Indicators for smart cities: tax illicit analysis through data mining

The anomalies in the data coexist in the databases and in the non-traditional data that can be accessed and produced by a tax administration, whether these data are of internal or external origin. The analysis of certain anomalies in the data could lead to the discovery of patterns that respond to d...

Full description

Autores:
Silva, Jesús
Solano, Darwin
Fernández, Claudia
Nieto Ramos, Lainet
Urdanegui, Rosella
Herz, Jeannette
Mercado, Alberto
Ovallos-Gazabon, David
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7707
Acceso en línea:
https://hdl.handle.net/11323/7707
https://doi.org/10.1007/978-981-15-7234-0_88
https://repositorio.cuc.edu.co/
Palabra clave:
Data mining
Anomalous data
Algorithms
Automatic learning
Big data
Noise
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_a77e78b4e2ef4687e7207df3d74689ab
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7707
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Indicators for smart cities: tax illicit analysis through data mining
title Indicators for smart cities: tax illicit analysis through data mining
spellingShingle Indicators for smart cities: tax illicit analysis through data mining
Data mining
Anomalous data
Algorithms
Automatic learning
Big data
Noise
title_short Indicators for smart cities: tax illicit analysis through data mining
title_full Indicators for smart cities: tax illicit analysis through data mining
title_fullStr Indicators for smart cities: tax illicit analysis through data mining
title_full_unstemmed Indicators for smart cities: tax illicit analysis through data mining
title_sort Indicators for smart cities: tax illicit analysis through data mining
dc.creator.fl_str_mv Silva, Jesús
Solano, Darwin
Fernández, Claudia
Nieto Ramos, Lainet
Urdanegui, Rosella
Herz, Jeannette
Mercado, Alberto
Ovallos-Gazabon, David
dc.contributor.author.spa.fl_str_mv Silva, Jesús
Solano, Darwin
Fernández, Claudia
Nieto Ramos, Lainet
Urdanegui, Rosella
Herz, Jeannette
Mercado, Alberto
Ovallos-Gazabon, David
dc.subject.spa.fl_str_mv Data mining
Anomalous data
Algorithms
Automatic learning
Big data
Noise
topic Data mining
Anomalous data
Algorithms
Automatic learning
Big data
Noise
description The anomalies in the data coexist in the databases and in the non-traditional data that can be accessed and produced by a tax administration, whether these data are of internal or external origin. The analysis of certain anomalies in the data could lead to the discovery of patterns that respond to different causes, being able to evidence these causes certain illicit by taxpayers or acts of corruption when there is the connivance of the taxpayer with the public employee or public official. The purpose of this research is the theoretical development of the causal analysis of certain anomalies of tax data, demonstrating that the data mining methodology contributes to evidence of illicit and corrupt acts, through the application of certain algorithms.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-01-18T17:35:25Z
dc.date.available.none.fl_str_mv 2021-01-18T17:35:25Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7707
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1007/978-981-15-7234-0_88
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7707
https://doi.org/10.1007/978-981-15-7234-0_88
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. Newton K, Norris P (2000) Confidence in public institutions, faith, culture and performance? In: Pharr SJ, Putnam RD (eds) Disaffected democracies Princeton. Princeton University Press, New Jersey, pp 52–73
2. León Medina FJ (2014) Mecanismos generadores de la confianza en la institución policial. Indret: Revista para el Análisis del Derecho 2:15–30
3. Liu B, Xu G, Xu Q, Zhang N (2012) Outlier detection data mining of tax based on cluster. In: 2012 international conference on medical physics and biomedical engineering (ICMPBE2012) 33 (Supplement C), pp 1689–1694.
4. Malone MFT (2010)The verdict is in: the impact of crime on public trust in Central American Justice Systems. J Politics Lat Am 2:99–128
5. Bedoya Velasco ÁY, Rojas Cruz AE, Sandoval Rozo O (2019) El derecho a la defensa técnica en el proceso jurisdiccional de cobro coactivo adelantado por la dirección de impuestos y aduanas nacionales de colombia
6. Bottia Rengifo, RE (2019) Apoyo en las actividades de los programas posconsumo en la coordinación de inventarios y almacén de la Unidad Administrativa Especial Dirección de Impuestos y Aduanas Nacionales (DIAN)
7. Lis-Gutiérrez JP, Reyna-Niño HE, Gaitán-Angulo M, Viloria A, Abril JES (2018) Hierarchical ascending classification: an application to contraband apprehensions in Colombia (2015–2016). In: International conference on data mining and big data, June 2018. Springer, Cham, pp 168–178
8. Amelec V, Carmen V (2015) Relationship between variables of performance social and financial of microfinance institutions. Adv Sci Lett 21(6):1931–1934
9. Romero R, Milena S, Torres González B (2019) Núcleo de apoyo contable y fiscal, NAF convenio DIAN Universidad Cooperativa de Colombia-campus Neiva
10. Godoy Godoy DL, González Gómez LA (2019) Big data para la priorización de zonas de atención a emergencias causadas por inundaciones en Bogotá Colombia: uso de las redes sociales
11. Becerra G, Alurralde JPL (2017) Big data y Data mining. Un analisis crítico acerca de su significación para las ciencias psicosociales a partir de un estudio de caso. {PSOCIAL} 3(2):66–85
12. Magnani E (2017) Big data y política: El poder de los algoritmos. Nueva sociedad, (269)
13. Segovia C, Haye A, González R, Manzi J (2008) Confianza en instituciones políticas en Chile: un modelo de los componentes centrales de juicios de confianza. Revista de Ciencia Política 28(2):39–60
14. Tankebe J (2008) Police effectiveness and police trustworthiness in Ghana: an empirical appraisal. Criminol Crim Justice 8:185–202
15. DANE (2019) Proyecciones de Población [database]. DANE, Bogotá
16. Rojas Nonzoque JD, Ramírez Barbosa N (2019) El Impuesto a la Renta y Complementarios en Colombia Desde el Punto de Vista del Contribuyente Persona Natural, Ley 1819 De 2016
17. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: data mining toolbox in python. J Mach Learn Res 14(Aug):2349–2353
18. Viloria A, Neira-Rodado D, Pineda Lezama OB (2019) Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40 2019:1249–1254
19. Tarazona LTA, Gómez YH, Granados CM (2019) Caracterización y creación del manual de los procesos y procedimientos de importación de gráneles sólidos en el puerto marítimo de Buenaventura Colombia
20. Vargas D, Lineht L, Santis Criado AC (2019) Aplicación de las disposiciones tributarias actuales en las entidades sin ánimo de lucro en Colombia respecto al impuesto de renta y complementarios
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Advances in Intelligent Systems and Computing
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://link.springer.com/chapter/10.1007/978-981-15-7234-0_88
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f9ca1273-e4e9-4d7d-b8df-e493def0cb86/download
https://repositorio.cuc.edu.co/bitstreams/036c167e-4da6-4698-a29b-10f9f305eaaa/download
https://repositorio.cuc.edu.co/bitstreams/93cf6759-98b1-498c-b69c-b23057bf1f5b/download
https://repositorio.cuc.edu.co/bitstreams/691bb347-96db-4432-84ec-ba08becf73ee/download
https://repositorio.cuc.edu.co/bitstreams/1373e984-381a-456a-ab5b-cc340ab15612/download
bitstream.checksum.fl_str_mv c80c35001743e84811d4c1805c1624a3
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
1f936ae329615a0117c68257db107379
820ff462e9cb756c414f383b3db6d15f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760778400759808
spelling Silva, JesúsSolano, DarwinFernández, ClaudiaNieto Ramos, LainetUrdanegui, RosellaHerz, JeannetteMercado, AlbertoOvallos-Gazabon, David2021-01-18T17:35:25Z2021-01-18T17:35:25Z2021https://hdl.handle.net/11323/7707https://doi.org/10.1007/978-981-15-7234-0_88Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The anomalies in the data coexist in the databases and in the non-traditional data that can be accessed and produced by a tax administration, whether these data are of internal or external origin. The analysis of certain anomalies in the data could lead to the discovery of patterns that respond to different causes, being able to evidence these causes certain illicit by taxpayers or acts of corruption when there is the connivance of the taxpayer with the public employee or public official. The purpose of this research is the theoretical development of the causal analysis of certain anomalies of tax data, demonstrating that the data mining methodology contributes to evidence of illicit and corrupt acts, through the application of certain algorithms.Silva, JesúsSolano, DarwinFernández, ClaudiaNieto Ramos, LainetUrdanegui, RosellaHerz, JeannetteMercado, AlbertoOvallos-Gazabon, Davidapplication/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Advances in Intelligent Systems and Computinghttps://link.springer.com/chapter/10.1007/978-981-15-7234-0_88Data miningAnomalous dataAlgorithmsAutomatic learningBig dataNoiseIndicators for smart cities: tax illicit analysis through data miningArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Newton K, Norris P (2000) Confidence in public institutions, faith, culture and performance? In: Pharr SJ, Putnam RD (eds) Disaffected democracies Princeton. Princeton University Press, New Jersey, pp 52–732. León Medina FJ (2014) Mecanismos generadores de la confianza en la institución policial. Indret: Revista para el Análisis del Derecho 2:15–303. Liu B, Xu G, Xu Q, Zhang N (2012) Outlier detection data mining of tax based on cluster. In: 2012 international conference on medical physics and biomedical engineering (ICMPBE2012) 33 (Supplement C), pp 1689–1694.4. Malone MFT (2010)The verdict is in: the impact of crime on public trust in Central American Justice Systems. J Politics Lat Am 2:99–1285. Bedoya Velasco ÁY, Rojas Cruz AE, Sandoval Rozo O (2019) El derecho a la defensa técnica en el proceso jurisdiccional de cobro coactivo adelantado por la dirección de impuestos y aduanas nacionales de colombia6. Bottia Rengifo, RE (2019) Apoyo en las actividades de los programas posconsumo en la coordinación de inventarios y almacén de la Unidad Administrativa Especial Dirección de Impuestos y Aduanas Nacionales (DIAN)7. Lis-Gutiérrez JP, Reyna-Niño HE, Gaitán-Angulo M, Viloria A, Abril JES (2018) Hierarchical ascending classification: an application to contraband apprehensions in Colombia (2015–2016). In: International conference on data mining and big data, June 2018. Springer, Cham, pp 168–1788. Amelec V, Carmen V (2015) Relationship between variables of performance social and financial of microfinance institutions. Adv Sci Lett 21(6):1931–19349. Romero R, Milena S, Torres González B (2019) Núcleo de apoyo contable y fiscal, NAF convenio DIAN Universidad Cooperativa de Colombia-campus Neiva10. Godoy Godoy DL, González Gómez LA (2019) Big data para la priorización de zonas de atención a emergencias causadas por inundaciones en Bogotá Colombia: uso de las redes sociales11. Becerra G, Alurralde JPL (2017) Big data y Data mining. Un analisis crítico acerca de su significación para las ciencias psicosociales a partir de un estudio de caso. {PSOCIAL} 3(2):66–8512. Magnani E (2017) Big data y política: El poder de los algoritmos. Nueva sociedad, (269)13. Segovia C, Haye A, González R, Manzi J (2008) Confianza en instituciones políticas en Chile: un modelo de los componentes centrales de juicios de confianza. Revista de Ciencia Política 28(2):39–6014. Tankebe J (2008) Police effectiveness and police trustworthiness in Ghana: an empirical appraisal. Criminol Crim Justice 8:185–20215. DANE (2019) Proyecciones de Población [database]. DANE, Bogotá16. Rojas Nonzoque JD, Ramírez Barbosa N (2019) El Impuesto a la Renta y Complementarios en Colombia Desde el Punto de Vista del Contribuyente Persona Natural, Ley 1819 De 201617. Demsar J, Curk T, Erjavec A, Gorup C, Hocevar T, Milutinovic M, Mozina M, Polajnar M, Toplak M, Staric A, Stajdohar M, Umek L, Zagar L, Zbontar J, Zitnik M, Zupan B (2013) Orange: data mining toolbox in python. J Mach Learn Res 14(Aug):2349–235318. Viloria A, Neira-Rodado D, Pineda Lezama OB (2019) Recovery of scientific data using intelligent distributed data warehouse. ANT/EDI40 2019:1249–125419. Tarazona LTA, Gómez YH, Granados CM (2019) Caracterización y creación del manual de los procesos y procedimientos de importación de gráneles sólidos en el puerto marítimo de Buenaventura Colombia20. Vargas D, Lineht L, Santis Criado AC (2019) Aplicación de las disposiciones tributarias actuales en las entidades sin ánimo de lucro en Colombia respecto al impuesto de renta y complementariosPublicationORIGINALIndicators for Smart Cities.pdfIndicators for Smart Cities.pdfapplication/pdf92614https://repositorio.cuc.edu.co/bitstreams/f9ca1273-e4e9-4d7d-b8df-e493def0cb86/downloadc80c35001743e84811d4c1805c1624a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/036c167e-4da6-4698-a29b-10f9f305eaaa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/93cf6759-98b1-498c-b69c-b23057bf1f5b/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIndicators for Smart Cities.pdf.jpgIndicators for Smart Cities.pdf.jpgimage/jpeg29640https://repositorio.cuc.edu.co/bitstreams/691bb347-96db-4432-84ec-ba08becf73ee/download1f936ae329615a0117c68257db107379MD54TEXTIndicators for Smart Cities.pdf.txtIndicators for Smart Cities.pdf.txttext/plain1102https://repositorio.cuc.edu.co/bitstreams/1373e984-381a-456a-ab5b-cc340ab15612/download820ff462e9cb756c414f383b3db6d15fMD5511323/7707oai:repositorio.cuc.edu.co:11323/77072024-09-17 11:06:37.975http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==