Morphometric characteristics in discrete domain for brain tumor recognition

World Health Organization (WHO) classifies brain tumors by their level of aggressiveness into four grades depending on their aggressiveness or malignancy as I to IV respectively [1]. From this classification of primary brain tumors, the four categories can be considered in two groups: Low Grade (LG)...

Full description

Autores:
Silva, Jesús
Zilberman, Jack
Bravo Núñez, Narledis
Varela Izquierdo, Noel
Pineda, Omar
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7292
Acceso en línea:
https://hdl.handle.net/11323/7292
https://repositorio.cuc.edu.co/
Palabra clave:
Brain tumor
Degree of malignancy
Morphometric characteristics
Recognition
Rights
closedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_a789ae9b46a992f89d54f5de96b32f5c
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7292
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Morphometric characteristics in discrete domain for brain tumor recognition
title Morphometric characteristics in discrete domain for brain tumor recognition
spellingShingle Morphometric characteristics in discrete domain for brain tumor recognition
Brain tumor
Degree of malignancy
Morphometric characteristics
Recognition
title_short Morphometric characteristics in discrete domain for brain tumor recognition
title_full Morphometric characteristics in discrete domain for brain tumor recognition
title_fullStr Morphometric characteristics in discrete domain for brain tumor recognition
title_full_unstemmed Morphometric characteristics in discrete domain for brain tumor recognition
title_sort Morphometric characteristics in discrete domain for brain tumor recognition
dc.creator.fl_str_mv Silva, Jesús
Zilberman, Jack
Bravo Núñez, Narledis
Varela Izquierdo, Noel
Pineda, Omar
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Zilberman, Jack
Bravo Núñez, Narledis
Varela Izquierdo, Noel
Pineda, Omar
dc.subject.spa.fl_str_mv Brain tumor
Degree of malignancy
Morphometric characteristics
Recognition
topic Brain tumor
Degree of malignancy
Morphometric characteristics
Recognition
description World Health Organization (WHO) classifies brain tumors by their level of aggressiveness into four grades depending on their aggressiveness or malignancy as I to IV respectively [1]. From this classification of primary brain tumors, the four categories can be considered in two groups: Low Grade (LG) and High Grade (HG), in which the LG group is composed of grade I and II brain tumors, while the HG group is composed of grades III and IV brain tumors [2]. This paper focuses on the morphometric analysis of brain tumors and the study of the correlation of tumor shape with its degree of malignancy.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-12T21:10:53Z
dc.date.available.none.fl_str_mv 2020-11-12T21:10:53Z
dc.date.issued.none.fl_str_mv 2020
dc.date.embargoEnd.none.fl_str_mv 2021-06-19
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2194-5357
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7292
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2194-5357
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7292
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Saba, T., Mohamed, A.S., El-Affendi, M., Amin, J., Sharif, M.: Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 59, 221–230 (2020)
Blanchet, L., Krooshof, P., Postma, G., Idema, A., Goraj, B., Heerschap, A., Buydens, L.: Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am. J. Neuroradiol. 32(1), 67–73 (2011). http://www.ajnr.org/content/early/2010/11/04/ajnr.A2269
Gamero, W.M., Agudelo-Castañeda, D., Ramirez, M.C., Hernandez, M.M., Mendoza, H.P., Parody, A., Viloria, A.: Hospital admission and risk assessment associated to exposure of fungal bioaerosols at a municipal landfill using statistical models. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 210–218. Springer, Cham, November 2018
Özyurt, F., Sert, E., Avcı, D.: An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med. Hypotheses 134, 109433 (2020)
Wu, Q., Wu, L., Wang, Y., Zhu, Z., Song, Y., Tan, Y., Wang, X.F., Li, J., Kang, D., Yang, C.J.: Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. Biosens. Bioelectron. 80, 1–8 (2016)
Kharrat, A., Mahmoud, N.E.J.I.: Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Appl. Med. Inf. 41(1), 9–23 (2019)
Sharif, M., Amin, J., Raza, M., Yasmin, M., Satapathy, S.C.: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recogn. Lett. 129, 150–157 (2020)
Chang, H., Borowsky, A., Spellman, P., Parvin, B.: Classification of tumor histology via morphometric context. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210, June 2013
Moitra, D., Mandal, R.: Review of brain tumor detection using pattern recognition techniques. Int. J. Comput. Sci. Eng. 5(2), 121–123 (2017)
Einenkel, J., Braumann, U.D., Horn, L.C., Pannicke, N., Kuska, J.P., Schhütz, A., Hentschel, B., Hockel, M.: Evaluation of the invasion front pattern of squamous cell cervical carcinoma by measuring classical and discrete compactness. Comput. Med. Imaging Graph 31, 428–435 (2007)
Gomathi, P., Baskar, S., Shakeel, M.P., Dhulipala, S.V.: Numerical function optimization in brain tumor regions using reconfigured multi-objective bat optimization algorithm. J. Med. Imaging Health Inf. 9(3), 482–489 (2019)
Chen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)
Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013). http://www.jmir.org/2013/11/e245/
Amin, J., Sharif, M., Gul, N., Yasmin, M., Shad, S.A.: Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recogn. Lett. 129, 115–122 (2020)
Kim, B., Tabori, U., Hawkins, C.: An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol. 139, 703–715 (2020). https://ezproxy.cuc.edu.co:2067/10.1007/s00401-020-02124-y
Viloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., López, L.A.B.: Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In: International Conference on Data Mining and Big Data, pp. 304–313. Springer, Cham, June 2018
Thivya Roopini, I., Vasanthi, M., Rajinikanth, V., Rekha, M., Sangeetha, M.: Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. In: Nandi, A.K., Sujatha, N., Menaka, R., Alex, J.S.R. (eds.) Computational Signal Processing and Analysis, pp. 297–304. Springer, Singapore (2018)
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.scopus.com/inward/record.uri?eid=2-s2.0-85089719105&doi=10.1007%2f978-3-030-53036-5_9&partnerID=40&md5=929a44084e2e0a2112ec8c63c31239a9
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b404e3b6-03c1-42a6-a45f-7312100efc94/download
https://repositorio.cuc.edu.co/bitstreams/1519a2df-35d1-4923-a94e-eaf19445b3b8/download
https://repositorio.cuc.edu.co/bitstreams/2dbd23ce-fbc1-4c73-b1eb-a387709485a0/download
https://repositorio.cuc.edu.co/bitstreams/2d1e101a-2922-416d-a711-38cfd20b064c/download
https://repositorio.cuc.edu.co/bitstreams/08d63a37-1c51-47bd-b033-94f65a339279/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
a9b53f40c33bef15c3e70d1a637c9e9f
ef992120d795b8f66cde6e910b39ae36
3200f89ecf33f23a1ba64616437da5e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760855443832832
spelling Silva, JesúsZilberman, JackBravo Núñez, NarledisVarela Izquierdo, NoelPineda, Omar2020-11-12T21:10:53Z2020-11-12T21:10:53Z20202021-06-192194-5357https://hdl.handle.net/11323/7292Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/World Health Organization (WHO) classifies brain tumors by their level of aggressiveness into four grades depending on their aggressiveness or malignancy as I to IV respectively [1]. From this classification of primary brain tumors, the four categories can be considered in two groups: Low Grade (LG) and High Grade (HG), in which the LG group is composed of grade I and II brain tumors, while the HG group is composed of grades III and IV brain tumors [2]. This paper focuses on the morphometric analysis of brain tumors and the study of the correlation of tumor shape with its degree of malignancy.Silva, JesúsZilberman, Jack-will be generated-orcid-0000-0003-0956-4059-600Bravo Núñez, NarledisVarela Izquierdo, Noel-will be generated-orcid-0000-0001-7036-4414-600Pineda, Omar-will be generated-orcid-0000-0002-8239-3906-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbAdvances in Intelligent Systems and Computinghttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85089719105&doi=10.1007%2f978-3-030-53036-5_9&partnerID=40&md5=929a44084e2e0a2112ec8c63c31239a9Brain tumorDegree of malignancyMorphometric characteristicsRecognitionMorphometric characteristics in discrete domain for brain tumor recognitionPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersionSaba, T., Mohamed, A.S., El-Affendi, M., Amin, J., Sharif, M.: Brain tumor detection using fusion of hand crafted and deep learning features. Cogn. Syst. Res. 59, 221–230 (2020)Blanchet, L., Krooshof, P., Postma, G., Idema, A., Goraj, B., Heerschap, A., Buydens, L.: Discrimination between metastasis and glioblastoma multiforme based on morphometric analysis of MR images. Am. J. Neuroradiol. 32(1), 67–73 (2011). http://www.ajnr.org/content/early/2010/11/04/ajnr.A2269Gamero, W.M., Agudelo-Castañeda, D., Ramirez, M.C., Hernandez, M.M., Mendoza, H.P., Parody, A., Viloria, A.: Hospital admission and risk assessment associated to exposure of fungal bioaerosols at a municipal landfill using statistical models. In: International Conference on Intelligent Data Engineering and Automated Learning, pp. 210–218. Springer, Cham, November 2018Özyurt, F., Sert, E., Avcı, D.: An expert system for brain tumor detection: fuzzy C-means with super resolution and convolutional neural network with extreme learning machine. Med. Hypotheses 134, 109433 (2020)Wu, Q., Wu, L., Wang, Y., Zhu, Z., Song, Y., Tan, Y., Wang, X.F., Li, J., Kang, D., Yang, C.J.: Evolution of DNA aptamers for malignant brain tumor gliosarcoma cell recognition and clinical tissue imaging. Biosens. Bioelectron. 80, 1–8 (2016)Kharrat, A., Mahmoud, N.E.J.I.: Feature selection based on hybrid optimization for magnetic resonance imaging brain tumor classification and segmentation. Appl. Med. Inf. 41(1), 9–23 (2019)Sharif, M., Amin, J., Raza, M., Yasmin, M., Satapathy, S.C.: An integrated design of particle swarm optimization (PSO) with fusion of features for detection of brain tumor. Pattern Recogn. Lett. 129, 150–157 (2020)Chang, H., Borowsky, A., Spellman, P., Parvin, B.: Classification of tumor histology via morphometric context. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210, June 2013Moitra, D., Mandal, R.: Review of brain tumor detection using pattern recognition techniques. Int. J. Comput. Sci. Eng. 5(2), 121–123 (2017)Einenkel, J., Braumann, U.D., Horn, L.C., Pannicke, N., Kuska, J.P., Schhütz, A., Hentschel, B., Hockel, M.: Evaluation of the invasion front pattern of squamous cell cervical carcinoma by measuring classical and discrete compactness. Comput. Med. Imaging Graph 31, 428–435 (2007)Gomathi, P., Baskar, S., Shakeel, M.P., Dhulipala, S.V.: Numerical function optimization in brain tumor regions using reconfigured multi-objective bat optimization algorithm. J. Med. Imaging Health Inf. 9(3), 482–489 (2019)Chen, S., Ding, C., Liu, M.: Dual-force convolutional neural networks for accurate brain tumor segmentation. Pattern Recogn. 88, 90–100 (2019)Kistler, M., Bonaretti, S., Pfahrer, M., Niklaus, R., Büchler, P.: The virtual skeleton database: an open access repository for biomedical research and collaboration. J. Med. Internet Res. 15(11), e245 (2013). http://www.jmir.org/2013/11/e245/Amin, J., Sharif, M., Gul, N., Yasmin, M., Shad, S.A.: Brain tumor classification based on DWT fusion of MRI sequences using convolutional neural network. Pattern Recogn. Lett. 129, 115–122 (2020)Kim, B., Tabori, U., Hawkins, C.: An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol. 139, 703–715 (2020). https://ezproxy.cuc.edu.co:2067/10.1007/s00401-020-02124-yViloria, A., Bucci, N., Luna, M., Lis-Gutiérrez, J.P., Parody, A., Bent, D.E.S., López, L.A.B.: Determination of dimensionality of the psychosocial risk assessment of internal, individual, double presence and external factors in work environments. In: International Conference on Data Mining and Big Data, pp. 304–313. Springer, Cham, June 2018Thivya Roopini, I., Vasanthi, M., Rajinikanth, V., Rekha, M., Sangeetha, M.: Segmentation of tumor from brain MRI using fuzzy entropy and distance regularised level set. In: Nandi, A.K., Sujatha, N., Menaka, R., Alex, J.S.R. (eds.) Computational Signal Processing and Analysis, pp. 297–304. Springer, Singapore (2018)PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/b404e3b6-03c1-42a6-a45f-7312100efc94/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1519a2df-35d1-4923-a94e-eaf19445b3b8/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdfMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdfapplication/pdf6011https://repositorio.cuc.edu.co/bitstreams/2dbd23ce-fbc1-4c73-b1eb-a387709485a0/downloada9b53f40c33bef15c3e70d1a637c9e9fMD51THUMBNAILMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdf.jpgMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdf.jpgimage/jpeg38315https://repositorio.cuc.edu.co/bitstreams/2d1e101a-2922-416d-a711-38cfd20b064c/downloadef992120d795b8f66cde6e910b39ae36MD54TEXTMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdf.txtMORPHOMETRIC CHARACTERISTICS IN DISCRETE DOMAIN FOR BRAIN TUMOR RECOGNITION.pdf.txttext/plain903https://repositorio.cuc.edu.co/bitstreams/08d63a37-1c51-47bd-b033-94f65a339279/download3200f89ecf33f23a1ba64616437da5e0MD5511323/7292oai:repositorio.cuc.edu.co:11323/72922024-09-17 14:11:56.24http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==