. A. Muzembo, N. Leon-Kabamba, C. Nattadech, T. Suzuki et al.,“Environmental and sociodemographic factors associated with household malaria burden in the Congo,” Malar. J. 18(1), 53 (2019). 11 L. C. Alves, M. N. Sanchez, T. Hone, L. F. Pinto, J. S. Nery, P. L. Tauil, M. L. Barreto, and G. O. Penna, “The association between a conditional cash transfer programme and malaria incidence: A longitudinal ecological study in the Brazilian Amazon between 2004 and 2015,” BMC Public Health 21(1), 1253 (2021). 12 P. Alonso and A. M. Noor, “The global fight against malaria is at crossroads,” Lancet 390, 2532–2534 (2017). 13 P. L. Alonso, “Malaria: A problem to be solved and a time to be bold,” Nat. Med. 27(9), 1506–1509 (2021). 14 World Health Organization, Report of the WHO strategic advisory group on malaria eradication I. Malaria eradication: Benefits, future scenarios and feasibility: A report of the strategic advisory group on malaria eradication. 15 R. S. Paton, A. Kamau, S. Akech, A. Agweyu, M. Ogero, C. Mwandawiro, N. Mturi, S. Mohammed, A. Mpimbaza, S. Kariuki et al., “Malaria infection and severe disease risks in Africa,” Science 373, 926–931 (2021). 16 J. Thwing, E. Eckert, D. A. Dione, R. Tine, A. Faye, Y. Yé, M. Ndiop, M. Cisse, J. A. Ndione, M. B. Diouf et al., “Declines in malaria burden and all-cause child mortality following increases in control interventions in Senegal, 2005–2010,” Am. J. Trop. Med. Hyg. 97, 89 (2017). 17 V. A. Alegana, E. A. Okiro, and R. W. Snow, “Routine data for malaria morbidity estimation in Africa: Challenges and prospects,” BMC Medicine 18, 121 (2020). 18 A. Kamau, G. Mtanje, C. Mataza, G. Mwambingu, N. Mturi, S. Mohammed, G. Ong’ayo, G. Nyutu, A. Nyaguara, P. Bejon et al., “Malaria infection, disease and mortality among children and adults on the coast of Kenya,” Malar. J. 19(1), 210 (2020). 19 T. Kobasa, E. Talundzic, R. Sug-aram, P. Boondat, I. F. Goldman, N. W. Luc chi, P. Dharmarak, D. Sintasath, M. Fukuda, T. Whistler et al., “Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016,” Antimicrob. Agents Chemother. 62, e02141 (2018). 20 A. Uwimana, N. Umulisa, M. Venkatesan, S. S. Svigel, Z. Zhou, T. Munyaneza, R. M. Habimana, A. Rucogoza, L. F. Moriarty, R. Sandford et al., “Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study,” Lancet Infect. Dis. 21, 1120 (2021). 21 B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S. I. Tachibana, M. Yamauchi, W. Opio, S. Emoto, D. A. Anywar, E. Kimura et al., “Evidence of artemisinin resistant malaria in Africa,” N. Engl. J. Med. 385, 1163 (2021). 22 L. Paloque, B. Witkowski, J. Lelièvre, M. Ouji, T. Ben Haddou, F. Ariey, A. Robert, J. M. Augereau, D. Ménard, B. Meunier et al., “Endoperoxide-based compounds: Cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism,” J. Antimicrob. Chemother. 73, 395 (2018). 23 F. Nardella, M. Mairet-Khedim, C. Roesch, S. P. Maher, S. Ke, R. Leang, D. Leroy, and B. Witkowski, “Cross-resistance of the chloroquine-derivative AQ-13 with amodiaquine in Cambodian Plasmodium falciparum isolates,” J. Antimicrob. Chemother. 76, 2565 (2021). 24 P. K. Ojha, V. Kumar, J. Roy, and K. Roy, “Recent advances in quantitative structure–activity relationship models of antimalarial drugs,” Expert Opin. Drug Discovery 16, 659 (2021). 25 S. Yousefinejad, M. Mahboubifar, and R. Eskandari, “Quantitative structure–activity relationship to predict the anti-malarial activity in a set of new imidazolopiperazines based on artificial neural networks,” Malar. J. 18, 310 (2019). 26 M. Liu, P. Wilairat, and M. L. Go, “Antimalarial alkoxylated and hydroxylated chalones: Structure–activity relationship analysis,” J. Med. Chem. 44, 4443 (2001). 27 Y. H. Ou and C. M. Chang, “A quantitative structure-activity relationship study on the antimalarial activities of 4-aminoquinoline, febrifugine and artemisinin compounds,” Int. J. Quant. Struct.-Prop. Relat. 5, 63 (2020). 28 G. Huang, C. Murillo Solano, J. Melendez, J. Shaw, J. Collins, R. Banks, A. K. Arshadi, R. Boonhok, H. Min, J. Miao et al., “Synthesis, structure–activity relation ship, and antimalarial efficacy of 6-chloro-2-arylvinylquinolines,” J. Med. Chem. 63, 11756 (2020). 29 F. M. Wunsch, B. Wünsch, F. A. Bernal, and T. J. Schmidt, “Quantitative structure–activity relationships of natural-product-inspired, aminoalkyl substituted 1-benzopyrans as novel antiplasmodial agents,” Molecules 26, 5249 (2021). 30 L. T. Ferreira, J. V. B. Borba, J. T. Moreira-Filho, A. Rimoldi, C. H. Andrade, and F. T. M. Costa, “QSAR-based virtual screening of natural products database for identification of potent antimalarial hits,” Biomolecules 11, 459 (2021). 31 V. T. Sabe, T. Ntombela, L. A. Jhamba, G. E. M. Maguire, T. Govender, T. Naicker, and H. G. Kruger, “Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review,” Eur. J. Med. Chem. 224, 113705 (2021). 32 S. Varela-Aramburu, C. Ghosh, F. Goerdeler, P. Priegue, O. Moscovitz, and P. H. Seeberger, “Targeting and inhibiting Plasmodium falciparum using ultra small gold nanoparticles,” ACS Appl. Mater. Interfaces 12, 43380 (2020). 33 D. A. Baker, A. N. Matralis, S. A. Osborne, J. M. Large, and M. Penzo, “Targeting the malaria parasite cGMP-dependent protein kinase to develop new drugs,” Front. Microbiol. 11, 602803 (2020). 34 A. Meier, H. Erler, and E. Beitz, “Targeting channels and transporters in protozoan parasite infections,” Front. Chem. 6, 88 (2018). 35 K. Lu, C. R. Mansfield, M. C. Fitzgerald, and E. R. Derbyshire, “Chemoproteomics for Plasmodium parasite drug target discovery,” ChemBioChem 22, 2591 (2021). 36 Y. Chen, C. Murillo-Solano, M. G. Kirkpatrick, T. Antoshchenko, H. W. Park, and J. C. Pizarro, “Repurposing drugs to target the malaria parasite unfolding protein response,” Sci. Rep. 8, 10333 (2018). 37 L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representations in AI-driven drug discovery: A review and practical guide,” J. Cheminf. 12, 56 (2020). 38 J. C. Dearden, “The use of topological indices in QSAR and QSPR modeling,” in Advances in QSAR Modeling (Springer, 2017). 39 O. Mahmood, E. Mansimov, R. Bonneau, and K. Cho, “Masked graph modeling for molecule generation,” Nat. Commun. 12, 3156 (2021). 40 W. Gao, Y. Wang, W. Wang, and L. Shi, “The first multiplication atom-bond connectivity index of molecular structures in drugs,” Saudi Pharm. J. 25, 548 (2017). 41 M. Imran, M. K. Siddiqui, S. Ahmad, M. F. Hanif, M. H. Muhammad, and M. R. Farahani, “Topological properties of benzenoid, phenylenes and nanostar dendrimers,” J. Discrete Math. Sci. Cryptography 22, 1229 (2019). 42 A. Jahanbani, Z. Shao, and S. M. Sheikholeslami, “Calculating degree based multiplicative topological indices of hyaluronic acid-paclitaxel conjugates’ molec ular structure in cancer treatment,” J. Biomol. Struct. Dyn. 39, 5304 (2021) 43 S. Mondal, N. De, and A. Pal, “Topological indices of some chemical structures applied for the treatment of COVID-19 patients,” Polycyclic Aromat. Compd. 1, 1 (2020). 44 Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, and S. M. Kang, “Computational analysis of topological indices of two boron nanotubes,” Sci. Rep. 8, 14843 (2018). 45 W. Gao, H. Wu, M. K. Siddiqui, and A. Q. Baig, “Study of biological networks using graph theory,” Saudi J. Biol. Sci. 25, 1212 (2018). 46 V. Lather and A. K. Madan, “Topological models for the prediction of anti-HIV activity of dihydro (alkylthio) (naphthylmethyl) oxopyrimidines,” Bioorg. Med. Chem. 13, 1599 (2005). 47 PubChem, available at https://pubchem.ncbi.nlm.nih.gov/; accessed 30 Septem ber 2021. 48 M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, and T. J. Egan, “In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles,” Eur. J. Med. Chem. 69, 338–347 (2013). 49 M. D’hooghe, S. Vandekerckhove, K. Mollet, K. Vervisch, S. Dekeukeleire, L. Lehoucq, C. Lategan, P. J. Smith, K. Chibale, and N. D. Kimpe, “Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and eval uation of their antimalarial activity,” Beilstein J. Org. Chem. 7(1), 1745–1752 (2011). 50B. M. dos Santos, D. T. G. Gonzaga, F. C. da Silva, V. F. Ferreira, and C. R. S. Garcia, “Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development,” Biomolecules 10, 1197 (2020). 51 M. Foley and L. Tilley, “Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents,” Pharmacol. Ther. 79, 55–87 (1998). 52 P. J. Thornalley, A. Stern, and J. V. Bannister, “A mechanism for primaquine mediated oxidation of NADPH in red blood cells,” Biochem. Pharmacol. 32, 3571–3575 (1983). 53 M. L. Baniecki, D. F. Wirth, and J. Clardy, “High-throughput Plasmodium falci parum growth assay for malaria drug discovery,” Antimicrob. Agents Chemother. 51, 716–723 (2007). 54 S. Jansongsaeng, N. Srimongkolpithak, J. Pengon, S. Kamchonwongpaisan, and T. Khotavivattana, “5-phenoxy primaquine analogs and the tetraoxane hybrid as antimalarial agents,” Molecules 26, 3991 (2021). 55 E. Martino, M. Tarantino, M. Bergamini, V. Castelluccio, A. Coricello, M. Falcicchio, E. Lorusso, and S. Collina, “Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria,” Future Med. Chem. 11, 1443–1459 (2019). 56 S. R. Meshnick, T. E. Taylor, and S. Kamchonwongpaisan, “Artemisinin and the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy,” Microbiol. Rev. 60, 301–315 (1996). 57 S. R. Meshnick, Y. Z. Yang, V. Lima, F. Kuypers, S. Kamchonwongpaisan, and Y. Yuthavong, “Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu),” Antimicrob. Agents Chemother. 37, 1108–1114 (1993). 58 O. P. S. Patel, R. M. Beteck, and L. J. Legoabe, “Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research,” Eur. J. Med. Chem. 213, 113193 (2021). 59 M. Llinás, Z. Bozdech, E. D. Wong, A. T. Adai, and J. L. DeRisi, “Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains,” Nucleic Acids Res. 34, 1166–1173 (2006). 1 J. Talapko, I. Škrlec, T. Alebic, M. Juki ´ c, and A. V ´ cev, “Malaria: The past and the ˇ present,” Microorganisms 7, 179 (2019). |
dc.relation.citationendpage.spa.fl_str_mv |
13 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
4 |
dc.relation.citationvolume.spa.fl_str_mv |
12 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Author(s) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 Author(s) https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
American Institute of Physics |
dc.publisher.place.spa.fl_str_mv |
United States |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://aip.scitation.org/doi/10.1063/5.0089325 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/674f0da4-d11c-4417-be66-cd698b30e541/download https://repositorio.cuc.edu.co/bitstreams/e58c6f2e-11b7-446f-8266-dc43d68082fa/download https://repositorio.cuc.edu.co/bitstreams/be20a793-2194-4bee-9e85-3fc52b1767ad/download https://repositorio.cuc.edu.co/bitstreams/a66d96fe-b088-4590-9149-e31b04af791e/download |
bitstream.checksum.fl_str_mv |
3630fe7faf0fa19662a6a2b865e2a631 e30e9215131d99561d40d6b0abbe9bad 28d998e79a0bc1c5f0008e1e20a3afaa 80d46f1435c1dce1330df67692ed448b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760818671321088 |
spelling |
Brito, DanielMarquez Brazon, Edgar AlexanderROSAS, ENNISRosas, Félix Oscar2022-07-08T13:05:18Z2022-07-08T13:05:18Z2022-04-13Daniel Brito, Edgar Marquez, Felix Rosas, and Ennis Rosas , "Predicting new potential antimalarial compounds by using Zagreb topological indices", AIP Advances 12, 045017 (2022) https://doi.org/10.1063/5.00893252158-3226https://hdl.handle.net/11323/9350https://doi.org/10.1063/5.008932510.1063/5.0089325Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Molecular topology allows describing molecular structures following a two-dimensional approach by taking into account how the atoms are arranged internally through a connection matrix between the atoms that are part of a structure. Various molecular indices (unique for each molecule) can be determined, such as Zagreb, Balaban, and topological indices. These indices have been correlated with physical chemistry properties such as molecular weight, boiling point, and electron density. Furthermore, their relationship with a specific biological activity has been found in other reports. Therefore, its knowledge and interpretation could be critical in the rational design of new compounds, saving time and money in their development process. In this research, the molecular graph of antimalarials already in the pharmaceutical market, such as chloroquine, primaquine, quinine, and artemisinin, was calculated and used to compute the Zagreb indices; a relationship between these indices and the antimalarial activities was found. According to the results reported in this work, the smaller the Zagreb indices, the higher the antimalarial activity. This relationship works very well for other compounds series. Therefore, it seems to be a fundamental structural requirement for this activity. Three triazole-modified structures are proposed as possible potential antimalarials based on this hypothesis. Finally, this work shows that the Zag14 páginasapplication/pdfengAmerican Institute of PhysicsUnited StatesAtribución 4.0 Internacional (CC BY 4.0)© 2022 Author(s)https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Predicting new potential antimalarial compounds by using Zagreb topological indicesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://aip.scitation.org/doi/10.1063/5.0089325AIP Advances2World Health Organization, World Malaria Report: 20 Years of Global Progress and Challenges, World Health 2020, WHO/HTM/GM, p. 299.3R. W. Snow, C. A. Guerra, A. M. Noor, H. Y. Myint, and S. I. Hay, “The global distribution of clinical episodes of Plasmodium falciparum malaria,” Nature 434, 214–217 (2005).4C. J. Murray, L. C. Rosenfeld, S. S. Lim, K. G. Andrews, K. J. Foreman, D. Haring, N. Fullman, M. Naghavi, R. Lozano, and A. D. Lopez, “Global malaria mortality between 1980 and 2010: A systematic analysis,” Lancet 379, 413–431 (2012).5 F. Di Gennaro, C. Marotta, P. Locantore, D. Pizzol, and G. Putoto, “Malaria and COVID-19: Common and different findings,” Trop. Med. Infect. Dis. 5, 141 (2020).6 Health policy and system support to optimize community health worker programmes for HIV, TB and malaria services: An evidence guide, 2020.7 R. K. Sharma, H. Rajvanshi, P. K. Bharti, S. Nisar, H. Jayswar, A. K. Mishra, K. B. Saha, M. M. Shukla, A. Das, H. Kaur et al., “Socio-economic determinants of malaria in tribal dominated Mandla district enrolled in Malaria Elimination Demonstration Project in Madhya Pradesh,” Malar. J. 20(1), 7 (2021).8 P. K. Nkegbe, N. Kuunibe, and S. Sekyi, “Poverty and malaria morbidity in the Jirapa district of Ghana: A count regression approach,” Cogent Econ. Finance 5, 1293472 (2017), http://www.editorialmanager.com/cogentecon.9 W. P. O’Meara, A. Noor, H. Gatakaa, B. Tsofa, F. E. McKenzie, and K. Marsh, “The impact of primary health care on malaria morbidity—Defining access by disease burden,” Trop. Med. Int. Health 14, 29–35 (2009).10N. R. Ngatu, S. Kanbara, A. Renzaho, R. Wumba, E. P. Mbelambela, S. M. J. Muchanga, B. A. Muzembo, N. Leon-Kabamba, C. Nattadech, T. Suzuki et al.,“Environmental and sociodemographic factors associated with household malaria burden in the Congo,” Malar. J. 18(1), 53 (2019).11 L. C. Alves, M. N. Sanchez, T. Hone, L. F. Pinto, J. S. Nery, P. L. Tauil, M. L. Barreto, and G. O. Penna, “The association between a conditional cash transfer programme and malaria incidence: A longitudinal ecological study in the Brazilian Amazon between 2004 and 2015,” BMC Public Health 21(1), 1253 (2021).12 P. Alonso and A. M. Noor, “The global fight against malaria is at crossroads,” Lancet 390, 2532–2534 (2017).13 P. L. Alonso, “Malaria: A problem to be solved and a time to be bold,” Nat. Med. 27(9), 1506–1509 (2021).14 World Health Organization, Report of the WHO strategic advisory group on malaria eradication I. Malaria eradication: Benefits, future scenarios and feasibility: A report of the strategic advisory group on malaria eradication.15 R. S. Paton, A. Kamau, S. Akech, A. Agweyu, M. Ogero, C. Mwandawiro, N. Mturi, S. Mohammed, A. Mpimbaza, S. Kariuki et al., “Malaria infection and severe disease risks in Africa,” Science 373, 926–931 (2021).16 J. Thwing, E. Eckert, D. A. Dione, R. Tine, A. Faye, Y. Yé, M. Ndiop, M. Cisse, J. A. Ndione, M. B. Diouf et al., “Declines in malaria burden and all-cause child mortality following increases in control interventions in Senegal, 2005–2010,” Am. J. Trop. Med. Hyg. 97, 89 (2017).17 V. A. Alegana, E. A. Okiro, and R. W. Snow, “Routine data for malaria morbidity estimation in Africa: Challenges and prospects,” BMC Medicine 18, 121 (2020).18 A. Kamau, G. Mtanje, C. Mataza, G. Mwambingu, N. Mturi, S. Mohammed, G. Ong’ayo, G. Nyutu, A. Nyaguara, P. Bejon et al., “Malaria infection, disease and mortality among children and adults on the coast of Kenya,” Malar. J. 19(1), 210 (2020).19 T. Kobasa, E. Talundzic, R. Sug-aram, P. Boondat, I. F. Goldman, N. W. Luc chi, P. Dharmarak, D. Sintasath, M. Fukuda, T. Whistler et al., “Emergence and spread of kelch13 mutations associated with artemisinin resistance in Plasmodium falciparum parasites in 12 Thai provinces from 2007 to 2016,” Antimicrob. Agents Chemother. 62, e02141 (2018).20 A. Uwimana, N. Umulisa, M. Venkatesan, S. S. Svigel, Z. Zhou, T. Munyaneza, R. M. Habimana, A. Rucogoza, L. F. Moriarty, R. Sandford et al., “Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: An open-label, single-arm, multicentre, therapeutic efficacy study,” Lancet Infect. Dis. 21, 1120 (2021).21 B. Balikagala, N. Fukuda, M. Ikeda, O. T. Katuro, S. I. Tachibana, M. Yamauchi, W. Opio, S. Emoto, D. A. Anywar, E. Kimura et al., “Evidence of artemisinin resistant malaria in Africa,” N. Engl. J. Med. 385, 1163 (2021).22 L. Paloque, B. Witkowski, J. Lelièvre, M. Ouji, T. Ben Haddou, F. Ariey, A. Robert, J. M. Augereau, D. Ménard, B. Meunier et al., “Endoperoxide-based compounds: Cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism,” J. Antimicrob. Chemother. 73, 395 (2018).23 F. Nardella, M. Mairet-Khedim, C. Roesch, S. P. Maher, S. Ke, R. Leang, D. Leroy, and B. Witkowski, “Cross-resistance of the chloroquine-derivative AQ-13 with amodiaquine in Cambodian Plasmodium falciparum isolates,” J. Antimicrob. Chemother. 76, 2565 (2021).24 P. K. Ojha, V. Kumar, J. Roy, and K. Roy, “Recent advances in quantitative structure–activity relationship models of antimalarial drugs,” Expert Opin. Drug Discovery 16, 659 (2021).25 S. Yousefinejad, M. Mahboubifar, and R. Eskandari, “Quantitative structure–activity relationship to predict the anti-malarial activity in a set of new imidazolopiperazines based on artificial neural networks,” Malar. J. 18, 310 (2019).26 M. Liu, P. Wilairat, and M. L. Go, “Antimalarial alkoxylated and hydroxylated chalones: Structure–activity relationship analysis,” J. Med. Chem. 44, 4443 (2001).27 Y. H. Ou and C. M. Chang, “A quantitative structure-activity relationship study on the antimalarial activities of 4-aminoquinoline, febrifugine and artemisinin compounds,” Int. J. Quant. Struct.-Prop. Relat. 5, 63 (2020).28 G. Huang, C. Murillo Solano, J. Melendez, J. Shaw, J. Collins, R. Banks, A. K. Arshadi, R. Boonhok, H. Min, J. Miao et al., “Synthesis, structure–activity relation ship, and antimalarial efficacy of 6-chloro-2-arylvinylquinolines,” J. Med. Chem. 63, 11756 (2020).29 F. M. Wunsch, B. Wünsch, F. A. Bernal, and T. J. Schmidt, “Quantitative structure–activity relationships of natural-product-inspired, aminoalkyl substituted 1-benzopyrans as novel antiplasmodial agents,” Molecules 26, 5249 (2021).30 L. T. Ferreira, J. V. B. Borba, J. T. Moreira-Filho, A. Rimoldi, C. H. Andrade, and F. T. M. Costa, “QSAR-based virtual screening of natural products database for identification of potent antimalarial hits,” Biomolecules 11, 459 (2021).31 V. T. Sabe, T. Ntombela, L. A. Jhamba, G. E. M. Maguire, T. Govender, T. Naicker, and H. G. Kruger, “Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review,” Eur. J. Med. Chem. 224, 113705 (2021).32 S. Varela-Aramburu, C. Ghosh, F. Goerdeler, P. Priegue, O. Moscovitz, and P. H. Seeberger, “Targeting and inhibiting Plasmodium falciparum using ultra small gold nanoparticles,” ACS Appl. Mater. Interfaces 12, 43380 (2020).33 D. A. Baker, A. N. Matralis, S. A. Osborne, J. M. Large, and M. Penzo, “Targeting the malaria parasite cGMP-dependent protein kinase to develop new drugs,” Front. Microbiol. 11, 602803 (2020).34 A. Meier, H. Erler, and E. Beitz, “Targeting channels and transporters in protozoan parasite infections,” Front. Chem. 6, 88 (2018).35 K. Lu, C. R. Mansfield, M. C. Fitzgerald, and E. R. Derbyshire, “Chemoproteomics for Plasmodium parasite drug target discovery,” ChemBioChem 22, 2591 (2021).36 Y. Chen, C. Murillo-Solano, M. G. Kirkpatrick, T. Antoshchenko, H. W. Park, and J. C. Pizarro, “Repurposing drugs to target the malaria parasite unfolding protein response,” Sci. Rep. 8, 10333 (2018).37 L. David, A. Thakkar, R. Mercado, and O. Engkvist, “Molecular representations in AI-driven drug discovery: A review and practical guide,” J. Cheminf. 12, 56 (2020).38 J. C. Dearden, “The use of topological indices in QSAR and QSPR modeling,” in Advances in QSAR Modeling (Springer, 2017).39 O. Mahmood, E. Mansimov, R. Bonneau, and K. Cho, “Masked graph modeling for molecule generation,” Nat. Commun. 12, 3156 (2021).40 W. Gao, Y. Wang, W. Wang, and L. Shi, “The first multiplication atom-bond connectivity index of molecular structures in drugs,” Saudi Pharm. J. 25, 548 (2017).41 M. Imran, M. K. Siddiqui, S. Ahmad, M. F. Hanif, M. H. Muhammad, and M. R. Farahani, “Topological properties of benzenoid, phenylenes and nanostar dendrimers,” J. Discrete Math. Sci. Cryptography 22, 1229 (2019).42 A. Jahanbani, Z. Shao, and S. M. Sheikholeslami, “Calculating degree based multiplicative topological indices of hyaluronic acid-paclitaxel conjugates’ molec ular structure in cancer treatment,” J. Biomol. Struct. Dyn. 39, 5304 (2021)43 S. Mondal, N. De, and A. Pal, “Topological indices of some chemical structures applied for the treatment of COVID-19 patients,” Polycyclic Aromat. Compd. 1, 1 (2020).44 Y. C. Kwun, M. Munir, W. Nazeer, S. Rafique, and S. M. Kang, “Computational analysis of topological indices of two boron nanotubes,” Sci. Rep. 8, 14843 (2018).45 W. Gao, H. Wu, M. K. Siddiqui, and A. Q. Baig, “Study of biological networks using graph theory,” Saudi J. Biol. Sci. 25, 1212 (2018).46 V. Lather and A. K. Madan, “Topological models for the prediction of anti-HIV activity of dihydro (alkylthio) (naphthylmethyl) oxopyrimidines,” Bioorg. Med. Chem. 13, 1599 (2005).47 PubChem, available at https://pubchem.ncbi.nlm.nih.gov/; accessed 30 Septem ber 2021.48 M. C. Joshi, K. J. Wicht, D. Taylor, R. Hunter, P. J. Smith, and T. J. Egan, “In vitro antimalarial activity, β-haematin inhibition and structure–activity relationships in a series of quinoline triazoles,” Eur. J. Med. Chem. 69, 338–347 (2013).49 M. D’hooghe, S. Vandekerckhove, K. Mollet, K. Vervisch, S. Dekeukeleire, L. Lehoucq, C. Lategan, P. J. Smith, K. Chibale, and N. D. Kimpe, “Synthesis of 2-amino-3-arylpropan-1-ols and 1-(2,3-diaminopropyl)-1,2,3-triazoles and eval uation of their antimalarial activity,” Beilstein J. Org. Chem. 7(1), 1745–1752 (2011).50B. M. dos Santos, D. T. G. Gonzaga, F. C. da Silva, V. F. Ferreira, and C. R. S. Garcia, “Plasmodium falciparum knockout for the GPCR-like PfSR25 receptor displays greater susceptibility to 1,2,3-triazole compounds that block malaria parasite development,” Biomolecules 10, 1197 (2020).51 M. Foley and L. Tilley, “Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents,” Pharmacol. Ther. 79, 55–87 (1998).52 P. J. Thornalley, A. Stern, and J. V. Bannister, “A mechanism for primaquine mediated oxidation of NADPH in red blood cells,” Biochem. Pharmacol. 32, 3571–3575 (1983).53 M. L. Baniecki, D. F. Wirth, and J. Clardy, “High-throughput Plasmodium falci parum growth assay for malaria drug discovery,” Antimicrob. Agents Chemother. 51, 716–723 (2007).54 S. Jansongsaeng, N. Srimongkolpithak, J. Pengon, S. Kamchonwongpaisan, and T. Khotavivattana, “5-phenoxy primaquine analogs and the tetraoxane hybrid as antimalarial agents,” Molecules 26, 3991 (2021).55 E. Martino, M. Tarantino, M. Bergamini, V. Castelluccio, A. Coricello, M. Falcicchio, E. Lorusso, and S. Collina, “Artemisinin and its derivatives; ancient tradition inspiring the latest therapeutic approaches against malaria,” Future Med. Chem. 11, 1443–1459 (2019).56 S. R. Meshnick, T. E. Taylor, and S. Kamchonwongpaisan, “Artemisinin and the antimalarial endoperoxides: From herbal remedy to targeted chemotherapy,” Microbiol. Rev. 60, 301–315 (1996).57 S. R. Meshnick, Y. Z. Yang, V. Lima, F. Kuypers, S. Kamchonwongpaisan, and Y. Yuthavong, “Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu),” Antimicrob. Agents Chemother. 37, 1108–1114 (1993).58 O. P. S. Patel, R. M. Beteck, and L. J. Legoabe, “Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research,” Eur. J. Med. Chem. 213, 113193 (2021).59 M. Llinás, Z. Bozdech, E. D. Wong, A. T. Adai, and J. L. DeRisi, “Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains,” Nucleic Acids Res. 34, 1166–1173 (2006).1 J. Talapko, I. Škrlec, T. Alebic, M. Juki ´ c, and A. V ´ cev, “Malaria: The past and the ˇ present,” Microorganisms 7, 179 (2019).131412Physical chemistryTopologyPublicationORIGINALPredicting new potential antimalarial.pdfPredicting new potential antimalarial.pdfapplication/pdf11416787https://repositorio.cuc.edu.co/bitstreams/674f0da4-d11c-4417-be66-cd698b30e541/download3630fe7faf0fa19662a6a2b865e2a631MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e58c6f2e-11b7-446f-8266-dc43d68082fa/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTPredicting new potential antimalarial.pdf.txtPredicting new potential antimalarial.pdf.txttext/plain43468https://repositorio.cuc.edu.co/bitstreams/be20a793-2194-4bee-9e85-3fc52b1767ad/download28d998e79a0bc1c5f0008e1e20a3afaaMD53THUMBNAILPredicting new potential antimalarial.pdf.jpgPredicting new potential antimalarial.pdf.jpgimage/jpeg13918https://repositorio.cuc.edu.co/bitstreams/a66d96fe-b088-4590-9149-e31b04af791e/download80d46f1435c1dce1330df67692ed448bMD5411323/9350oai:repositorio.cuc.edu.co:11323/93502024-09-17 12:50:02.528https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |