Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura

Introducción: La manufactura celular (MC) es una aplicación de la tecnología de grupos que consiste en la agrupación de familias de productos y la formación de familias de máquinas, mediante la descomposición de un sistema de manufactura complejo en subsistemas que atienden las operaciones de famili...

Full description

Autores:
Garavito Hernández, Edwin Alberto
Talero Sarmiento, Leonardo Hernán
Escobar Rodríguez, Laura Yeraldín
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12226
Acceso en línea:
https://hdl.handle.net/11323/12226
https://doi.org/10.17981/ingecuc.15.2.2019.15
Palabra clave:
harmony search
facility layout
cellular manufacturing
metaheuristic
búsqueda armónica
diseño de plantas
manufactura celular
metaheurísticas
Rights
openAccess
License
INGE CUC - 2019
id RCUC2_a74dbc7e7e2dee3da37d664fe6f25604
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12226
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
dc.title.translated.eng.fl_str_mv A Harmony Search approach for the Manufacturing Cell Design Problem
title Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
spellingShingle Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
harmony search
facility layout
cellular manufacturing
metaheuristic
búsqueda armónica
diseño de plantas
manufactura celular
metaheurísticas
title_short Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
title_full Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
title_fullStr Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
title_full_unstemmed Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
title_sort Aplicación de la Búsqueda Armónica para el problema de formación de celdas de manufactura
dc.creator.fl_str_mv Garavito Hernández, Edwin Alberto
Talero Sarmiento, Leonardo Hernán
Escobar Rodríguez, Laura Yeraldín
dc.contributor.author.spa.fl_str_mv Garavito Hernández, Edwin Alberto
Talero Sarmiento, Leonardo Hernán
Escobar Rodríguez, Laura Yeraldín
dc.subject.eng.fl_str_mv harmony search
facility layout
cellular manufacturing
metaheuristic
topic harmony search
facility layout
cellular manufacturing
metaheuristic
búsqueda armónica
diseño de plantas
manufactura celular
metaheurísticas
dc.subject.spa.fl_str_mv búsqueda armónica
diseño de plantas
manufactura celular
metaheurísticas
description Introducción: La manufactura celular (MC) es una aplicación de la tecnología de grupos que consiste en la agrupación de familias de productos y la formación de familias de máquinas, mediante la descomposición de un sistema de manufactura complejo en subsistemas que atienden las operaciones de familias enteras de productos. Durante el presente trabajo se desarrolla un modelo de programación lineal entera que integra costos de producción con costos por transferencias entre celdas, además, se propone como método de solución un algoritmo denominado Búsqueda Armónica Objetivo: Determinar el desempeño de la Búsqueda Armónica modificada y las variantes de asignación de máquinas al problema de formación de celdas de manufactura. Metodología: Se desarrolla un modelo matemático de programación entera, el cual utiliza variables binarias para determinar la asignación de las operaciones de diversos productos a distintas máquinas en diferentes celdas, y variables enteras para cuantificar los requerimientos de máquinas y la cantidad de transferencias entre celdas. La validación del modelo se hace utilizando instancias modificadas de la literatura en el software GAMS usando el solver CPLEX y se desarrolla en MATLAB el algoritmo metaheurístico para dar solución aproximada. Resultados: Se encuentra que las variantes propuestas integradas en la Búsqueda Armónica logran buenos resultados aprovechando el enfoque de explotación del espacio de búsqueda. Conclusiones: A partir de las variantes aplicadas se logró encontrar muy buenas soluciones en tiempos considerablemente cortos; no obstante, es necesario implementar estrategias de exploración del espacio de búsqueda con el fin de evitar caer en óptimos locales.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-01 00:00:00
2024-04-09T20:15:21Z
dc.date.available.none.fl_str_mv 2019-07-01 00:00:00
2024-04-09T20:15:21Z
dc.date.issued.none.fl_str_mv 2019-07-01
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12226
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.15.2.2019.15
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.15.2.2019.15
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.15.2.2019.15
2382-4700
url https://hdl.handle.net/11323/12226
https://doi.org/10.17981/ingecuc.15.2.2019.15
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.spa.fl_str_mv  R. Kumar, S. P. Singh and K. Lamba, “Sustainable Robust Layout using Big Data approach: A Key towards Industry 4.0,” J. Clean. Prod., vol. 204, 643–659, Sep. 2018. https://doi.org/10.1016/j.jclepro.2018.08.327
 S. S. Heragu, “Group technology and cellular manufacturing,” IEEE Trans. Syst. Man. Cybern., vol. 24, no. 2, pp. 203–215, Feb. 1994. https://doi.org/10.1109/21.281420
 A. I. Abduelmola and S. M. Taboun, “A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration,” Prod. Plan. Control, vol. 11, no. 6, pp. 589–597, Jan. 2000. https://doi.org/10.1080/095372800414151
 N. L. Hyer and K. A. Brown, “The Discipline of real cells,” J. Oper. Manag., vol. 17, no. 5, pp. 557–574, Jul. 1999. https://doi.org/10.1016/S0272-6963(99)00003-0
 J. Wang and C. Roze, “Formation of machine cells and part families: A modified p-median model and a comparative study,” Int. J. Prod. Res., vol. 35, no. 5, pp. 1259–1286, May. 1997. https://doi.org/10.1080/002075497195317
 A. Kusiak and W. S. Chow, “Decomposition of manufacturing systems,” IEEE J. Robot. Autom., vol. 4, no. 5, pp. 457–471, Oct. 1988. https://doi.org/10.1109/56.20430
 A. Mungwattana, “Design of cellular manufacturing systems for dynamic and uncertain production requirements with presence of routing flexibility,” Ph.D. dissertation, Fac. ISE., VPI, Blacksburg, Virginia, 2000.
 N. Singh, “Design of cellular manufacturing systems: An invited review,” Eur. J. Oper. Res., vol. 69, no. 3, pp. 284–291, Sep. 1993. https://doi.org/10.1016/0377-2217(93)90016-G
 Z. W. Geem, Ed., Music-inspired harmony search algorithm: theory and applications. Heidelberg, Germany: Springer, 2009. https://doi.org/10.1007/978-3-642-00185-7
 Y. Li, X. Li and J. N. D. Gupta, “Expert Systems with Applications Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search,” Expert Syst. Appl., vol. 42, no. 3, pp. 1409–1417, Feb. 2015. https://doi.org/10.1016/j.eswa.2014.09.007
 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai and C. S. Chong, “Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling,” Inf. Sci. (Ny)., vol. 289, pp. 76–90, Dec. 2014. https://doi.org/10.1016/j.ins.2014.07.039
 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai & C. S. Chong, “Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives,” J. Intell. Manuf., pp. 363–374, Apr. 2016. https://doi.org/10.1007/s10845-014-0869-8
 K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour and K. Y. Lee, “An Improved Multi-Objective Harmony Search for Optimal Placement of DGs in Distribution Systems,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 557–567, Mar. 2013. https://doi.org/10.1109/TSG.2012.2237420
 J. R. King and V. Nakornchai, “Machine-component group formation in group technology: review and extension,” Int. J. Prod. Res., vol. 20, no. 2, pp. 117–133, Apr. 2007. https://doi.org/10.1080/00207548208947754
 J. R. King, “Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm,” Int. J. Prod. Res., vol. 18, no. 2, pp. 213–232, Apr. 1980. https://doi.org/10.1080/00207548008919662
 H. Seifoddini and B. Tjahjana, “Part-family formation for cellular manufacturing: A case study at Harnischfeger,” Int. J. Prod. Res., vol. 37, no. 14, pp. 3263–3273, Sep. 1999. https://doi.org/10.1080/002075499190275
 C. Dimopoulus and N. Mort, “Evolving similarity coefficients for the solution of cellular manufacturing problems,” in Proc. Congr. Evol. Comput., CEC 2000, La Jolla, CA, USA, 16–19 Jul. 2000, pp. 617–624. https://doi.org/10.1109/CEC.2000.870355
 J. McAuley, “Machine grouping for efficient production,” Prod. Eng., vol. 51, no. 2, pp. 53–57, Feb. 1972. https://doi.org/10.1049/tpe.1972.0006
 H. Seifoddini and P. M. Wolfe, “Application of the Similarity Coefficient Method in Group Technology,” IIE Trans., vol. 18, no. 3, pp. 271–277, Sep. 1986. https://doi.org/10.1080/07408178608974704
 G. Srinivasan and T. T. Narendran, “GRAFICS-a nonhierarchical clustering algorithm for group technology,” Int. J. Prod. Res., vol. 29, no. 3, pp. 463–478, Mar. 1991. https://doi.org/10.1080/00207549108930083
 M. Chandrasekharan and R. Rajagopalan, “ZODIAC-an algorithm for concurrent formation of part-families and machine-cells,” Int. J. Prod. Res., vol. 25, no. 6, pp. 835–850, Jun. 1987. https://doi.org/10.1080/00207548708919880
 M. Chandrasekharan and R. Rajagopalan, “An ideal seed non-hierarchical clustering algorithm for cellular manufacturing,” Int. J. Prod. Res., vol. 24, no. 2, pp. 451–463, Mar. 1986. https://doi.org/10.1080/00207548608919741
 A. Kusiak, “The generalized group technology concept,” Int. J. Prod. Res., vol. 25, no. 4, pp. 561–569, Apr. 1987. https://doi.org/10.1080/00207548708919861
 S. Nicoletti, G. Nicosia and A. Pacifici, “Group Technology with Flow Shop Cells,” in Theory and Practice of Control and Systems. Singapur: World Scientific Publishing, 1999, pp. 800–804. https://doi.org/10.1142/9789814447317_0133
 Z. Y. Lim, S. G. Ponnambalam and K. Izui, “Multi-objective hybrid algorithms for layout optimization in multi-robot cellular manufacturing systems,” Knowledge-Based Syst., vol. 120, pp. 87–98, Mar. 2017. https://doi.org/10.1016/j.knosys.2016.12.026
 M. Diaby and A. L. Nsakanda, “Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs,” J. Oper. Res. Soc., vol. 57, no. 9, pp. 1100–1112, Sep. 2006. https://doi.org/10.1057/palgrave.jors.2602072
 H. Djellab and M. Gourgand, “A new heuristic procedure for the single-row facility layout problem,” Int. J. Comput. Integr. Manuf., vol. 14, no. 3, pp. 270–280, Jan. 2001. https://doi.org/10.1080/09511920010020721
 M. Z. Allahyari and A. Azab, “A Novel Bi-level Continuous Formulation for the Cellular Manufacturing System Facility Layout Problem,” Procedia CIRP, vol. 33, pp. 87–92, Dec. 2015. https://doi.org/10.1016/j.procir.2015.06.017
 S. P. Darla, C. D. Naiju, P. V. Sagar and B. Linkhit, “Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm,” Res. J. Appl. Sci. Eng. Technol., vol 7, no. 1, pp. 165–168, Jan. 2014. https://doi.org/10.19026/rjaset.7.235
 M. Aghajani, A. Keramati, R. T. Moghadam and S. S. Mirjavadi, “A mathematical programming model for cellular manufacturing system controlled by kanban with rework consideration,” Int. J. Adv. Manuf. Technol., vol. 82, pp. 1377–1394, Mar. 2016. https://doi.org/10.1007/s00170-015-7635-8
 Y. B. Sahin and S. Alpay, “A metaheuristic approach for a cubic cell formation problem,” Expert Syst. Appl., vol. 65, pp. 40–51, Dec. 2016. https://doi.org/10.1016/j.eswa.2016.08.034
 S. Shahdi-Pashaki, E. Teymourian and R. Tavakkoli-Moghaddam, “New approach based on group technology for the consolidation problem in cloud computing-mathematical model and genetic algorithm,” Comput. Appl. Math., vol. 37, no. 1, pp. 693–718, Jul. 2016. https://doi.org/10.1007/s40314-016-0362-4
 R. Maleki, S. Ketabi and F. M. Rafiei, “Grouping both machines and parts in cellular technology by Genetic Algorithm,” J. Ind. Prod. Eng., vol. 35, no. 2, pp. 91–101, Feb. 2018. https://doi.org/10.1080/21681015.2017.1411402
 H. Feng, T. Xia, W. Da, L. Xi and E. Pan, “Concurrent design of cell formation and scheduling with consideration of duplicate machines and alternative process routings,” J. Intell. Manuf., vol. 30, no. 1, pp. 275–289, Jan. 2019. https://doi.org/10.1007/s10845-016-1245-7
 V. Jayakumar and J. Raju, “A Simulated Annealing Algorithm for Machine Cell Formation Under Uncertain Production Requirements,” AJSE, vol. 39, pp. 7345–7354, Aug. 2014. https://doi.org/10.1007/s13369-014-1306-1
 C. Liu and J. Wang, “Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing,” Int. J. Comput. Intell. Syst., vol. 9, no. 4, pp. 765–777, Aug. 2016. https://doi.org/10.1080/18756891.2016.1204123
 F. Shafigh, F. M. Defersha and S. Eid, “A linear programming embedded simulated annealing in the design of distributed layout with production planning and systems reconfiguration,” Int. J. Adv. Manuf. Technol., vol. 88, pp. 1119–1140, May. 2016. https://doi.org/10.1007/s00170-016-8813-z
 A. Iqbal and K. A. Al-Ghamdi, “Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration,” Energy, vol. 163, pp. 863–872, Nov. 2018. https://doi.org/10.1016/j.energy.2018.08.168
 Y. Gholipour-Kanani, I. R. Tavakkoli-Moghaddam and I. A. Khorrami, “Solving a multi-criteria group scheduling problem for a cellular manufacturing system by scatter search,” JCIIE, vol. 28, no. 3, pp. 192–205, Feb. 2011. https://doi.org/10.1080/10170669.2010.549663
 M. S. Jabal-Ameli and M. Moshref-Javadi, “Concurrent cell formation and layout design using scatter search,” Int. J. Adv. Manuf. Technol., vol. 71, pp. 1–22, Mar. 2014. https://doi.org/10.1007/s00170-013-5342-x
 A. S. Amiri and R. Ghodsi, “A variable neighborhood search method for an integrated cellular manufacturing systems with production planning and system reconfiguration,” in 4th Int. Conf. Math. Model. Comput. Simul., AMS2010, Bornea, Malaysia, 26-28 May. 2010, pp. 181–186.
 F. Jolai, M. Taghipour and B. Javadi, “A variable neighborhood binary particle swarm algorithm for cell layout problem,” Int. J. Adv. Manuf. Technol., vol. 55, no. 1-4, pp. 327–339, Jul. 2011. https://doi.org/10.1007/s00170-010-3039-y
 S.-H. Chung, T.-H. Wu and Ch.-Ch. Chang, “An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations,” Comput. Ind. Eng., vol. 60, no. 1, pp. 7–15, Feb. 2011. https://doi.org/10.1016/j.cie.2010.08.016
 J. J. Du, G. X. Wang, Y. Yan and Q. Sang, “Tabu Search-based Formation of Reconfigurable Manufacturing Cells,” Appl. Mech. an Mater., vol. 397-400, no. 1, pp. 34–41, Sept. 2013. https://doi.org/10.4028/www.scientific.net/AMM.397-400.34
 F. Sarayloo and R. Tavakkoli-Moghaddam, “Multi Objective Particle Swarm Optimization for a Dynamic Cell Formation Problem,” in World Congr. Eng. vol. III, WCE 2010, London, UK, Jun. 30 - Jul. 2, 2010.
 A. Azadeh, S. Pashapour and S. A. Zadeh, “Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology,” Int. J. Prod. Res., vol. 54, no. 22, pp. 6825–6847, May. 2016. https://doi.org/10.1080/00207543.2016.1178407
 K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 36-38, pp. 3902–3933, Sep. 2005. https://doi.org/10.1016/j.cma.2004.09.007
 J. Arkat, M. H. Farahani and F. Ahmadizar, “Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling,” Int. J. Comput. Integr. Manuf., vol. 25, no. 7, pp. 625–635, Jul. 2012. https://doi.org/10.1080/0951192X.2012.665182
 M. Solimanpur, P. Vrat and R. Shankar, “Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing,” Eur. J. Oper. Res., vol. 157, no. 3, pp. 592–606, Sep. 2004. https://doi.org/10.1016/S0377-2217(03)00248-0
 A. J. Vakharia and Y.-L. Chang, “Cell formation in group technology: A combinatorial search approach,” Int. J. Prod. Res., vol. 35, no. 7, pp. 2025–2044, Jul. 1997. https://doi.org/10.1080/002075497195056
 B. P. Ahmed, R. Tavakkoli-Moghaddam and N. Safaei, “A comparison of heuristic methods for solving a cellular manufacturing model in a dynamic environment,” UOW, Wolv., UK, WP007/04, 2004.
 F. S. Hillier and G. Lieberman, Introducción a la Investigación de Operaciones. 9 ed. México, D.F.: McGraw-Hill, 1997.
 Z. Yang, “Analysis and Design of Cellular Manufacturing Systems: Machine-Part Cell Formation and Operation Allocation,” Ph.D. dissertation, CWRU, Cleveland, Ohio, USA, 1995.
D. M. Himmelblau, Applied Nonlinear Programming, 1st ed. NY, USA: McGraw-Hill, 1972.
dc.relation.citationendpage.none.fl_str_mv 167
dc.relation.citationstartpage.none.fl_str_mv 155
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 15
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2514
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2551
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2670
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2019 : (Julio-Diciembre)
dc.rights.spa.fl_str_mv INGE CUC - 2019
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2019
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
text/html
application/xml
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/2120
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/efd8bbb3-e31b-40e8-8b1b-7d4ed6a955df/download
bitstream.checksum.fl_str_mv aa0f95bc6f446e6251970de467dc0432
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760855365189632
spelling Garavito Hernández, Edwin AlbertoTalero Sarmiento, Leonardo HernánEscobar Rodríguez, Laura Yeraldín2019-07-01 00:00:002024-04-09T20:15:21Z2019-07-01 00:00:002024-04-09T20:15:21Z2019-07-010122-6517https://hdl.handle.net/11323/12226https://doi.org/10.17981/ingecuc.15.2.2019.1510.17981/ingecuc.15.2.2019.152382-4700Introducción: La manufactura celular (MC) es una aplicación de la tecnología de grupos que consiste en la agrupación de familias de productos y la formación de familias de máquinas, mediante la descomposición de un sistema de manufactura complejo en subsistemas que atienden las operaciones de familias enteras de productos. Durante el presente trabajo se desarrolla un modelo de programación lineal entera que integra costos de producción con costos por transferencias entre celdas, además, se propone como método de solución un algoritmo denominado Búsqueda Armónica Objetivo: Determinar el desempeño de la Búsqueda Armónica modificada y las variantes de asignación de máquinas al problema de formación de celdas de manufactura. Metodología: Se desarrolla un modelo matemático de programación entera, el cual utiliza variables binarias para determinar la asignación de las operaciones de diversos productos a distintas máquinas en diferentes celdas, y variables enteras para cuantificar los requerimientos de máquinas y la cantidad de transferencias entre celdas. La validación del modelo se hace utilizando instancias modificadas de la literatura en el software GAMS usando el solver CPLEX y se desarrolla en MATLAB el algoritmo metaheurístico para dar solución aproximada. Resultados: Se encuentra que las variantes propuestas integradas en la Búsqueda Armónica logran buenos resultados aprovechando el enfoque de explotación del espacio de búsqueda. Conclusiones: A partir de las variantes aplicadas se logró encontrar muy buenas soluciones en tiempos considerablemente cortos; no obstante, es necesario implementar estrategias de exploración del espacio de búsqueda con el fin de evitar caer en óptimos locales.Introduction: Cellular Manufacturing (CM) is an application of group technology that consists of grouping components in part families and machines into cells, via the decomposition of a complex manufacturing system into small systems, which attend the operations of entire part families. In this work, we developed a linear programming model that integrates production costs with costs for transfers between cells. Besides, using an approach algorithm method called Harmony Search is solved the mathematical model. Objective: Evaluate the performance of the alternative Harmony Search and its machine allocation strategies in a cellular manufacturing problem. Method: The mathematical model consists in a linear programming structure in which there are binary variables to determine the assignment of the operations of products to different machines in diverse cells, and integer variables to count the requirements of machines and the number of transfers between cells. In order to validate the model, we use modified instances based on the literature review and set in GAMS software using the CPLEX solver, also, is developed a metaheuristic algorithm in MATLAB in order to give an approximate solution. Results:  The proposed Harmony Search and its variants can provide highlighted results taking advantage of the exploitation approach of the search space. Conclusions: The Harmony Search and its variants can provide outstanding solutions in considerably short times; nevertheless, it is necessary to implement strategies to explore the search space in order to avoid falling into local optima.application/pdftext/htmlapplication/xmlspaUniversidad de la CostaINGE CUC - 2019http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2120harmony searchfacility layoutcellular manufacturingmetaheuristicbúsqueda armónicadiseño de plantasmanufactura celularmetaheurísticasAplicación de la Búsqueda Armónica para el problema de formación de celdas de manufacturaA Harmony Search approach for the Manufacturing Cell Design ProblemArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc R. Kumar, S. P. Singh and K. Lamba, “Sustainable Robust Layout using Big Data approach: A Key towards Industry 4.0,” J. Clean. Prod., vol. 204, 643–659, Sep. 2018. https://doi.org/10.1016/j.jclepro.2018.08.327 S. S. Heragu, “Group technology and cellular manufacturing,” IEEE Trans. Syst. Man. Cybern., vol. 24, no. 2, pp. 203–215, Feb. 1994. https://doi.org/10.1109/21.281420 A. I. Abduelmola and S. M. Taboun, “A simulated annealing algorithm for designing cellular manufacturing systems with productivity consideration,” Prod. Plan. Control, vol. 11, no. 6, pp. 589–597, Jan. 2000. https://doi.org/10.1080/095372800414151 N. L. Hyer and K. A. Brown, “The Discipline of real cells,” J. Oper. Manag., vol. 17, no. 5, pp. 557–574, Jul. 1999. https://doi.org/10.1016/S0272-6963(99)00003-0 J. Wang and C. Roze, “Formation of machine cells and part families: A modified p-median model and a comparative study,” Int. J. Prod. Res., vol. 35, no. 5, pp. 1259–1286, May. 1997. https://doi.org/10.1080/002075497195317 A. Kusiak and W. S. Chow, “Decomposition of manufacturing systems,” IEEE J. Robot. Autom., vol. 4, no. 5, pp. 457–471, Oct. 1988. https://doi.org/10.1109/56.20430 A. Mungwattana, “Design of cellular manufacturing systems for dynamic and uncertain production requirements with presence of routing flexibility,” Ph.D. dissertation, Fac. ISE., VPI, Blacksburg, Virginia, 2000. N. Singh, “Design of cellular manufacturing systems: An invited review,” Eur. J. Oper. Res., vol. 69, no. 3, pp. 284–291, Sep. 1993. https://doi.org/10.1016/0377-2217(93)90016-G Z. W. Geem, Ed., Music-inspired harmony search algorithm: theory and applications. Heidelberg, Germany: Springer, 2009. https://doi.org/10.1007/978-3-642-00185-7 Y. Li, X. Li and J. N. D. Gupta, “Expert Systems with Applications Solving the multi-objective flowline manufacturing cell scheduling problem by hybrid harmony search,” Expert Syst. Appl., vol. 42, no. 3, pp. 1409–1417, Feb. 2015. https://doi.org/10.1016/j.eswa.2014.09.007 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai and C. S. Chong, “Pareto-based grouping discrete harmony search algorithm for multi-objective flexible job shop scheduling,” Inf. Sci. (Ny)., vol. 289, pp. 76–90, Dec. 2014. https://doi.org/10.1016/j.ins.2014.07.039 K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai & C. S. Chong, “Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives,” J. Intell. Manuf., pp. 363–374, Apr. 2016. https://doi.org/10.1007/s10845-014-0869-8 K. Nekooei, M. M. Farsangi, H. Nezamabadi-pour and K. Y. Lee, “An Improved Multi-Objective Harmony Search for Optimal Placement of DGs in Distribution Systems,” IEEE Trans. Smart Grid, vol. 4, no. 1, pp. 557–567, Mar. 2013. https://doi.org/10.1109/TSG.2012.2237420 J. R. King and V. Nakornchai, “Machine-component group formation in group technology: review and extension,” Int. J. Prod. Res., vol. 20, no. 2, pp. 117–133, Apr. 2007. https://doi.org/10.1080/00207548208947754 J. R. King, “Machine-component grouping in production flow analysis: an approach using a rank order clustering algorithm,” Int. J. Prod. Res., vol. 18, no. 2, pp. 213–232, Apr. 1980. https://doi.org/10.1080/00207548008919662 H. Seifoddini and B. Tjahjana, “Part-family formation for cellular manufacturing: A case study at Harnischfeger,” Int. J. Prod. Res., vol. 37, no. 14, pp. 3263–3273, Sep. 1999. https://doi.org/10.1080/002075499190275 C. Dimopoulus and N. Mort, “Evolving similarity coefficients for the solution of cellular manufacturing problems,” in Proc. Congr. Evol. Comput., CEC 2000, La Jolla, CA, USA, 16–19 Jul. 2000, pp. 617–624. https://doi.org/10.1109/CEC.2000.870355 J. McAuley, “Machine grouping for efficient production,” Prod. Eng., vol. 51, no. 2, pp. 53–57, Feb. 1972. https://doi.org/10.1049/tpe.1972.0006 H. Seifoddini and P. M. Wolfe, “Application of the Similarity Coefficient Method in Group Technology,” IIE Trans., vol. 18, no. 3, pp. 271–277, Sep. 1986. https://doi.org/10.1080/07408178608974704 G. Srinivasan and T. T. Narendran, “GRAFICS-a nonhierarchical clustering algorithm for group technology,” Int. J. Prod. Res., vol. 29, no. 3, pp. 463–478, Mar. 1991. https://doi.org/10.1080/00207549108930083 M. Chandrasekharan and R. Rajagopalan, “ZODIAC-an algorithm for concurrent formation of part-families and machine-cells,” Int. J. Prod. Res., vol. 25, no. 6, pp. 835–850, Jun. 1987. https://doi.org/10.1080/00207548708919880 M. Chandrasekharan and R. Rajagopalan, “An ideal seed non-hierarchical clustering algorithm for cellular manufacturing,” Int. J. Prod. Res., vol. 24, no. 2, pp. 451–463, Mar. 1986. https://doi.org/10.1080/00207548608919741 A. Kusiak, “The generalized group technology concept,” Int. J. Prod. Res., vol. 25, no. 4, pp. 561–569, Apr. 1987. https://doi.org/10.1080/00207548708919861 S. Nicoletti, G. Nicosia and A. Pacifici, “Group Technology with Flow Shop Cells,” in Theory and Practice of Control and Systems. Singapur: World Scientific Publishing, 1999, pp. 800–804. https://doi.org/10.1142/9789814447317_0133 Z. Y. Lim, S. G. Ponnambalam and K. Izui, “Multi-objective hybrid algorithms for layout optimization in multi-robot cellular manufacturing systems,” Knowledge-Based Syst., vol. 120, pp. 87–98, Mar. 2017. https://doi.org/10.1016/j.knosys.2016.12.026 M. Diaby and A. L. Nsakanda, “Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs,” J. Oper. Res. Soc., vol. 57, no. 9, pp. 1100–1112, Sep. 2006. https://doi.org/10.1057/palgrave.jors.2602072 H. Djellab and M. Gourgand, “A new heuristic procedure for the single-row facility layout problem,” Int. J. Comput. Integr. Manuf., vol. 14, no. 3, pp. 270–280, Jan. 2001. https://doi.org/10.1080/09511920010020721 M. Z. Allahyari and A. Azab, “A Novel Bi-level Continuous Formulation for the Cellular Manufacturing System Facility Layout Problem,” Procedia CIRP, vol. 33, pp. 87–92, Dec. 2015. https://doi.org/10.1016/j.procir.2015.06.017 S. P. Darla, C. D. Naiju, P. V. Sagar and B. Linkhit, “Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm Optimization of Inter Cellular Movement of Parts in Cellular Manufacturing System Using Genetic Algorithm,” Res. J. Appl. Sci. Eng. Technol., vol 7, no. 1, pp. 165–168, Jan. 2014. https://doi.org/10.19026/rjaset.7.235 M. Aghajani, A. Keramati, R. T. Moghadam and S. S. Mirjavadi, “A mathematical programming model for cellular manufacturing system controlled by kanban with rework consideration,” Int. J. Adv. Manuf. Technol., vol. 82, pp. 1377–1394, Mar. 2016. https://doi.org/10.1007/s00170-015-7635-8 Y. B. Sahin and S. Alpay, “A metaheuristic approach for a cubic cell formation problem,” Expert Syst. Appl., vol. 65, pp. 40–51, Dec. 2016. https://doi.org/10.1016/j.eswa.2016.08.034 S. Shahdi-Pashaki, E. Teymourian and R. Tavakkoli-Moghaddam, “New approach based on group technology for the consolidation problem in cloud computing-mathematical model and genetic algorithm,” Comput. Appl. Math., vol. 37, no. 1, pp. 693–718, Jul. 2016. https://doi.org/10.1007/s40314-016-0362-4 R. Maleki, S. Ketabi and F. M. Rafiei, “Grouping both machines and parts in cellular technology by Genetic Algorithm,” J. Ind. Prod. Eng., vol. 35, no. 2, pp. 91–101, Feb. 2018. https://doi.org/10.1080/21681015.2017.1411402 H. Feng, T. Xia, W. Da, L. Xi and E. Pan, “Concurrent design of cell formation and scheduling with consideration of duplicate machines and alternative process routings,” J. Intell. Manuf., vol. 30, no. 1, pp. 275–289, Jan. 2019. https://doi.org/10.1007/s10845-016-1245-7 V. Jayakumar and J. Raju, “A Simulated Annealing Algorithm for Machine Cell Formation Under Uncertain Production Requirements,” AJSE, vol. 39, pp. 7345–7354, Aug. 2014. https://doi.org/10.1007/s13369-014-1306-1 C. Liu and J. Wang, “Cell formation and task scheduling considering multi-functional resource and part movement using hybrid simulated annealing,” Int. J. Comput. Intell. Syst., vol. 9, no. 4, pp. 765–777, Aug. 2016. https://doi.org/10.1080/18756891.2016.1204123 F. Shafigh, F. M. Defersha and S. Eid, “A linear programming embedded simulated annealing in the design of distributed layout with production planning and systems reconfiguration,” Int. J. Adv. Manuf. Technol., vol. 88, pp. 1119–1140, May. 2016. https://doi.org/10.1007/s00170-016-8813-z A. Iqbal and K. A. Al-Ghamdi, “Energy-efficient cellular manufacturing system: Eco-friendly revamping of machine shop configuration,” Energy, vol. 163, pp. 863–872, Nov. 2018. https://doi.org/10.1016/j.energy.2018.08.168 Y. Gholipour-Kanani, I. R. Tavakkoli-Moghaddam and I. A. Khorrami, “Solving a multi-criteria group scheduling problem for a cellular manufacturing system by scatter search,” JCIIE, vol. 28, no. 3, pp. 192–205, Feb. 2011. https://doi.org/10.1080/10170669.2010.549663 M. S. Jabal-Ameli and M. Moshref-Javadi, “Concurrent cell formation and layout design using scatter search,” Int. J. Adv. Manuf. Technol., vol. 71, pp. 1–22, Mar. 2014. https://doi.org/10.1007/s00170-013-5342-x A. S. Amiri and R. Ghodsi, “A variable neighborhood search method for an integrated cellular manufacturing systems with production planning and system reconfiguration,” in 4th Int. Conf. Math. Model. Comput. Simul., AMS2010, Bornea, Malaysia, 26-28 May. 2010, pp. 181–186. F. Jolai, M. Taghipour and B. Javadi, “A variable neighborhood binary particle swarm algorithm for cell layout problem,” Int. J. Adv. Manuf. Technol., vol. 55, no. 1-4, pp. 327–339, Jul. 2011. https://doi.org/10.1007/s00170-010-3039-y S.-H. Chung, T.-H. Wu and Ch.-Ch. Chang, “An efficient tabu search algorithm to the cell formation problem with alternative routings and machine reliability considerations,” Comput. Ind. Eng., vol. 60, no. 1, pp. 7–15, Feb. 2011. https://doi.org/10.1016/j.cie.2010.08.016 J. J. Du, G. X. Wang, Y. Yan and Q. Sang, “Tabu Search-based Formation of Reconfigurable Manufacturing Cells,” Appl. Mech. an Mater., vol. 397-400, no. 1, pp. 34–41, Sept. 2013. https://doi.org/10.4028/www.scientific.net/AMM.397-400.34 F. Sarayloo and R. Tavakkoli-Moghaddam, “Multi Objective Particle Swarm Optimization for a Dynamic Cell Formation Problem,” in World Congr. Eng. vol. III, WCE 2010, London, UK, Jun. 30 - Jul. 2, 2010. A. Azadeh, S. Pashapour and S. A. Zadeh, “Designing a cellular manufacturing system considering decision style, skill and job security by NSGA-II and response surface methodology,” Int. J. Prod. Res., vol. 54, no. 22, pp. 6825–6847, May. 2016. https://doi.org/10.1080/00207543.2016.1178407 K. S. Lee and Z. W. Geem, “A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice,” Comput. Methods Appl. Mech. Eng., vol. 194, no. 36-38, pp. 3902–3933, Sep. 2005. https://doi.org/10.1016/j.cma.2004.09.007 J. Arkat, M. H. Farahani and F. Ahmadizar, “Multi-objective genetic algorithm for cell formation problem considering cellular layout and operations scheduling,” Int. J. Comput. Integr. Manuf., vol. 25, no. 7, pp. 625–635, Jul. 2012. https://doi.org/10.1080/0951192X.2012.665182 M. Solimanpur, P. Vrat and R. Shankar, “Ant colony optimization algorithm to the inter-cell layout problem in cellular manufacturing,” Eur. J. Oper. Res., vol. 157, no. 3, pp. 592–606, Sep. 2004. https://doi.org/10.1016/S0377-2217(03)00248-0 A. J. Vakharia and Y.-L. Chang, “Cell formation in group technology: A combinatorial search approach,” Int. J. Prod. Res., vol. 35, no. 7, pp. 2025–2044, Jul. 1997. https://doi.org/10.1080/002075497195056 B. P. Ahmed, R. Tavakkoli-Moghaddam and N. Safaei, “A comparison of heuristic methods for solving a cellular manufacturing model in a dynamic environment,” UOW, Wolv., UK, WP007/04, 2004. F. S. Hillier and G. Lieberman, Introducción a la Investigación de Operaciones. 9 ed. México, D.F.: McGraw-Hill, 1997. Z. Yang, “Analysis and Design of Cellular Manufacturing Systems: Machine-Part Cell Formation and Operation Allocation,” Ph.D. dissertation, CWRU, Cleveland, Ohio, USA, 1995.D. M. Himmelblau, Applied Nonlinear Programming, 1st ed. NY, USA: McGraw-Hill, 1972.167155215https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2514https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2551https://revistascientificas.cuc.edu.co/ingecuc/article/download/2120/2670Núm. 2 , Año 2019 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2701https://repositorio.cuc.edu.co/bitstreams/efd8bbb3-e31b-40e8-8b1b-7d4ed6a955df/downloadaa0f95bc6f446e6251970de467dc0432MD5111323/12226oai:repositorio.cuc.edu.co:11323/122262024-09-17 14:11:53.668http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2019metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co