Classification of industrial engineering programs in Colombia based on state tests

This article proposes an approach for the classification of industrial engineering programs offered by different higher education institutions (HEIs) in Colombia, using data envelopment analysis (DEA) and validating the results with cluster analysis. To perform this classification, data from 5318 in...

Full description

Autores:
Mendoza-Mendoza, Adel
De La Hoz-Domínguez, Enrique
Visbal Cadavid, Delimiro Alberto
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/10508
Acceso en línea:
https://hdl.handle.net/11323/10508
https://repositorio.cuc.edu.co/
Palabra clave:
Data envelopment analysis
Cluster analysis
Classification
Higher education institutions
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_a6a5ef33eb936fa087de089dd8e74ff0
oai_identifier_str oai:repositorio.cuc.edu.co:11323/10508
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Classification of industrial engineering programs in Colombia based on state tests
title Classification of industrial engineering programs in Colombia based on state tests
spellingShingle Classification of industrial engineering programs in Colombia based on state tests
Data envelopment analysis
Cluster analysis
Classification
Higher education institutions
title_short Classification of industrial engineering programs in Colombia based on state tests
title_full Classification of industrial engineering programs in Colombia based on state tests
title_fullStr Classification of industrial engineering programs in Colombia based on state tests
title_full_unstemmed Classification of industrial engineering programs in Colombia based on state tests
title_sort Classification of industrial engineering programs in Colombia based on state tests
dc.creator.fl_str_mv Mendoza-Mendoza, Adel
De La Hoz-Domínguez, Enrique
Visbal Cadavid, Delimiro Alberto
dc.contributor.author.none.fl_str_mv Mendoza-Mendoza, Adel
De La Hoz-Domínguez, Enrique
Visbal Cadavid, Delimiro Alberto
dc.subject.proposal.eng.fl_str_mv Data envelopment analysis
Cluster analysis
Classification
Higher education institutions
topic Data envelopment analysis
Cluster analysis
Classification
Higher education institutions
description This article proposes an approach for the classification of industrial engineering programs offered by different higher education institutions (HEIs) in Colombia, using data envelopment analysis (DEA) and validating the results with cluster analysis. To perform this classification, data from 5318 industrial engineering students from 93 higher education institutions are used as a basis for classification based on the Saber11 and SaberPro state tests. The state tests are used to measure graduates' academic performance in the data envelopment analysis. With the efficiency results it was possible to classify higher education institutions (HEIs) into three large groups. Subsequently, this classification was validated through cluster analysis. The results show a correct classification of 77%.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-22T14:26:20Z
dc.date.available.none.fl_str_mv 2023-09-22T14:26:20Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Adel Mendoza-Mendoza, Enrique De La Hoz-Domínguez, Delimiro Visbal-Cadavid, Classification of industrial engineering programs in Colombia based on state tests, Heliyon, Volume 9, Issue 5, 2023, e16002, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e16002
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/10508
dc.identifier.doi.none.fl_str_mv 10.1016/j.heliyon.2023.e16002
dc.identifier.eissn.spa.fl_str_mv 2405-8440
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Adel Mendoza-Mendoza, Enrique De La Hoz-Domínguez, Delimiro Visbal-Cadavid, Classification of industrial engineering programs in Colombia based on state tests, Heliyon, Volume 9, Issue 5, 2023, e16002, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e16002
10.1016/j.heliyon.2023.e16002
2405-8440
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/10508
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Heliyon
dc.relation.references.spa.fl_str_mv [1] M.I.P. Conchada, M.M. Tiongco, A Review Of The Accreditation System For Philippine Higher Education Institutions, Philippine Institute for Development Studies, 2015.
[2] M. Bautista, Leveraging Philippine Human Resources For National Development And International Competitiveness. Briefer On CMO 46: Policy Standard On Outcomes-Based And Typology-Based Quality Assurance, 2014.
[3] V. Aramburo, B. Boroel, G. Pineda, Predictive factors associated with academic performance in college students, Proc Soc Behv 237 (2017) 945–949, https://doi. org/10.1016/j.sbspro.2017.02.133.
[4] I.W. Li, A.M. Dockery, Socio-economic Status of Schools and University Academic Performance: Implications for Australia’s Higher Education Expansion. Curtin University, National Centre for Student Equity in Higher Education, Perth, 2014.
[5] K. Goodlad, L. Westengard, J. Hillstrom, Comparing faculty and student perception of academic performance, classroom behavior, and social interactions in learning communities, Coll. Teach. 66 (3) (2018) 130–139, https://doi.org/10.1080/87567555.2018.1453472.
[6] D. Jackson, R. Bridgstock, Evidencing student success in the contemporary world-of-work: renewing our thinking, High Educ. Res. Dev. 37 (5) (2018) 984–998, https://doi.org/10.1080/07294360.2018.1469603.
[7] Y. García, D. Lopez ´ de Castro, O. Rivero, Estudiantes universitarios con bajo rendimiento acad´emico, ¿qu´e hacer? Edumecentro 6 (2) (2014) 272–278.
[8] R. Edel, Academic performance: concept, research and development, Rev. Iber. 1 (2) (2013) 1–15.
[9] P. Bilge, M. Severengiz, Analysis of industrial engineering qualification for the job market, Procedia Manuf. 33 (2019) 725–731, https://doi.org/10.1016/j. promfg.2019.04.091.
[10] M. Giannakis, N. Bullivant, The massification of higher education in the UK: aspects of service quality, J. Furth. High. Educ. 40 (5) (2016) 630–648, https://doi. org/10.1080/0309877X.2014.1000280.
[11] V.B. Kamat, J.K. Kittur, Devising smart strategic framework for assessment of quality in engineering education, Int. J. Syst. Assur. Eng. Manag. 10 (6) (2019) 1403–1428, https://doi.org/10.1007/s13198-019-00892-9.
[12] P. Jalote, B.N. Jain, S. Sopory, Classification for research universities in India, High, Educ. Next 79 (2) (2020) 225–241, https://doi.org/10.1007/s10734-019- 00406-3.
[13] J.L. Kobrin, B.F. Patterson, E.J. Shaw, K.D. Mattern, S.M. Barbuti, Validity Of The SAT® For Predicting First-Year College Grade Point Average. Research Report No. 2008-5. College Board, 2008.
[14] R. Morgan, Analyses of the predictive validity of the SAT® and high school grades from 1976 TO 1985, ETS Res. Rep. Ser. 1989 (2) (1989), https://doi.org/ 10.1002/j.2330-8516.1989.tb00151.x i-16.
[15] L.F.R. Valbuena, Industrial Engineering Education Field in Colombia, in: International Conference on Industrial Engineering and Operations Management, 2018.
[16] A. Segal, J. Snell, A. Lefstein, Dialogic teaching to the high stakes standardized test? Res. Pap. Educ. 32 (5) (2017) 596–610, https://doi.org/10.1080/ 02671522.2016.1225803.
[17] R.P. Phelps, Defending Standardized Testing, Lawrence Erlbaum Associates Inc, Mahwah, NY, 2005, https://doi.org/10.4324/9781410612595.
[18] R. Zwick, Assessment in American higher education: the role of admissions tests, ann Am acad pol soc sci 683, 1 (2019) 130–148, https://doi.org/10.1177/ 0002716219843469.
[19] P.O. Saygin, Gender bias in standardized tests: evidence from a centralized college admissions system, Empir. Econ. 59 (2) (2020) 1037–1065, https://doi.org/ 10.1007/s00181-019-01662-z.
[20] ICFES, 2020. https://www.icfes.gov.co/documents/20143/1628228/Guia+de+orientacion+saber+11+2020-1.pdf/ec534dff-b171-d51b-5ee8-c05139100635. (Accessed 10 February 2022).
[21] ICFES, 2020. https://www.icfes.gov.co/documents/20143/1891934/Guia+de+orientacion+modulo+de+evaluar+Saber+Pro+2020.pdf. (Accessed 12 February 2022).
[22] A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making units, Eur. J. Oper. Res. 2 (6) (1978) 429–444, https://doi.org/10.1016/ 0377-2217(78)90138-8.
[23] E. Thanassoulis, M.C. Silva, Measuring efficiency through data envelopment analysis, Impact 1 (2018) 37–41, https://doi.org/10.1080/ 2058802X.2018.1440814.
[24] J.S. Liu, L.Y. Lu, W.M. Lu, Research fronts in data envelopment analysis, Omega 58 (2016) 33–45, https://doi.org/10.1016/j.omega.2015.04.004.
[25] G.E. Halkos, D.S. Salamouris, Efficiency measurement of the Greek commercial banks with the use of financial ratios: a data envelopment analysis approach, Manag. Acc. Res. 15 (2) (2004) 201–224, https://doi.org/10.1016/j.mar.2004.02.001.
[26] J.C. Paradi, H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis, Omega 41 (1) (2013) 61–79, https://doi.org/ 10.1016/j.omega.2011.08.010.
[27] S. Kaffash, M. Marra, Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds, Ann. Oper. Res. 253 (1) (2017) 307–344, https://doi.org/10.1007/s10479-016-2294-1.
[28] S. Jain, K.P. Triantis, S. Liu, Manufacturing performance measurement and target setting: a data envelopment analysis approach, Eur. J. Oper. Res. 214 (3) (2011) 616–626, https://doi.org/10.1016/j.ejor.2011.05.028.
[29] B.C. Xie, N. Duan, Y.S. Wang, Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis, J. Clean. Prod. 153 (2017) 626–636, https://doi.org/10.1016/j.jclepro.2016.12.100.
[30] F.A.S. Piran, D.P. Lacerda, L.F.R. Camargo, A. Dresch, Effects of product modularity on productivity: an analysis using data envelopment analysis and Malmquist index, Res. Eng. Des. (2020) 1–14, https://doi.org/10.1007/s00163-019-00327-3.
[31] L. Asandului, M. Roman, P. Fatulescu, The efficiency of healthcare systems in Europe: a data envelopment analysis approach, Procedia Econ. Finance 10 (2014) 261–268, https://doi.org/10.1016/S2212-5671(14)00301-3.
[32] V.R. Cetin, S. Bahce, Measuring the efficiency of health systems of OECD countries by data envelopment analysis, Appl. Econ. 48 (37) (2016) 3497–3507, https://doi.org/10.1080/00036846.2016.1139682.
[33] M. Top, M. Konca, B. Sapaz, Technical efficiency of healthcare systems in African countries: an application based on data envelopment analysis, Heal. Pol. Techn. 9 (1) (2020) 62–68, https://doi.org/10.1016/j.hlpt.2019.11.010.
[34] T. Agasisti, C. Salerno, Assessing the cost efficiency of Italian universities, Educ. Econ. 15 (4) (2007) 455–471, https://doi.org/10.1080/09645290701273491.
[35] J. Nazarko, J. Aaparauskas, Application of DEA method in efficiency evaluation of public higher education institutions, Technol. Econ. Dev. Econ. 20 (1) (2014) 25–44, https://doi.org/10.3846/20294913.2014.837116.
[36] J. Wolszczak-Derlacz, An evaluation and explanation of (in) efficiency in higher education institutions in Europe and the US with the application of two-stage semi-parametric DEA, Res. Pol. 46 (9) (2017) 1595–1605, https://doi.org/10.1016/j.respol.2017.07.010.
[37] J. Johnes, Y.U. Li, Measuring the research performance of Chinese higher education institutions using data envelopment analysis, China Econ. Rev. 19 (4) (2008) 679–696, https://doi.org/10.1016/j.chieco.2008.08.004.
[38] M.K. Ekiz, C. Tuncer S¸ akar, A new DEA approach to fully rank DMUs with an application to MBA programs, Int. Trans. Oper. Res. 27 (4) (2020) 1886–1910, https://doi.org/10.1111/itor.12635.
[39] A.P. Singh, S.P. Yadav, P. Tyagi, Performance assessment of higher educational institutions in India using data envelopment analysis and re-evaluation of NIRF Rankings, Int. J. Syst. Assur. Eng. Manag. 1–12 (2022), https://doi.org/10.1007/s13198-021-01380-9.
[40] M. Alswaitti, M.K. Ishak, N.A. Isa, Optimized gravitational-based data clustering algorithm, Eng. Appl. Artif. Intell. 73 (2018) 126–148, https://doi.org/ 10.1016/j.engappai.2018.05.004.
[41] T. Ullmann, C. Hennig, A.L. Boulesteix, Validation of cluster analysis results on validation data: a systematic framework, Wiley Interdisc. Rev. Data Min. Know. Discov. 12 (3) (2022), https://doi.org/10.1002/widm.1444.
[42] S.J. Nanda, G. Panda, A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm Evol. Comput. 16 (2014) 1–18, https://doi.org/ 10.1016/j.swevo.2013.11.003.
[43] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, A. Song, Efficient agglomerative hierarchical clustering, Expert Syst. Appl. 42 (5) (2015) 2785–2797, https://doi.org/ 10.1016/j.eswa.2014.09.054.
[44] A. Amini, T.Y. Wah, H. Saboohi, On density-based data streams clustering algorithms: a survey, J. Comput. Sci. Technol. 29 (1) (2014) 116–141, https://doi. org/10.1007/s11390-014-1416-y.
[45] S. Suzuki, P. Nijkamp, P. Rietveld, E. Pels, A distance friction minimization approach in data envelopment analysis: a comparative study on airport efficiency, Eur. J. Oper. Res. 207 (2) (2010) 1104–1115, https://doi.org/10.1016/j.ejor.2010.05.049.
[46] W.B. Xie, Y.L. Lee, C. Wang, D.B. Chen, T. Zhou, Hierarchical clustering supported by reciprocal nearest neighbors, Inf. Sci. 527 (2020) 279–292, https://doi. org/10.1016/j.ins.2020.04.016.
[47] E. Delahoz-Dominguez, R. Zuluaga, T. Fontalvo-Herrera, Dataset of academic performance evolution for engineering students, Data Brief 105537 (2020), https://doi.org/10.1016/j.dib.2020.105537.
[48] A. Bonaccorsi, T. Cicero, Nondeterministic ranking of university departments, J. Informetr. 10 (1) (2016) 224–237, https://doi.org/10.1016/j.joi.2016.01.007.
[49] C. V’lsan, E. Druic, Corporate performance and economic convergence between Europe and the us: a cluster analysis along industry lines, Mathematics 8 (3) (2020) 451, https://doi.org/10.3390/math8030451.
[50] G. Brock, V. Pihur, S. Datta, S. Datta, clValid, an R package for cluster validation, J. Stat. Software 25 (4) (2011), 10.18637/jss.v025.i04.
[51] S. Kantabutra, J.C. Tang, Efficiency analysis of public universities in Thailand, Tert. Educ. Manag. 16 (1) (2010) 15–33, https://doi.org/10.1080/ 13583881003629798.
[52] H. Jiang, M. Hua, J. Zhang, P. Cheng, Z. Ye, M. Huang, Q. Jin, Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking, J. Clean Prod. 244 (2020) 118729, https://doi.org/10.1016/j.jclepro.2019.118729.
[53] S. Cinaroglu, Integrated k-means clustering with data envelopment analysis of public hospital efficiency, Health Care Manag. Sci. (2019) 1–14, https://doi.org/ 10.1007/s10729-019-09491-3.
[54] E. De La Hoz, R. Zuluaga, A. Mendoza, Assessing and classification of academic efficiency in engineering teaching programs, J. Eff. Respons. Educ. Sci. 14 (2021) 41–52, https://doi.org/10.7160/eriesj.2021.140104.
[55] M. Katharaki, G. G Katharakis, A comparative assessment of Greek universities’ efficiency using quantitative analysis, Int. J. Educ. Res. 49 (4–5) (2010) 115–128, https://doi.org/10.1016/j.ijer.2010.11.001, 2010.
[56] G. Cossani, L. Codoceo, H. C´ aceres, J. Tabilo, Technical efficiency in Chile’s higher education system: a comparison of rankings and accreditation, Eval. Program Plann. 92 (2022) 102058, https://doi.org/10.1016/j.evalprogplan.2022.102058.
[57] A. Kumar, R.R. Thakur, Objectivity in performance ranking of higher education institutions using dynamic data envelopment analysis, Int. J. Prod. Perform. Manag. 68 (4) (2019) 774–796, https://doi.org/10.1108/IJPPM-03-2018-0089.
dc.relation.citationendpage.spa.fl_str_mv 12
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 5
dc.relation.citationvolume.spa.fl_str_mv 9
dc.rights.eng.fl_str_mv © 2023 The Authors. Published by Elsevier Ltd.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2023 The Authors. Published by Elsevier Ltd.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 12 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Elsevier BV
dc.publisher.place.spa.fl_str_mv Netherlands
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2405844023032097
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/a2560f99-1db0-496a-aead-b93930a8704f/download
https://repositorio.cuc.edu.co/bitstreams/95a16a61-3653-46bb-8ac7-aaad48342e33/download
https://repositorio.cuc.edu.co/bitstreams/d11b2a63-43c8-4083-859f-d72364afd58a/download
https://repositorio.cuc.edu.co/bitstreams/351d834e-9920-4f33-a6b5-54ff7453fdca/download
bitstream.checksum.fl_str_mv 57526d64d71bb75c546f529768940758
2f9959eaf5b71fae44bbf9ec84150c7a
7229e9839262a56e1a90f44c21b6993e
91a3644864d6eeab948600e1cb6077b0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166850810216448
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2023 The Authors. Published by Elsevier Ltd.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mendoza-Mendoza, AdelDe La Hoz-Domínguez, EnriqueVisbal Cadavid, Delimiro Alberto2023-09-22T14:26:20Z2023-09-22T14:26:20Z2023Adel Mendoza-Mendoza, Enrique De La Hoz-Domínguez, Delimiro Visbal-Cadavid, Classification of industrial engineering programs in Colombia based on state tests, Heliyon, Volume 9, Issue 5, 2023, e16002, ISSN 2405-8440, https://doi.org/10.1016/j.heliyon.2023.e16002https://hdl.handle.net/11323/1050810.1016/j.heliyon.2023.e160022405-8440Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This article proposes an approach for the classification of industrial engineering programs offered by different higher education institutions (HEIs) in Colombia, using data envelopment analysis (DEA) and validating the results with cluster analysis. To perform this classification, data from 5318 industrial engineering students from 93 higher education institutions are used as a basis for classification based on the Saber11 and SaberPro state tests. The state tests are used to measure graduates' academic performance in the data envelopment analysis. With the efficiency results it was possible to classify higher education institutions (HEIs) into three large groups. Subsequently, this classification was validated through cluster analysis. The results show a correct classification of 77%.12 páginasapplication/pdfengElsevier BVNetherlandshttps://www.sciencedirect.com/science/article/pii/S2405844023032097Classification of industrial engineering programs in Colombia based on state testsArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85ColombiaHeliyon[1] M.I.P. Conchada, M.M. Tiongco, A Review Of The Accreditation System For Philippine Higher Education Institutions, Philippine Institute for Development Studies, 2015.[2] M. Bautista, Leveraging Philippine Human Resources For National Development And International Competitiveness. Briefer On CMO 46: Policy Standard On Outcomes-Based And Typology-Based Quality Assurance, 2014.[3] V. Aramburo, B. Boroel, G. Pineda, Predictive factors associated with academic performance in college students, Proc Soc Behv 237 (2017) 945–949, https://doi. org/10.1016/j.sbspro.2017.02.133.[4] I.W. Li, A.M. Dockery, Socio-economic Status of Schools and University Academic Performance: Implications for Australia’s Higher Education Expansion. Curtin University, National Centre for Student Equity in Higher Education, Perth, 2014.[5] K. Goodlad, L. Westengard, J. Hillstrom, Comparing faculty and student perception of academic performance, classroom behavior, and social interactions in learning communities, Coll. Teach. 66 (3) (2018) 130–139, https://doi.org/10.1080/87567555.2018.1453472.[6] D. Jackson, R. Bridgstock, Evidencing student success in the contemporary world-of-work: renewing our thinking, High Educ. Res. Dev. 37 (5) (2018) 984–998, https://doi.org/10.1080/07294360.2018.1469603.[7] Y. García, D. Lopez ´ de Castro, O. Rivero, Estudiantes universitarios con bajo rendimiento acad´emico, ¿qu´e hacer? Edumecentro 6 (2) (2014) 272–278.[8] R. Edel, Academic performance: concept, research and development, Rev. Iber. 1 (2) (2013) 1–15.[9] P. Bilge, M. Severengiz, Analysis of industrial engineering qualification for the job market, Procedia Manuf. 33 (2019) 725–731, https://doi.org/10.1016/j. promfg.2019.04.091.[10] M. Giannakis, N. Bullivant, The massification of higher education in the UK: aspects of service quality, J. Furth. High. Educ. 40 (5) (2016) 630–648, https://doi. org/10.1080/0309877X.2014.1000280.[11] V.B. Kamat, J.K. Kittur, Devising smart strategic framework for assessment of quality in engineering education, Int. J. Syst. Assur. Eng. Manag. 10 (6) (2019) 1403–1428, https://doi.org/10.1007/s13198-019-00892-9.[12] P. Jalote, B.N. Jain, S. Sopory, Classification for research universities in India, High, Educ. Next 79 (2) (2020) 225–241, https://doi.org/10.1007/s10734-019- 00406-3.[13] J.L. Kobrin, B.F. Patterson, E.J. Shaw, K.D. Mattern, S.M. Barbuti, Validity Of The SAT® For Predicting First-Year College Grade Point Average. Research Report No. 2008-5. College Board, 2008.[14] R. Morgan, Analyses of the predictive validity of the SAT® and high school grades from 1976 TO 1985, ETS Res. Rep. Ser. 1989 (2) (1989), https://doi.org/ 10.1002/j.2330-8516.1989.tb00151.x i-16.[15] L.F.R. Valbuena, Industrial Engineering Education Field in Colombia, in: International Conference on Industrial Engineering and Operations Management, 2018.[16] A. Segal, J. Snell, A. Lefstein, Dialogic teaching to the high stakes standardized test? Res. Pap. Educ. 32 (5) (2017) 596–610, https://doi.org/10.1080/ 02671522.2016.1225803.[17] R.P. Phelps, Defending Standardized Testing, Lawrence Erlbaum Associates Inc, Mahwah, NY, 2005, https://doi.org/10.4324/9781410612595.[18] R. Zwick, Assessment in American higher education: the role of admissions tests, ann Am acad pol soc sci 683, 1 (2019) 130–148, https://doi.org/10.1177/ 0002716219843469.[19] P.O. Saygin, Gender bias in standardized tests: evidence from a centralized college admissions system, Empir. Econ. 59 (2) (2020) 1037–1065, https://doi.org/ 10.1007/s00181-019-01662-z.[20] ICFES, 2020. https://www.icfes.gov.co/documents/20143/1628228/Guia+de+orientacion+saber+11+2020-1.pdf/ec534dff-b171-d51b-5ee8-c05139100635. (Accessed 10 February 2022).[21] ICFES, 2020. https://www.icfes.gov.co/documents/20143/1891934/Guia+de+orientacion+modulo+de+evaluar+Saber+Pro+2020.pdf. (Accessed 12 February 2022).[22] A. Charnes, W.W. Cooper, E. Rhodes, Measuring the efficiency of decision-making units, Eur. J. Oper. Res. 2 (6) (1978) 429–444, https://doi.org/10.1016/ 0377-2217(78)90138-8.[23] E. Thanassoulis, M.C. Silva, Measuring efficiency through data envelopment analysis, Impact 1 (2018) 37–41, https://doi.org/10.1080/ 2058802X.2018.1440814.[24] J.S. Liu, L.Y. Lu, W.M. Lu, Research fronts in data envelopment analysis, Omega 58 (2016) 33–45, https://doi.org/10.1016/j.omega.2015.04.004.[25] G.E. Halkos, D.S. Salamouris, Efficiency measurement of the Greek commercial banks with the use of financial ratios: a data envelopment analysis approach, Manag. Acc. Res. 15 (2) (2004) 201–224, https://doi.org/10.1016/j.mar.2004.02.001.[26] J.C. Paradi, H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis, Omega 41 (1) (2013) 61–79, https://doi.org/ 10.1016/j.omega.2011.08.010.[27] S. Kaffash, M. Marra, Data envelopment analysis in financial services: a citations network analysis of banks, insurance companies and money market funds, Ann. Oper. Res. 253 (1) (2017) 307–344, https://doi.org/10.1007/s10479-016-2294-1.[28] S. Jain, K.P. Triantis, S. Liu, Manufacturing performance measurement and target setting: a data envelopment analysis approach, Eur. J. Oper. Res. 214 (3) (2011) 616–626, https://doi.org/10.1016/j.ejor.2011.05.028.[29] B.C. Xie, N. Duan, Y.S. Wang, Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis, J. Clean. Prod. 153 (2017) 626–636, https://doi.org/10.1016/j.jclepro.2016.12.100.[30] F.A.S. Piran, D.P. Lacerda, L.F.R. Camargo, A. Dresch, Effects of product modularity on productivity: an analysis using data envelopment analysis and Malmquist index, Res. Eng. Des. (2020) 1–14, https://doi.org/10.1007/s00163-019-00327-3.[31] L. Asandului, M. Roman, P. Fatulescu, The efficiency of healthcare systems in Europe: a data envelopment analysis approach, Procedia Econ. Finance 10 (2014) 261–268, https://doi.org/10.1016/S2212-5671(14)00301-3.[32] V.R. Cetin, S. Bahce, Measuring the efficiency of health systems of OECD countries by data envelopment analysis, Appl. Econ. 48 (37) (2016) 3497–3507, https://doi.org/10.1080/00036846.2016.1139682.[33] M. Top, M. Konca, B. Sapaz, Technical efficiency of healthcare systems in African countries: an application based on data envelopment analysis, Heal. Pol. Techn. 9 (1) (2020) 62–68, https://doi.org/10.1016/j.hlpt.2019.11.010.[34] T. Agasisti, C. Salerno, Assessing the cost efficiency of Italian universities, Educ. Econ. 15 (4) (2007) 455–471, https://doi.org/10.1080/09645290701273491.[35] J. Nazarko, J. Aaparauskas, Application of DEA method in efficiency evaluation of public higher education institutions, Technol. Econ. Dev. Econ. 20 (1) (2014) 25–44, https://doi.org/10.3846/20294913.2014.837116.[36] J. Wolszczak-Derlacz, An evaluation and explanation of (in) efficiency in higher education institutions in Europe and the US with the application of two-stage semi-parametric DEA, Res. Pol. 46 (9) (2017) 1595–1605, https://doi.org/10.1016/j.respol.2017.07.010.[37] J. Johnes, Y.U. Li, Measuring the research performance of Chinese higher education institutions using data envelopment analysis, China Econ. Rev. 19 (4) (2008) 679–696, https://doi.org/10.1016/j.chieco.2008.08.004.[38] M.K. Ekiz, C. Tuncer S¸ akar, A new DEA approach to fully rank DMUs with an application to MBA programs, Int. Trans. Oper. Res. 27 (4) (2020) 1886–1910, https://doi.org/10.1111/itor.12635.[39] A.P. Singh, S.P. Yadav, P. Tyagi, Performance assessment of higher educational institutions in India using data envelopment analysis and re-evaluation of NIRF Rankings, Int. J. Syst. Assur. Eng. Manag. 1–12 (2022), https://doi.org/10.1007/s13198-021-01380-9.[40] M. Alswaitti, M.K. Ishak, N.A. Isa, Optimized gravitational-based data clustering algorithm, Eng. Appl. Artif. Intell. 73 (2018) 126–148, https://doi.org/ 10.1016/j.engappai.2018.05.004.[41] T. Ullmann, C. Hennig, A.L. Boulesteix, Validation of cluster analysis results on validation data: a systematic framework, Wiley Interdisc. Rev. Data Min. Know. Discov. 12 (3) (2022), https://doi.org/10.1002/widm.1444.[42] S.J. Nanda, G. Panda, A survey on nature inspired metaheuristic algorithms for partitional clustering, Swarm Evol. Comput. 16 (2014) 1–18, https://doi.org/ 10.1016/j.swevo.2013.11.003.[43] A. Bouguettaya, Q. Yu, X. Liu, X. Zhou, A. Song, Efficient agglomerative hierarchical clustering, Expert Syst. Appl. 42 (5) (2015) 2785–2797, https://doi.org/ 10.1016/j.eswa.2014.09.054.[44] A. Amini, T.Y. Wah, H. Saboohi, On density-based data streams clustering algorithms: a survey, J. Comput. Sci. Technol. 29 (1) (2014) 116–141, https://doi. org/10.1007/s11390-014-1416-y.[45] S. Suzuki, P. Nijkamp, P. Rietveld, E. Pels, A distance friction minimization approach in data envelopment analysis: a comparative study on airport efficiency, Eur. J. Oper. Res. 207 (2) (2010) 1104–1115, https://doi.org/10.1016/j.ejor.2010.05.049.[46] W.B. Xie, Y.L. Lee, C. Wang, D.B. Chen, T. Zhou, Hierarchical clustering supported by reciprocal nearest neighbors, Inf. Sci. 527 (2020) 279–292, https://doi. org/10.1016/j.ins.2020.04.016.[47] E. Delahoz-Dominguez, R. Zuluaga, T. Fontalvo-Herrera, Dataset of academic performance evolution for engineering students, Data Brief 105537 (2020), https://doi.org/10.1016/j.dib.2020.105537.[48] A. Bonaccorsi, T. Cicero, Nondeterministic ranking of university departments, J. Informetr. 10 (1) (2016) 224–237, https://doi.org/10.1016/j.joi.2016.01.007.[49] C. V’lsan, E. Druic, Corporate performance and economic convergence between Europe and the us: a cluster analysis along industry lines, Mathematics 8 (3) (2020) 451, https://doi.org/10.3390/math8030451.[50] G. Brock, V. Pihur, S. Datta, S. Datta, clValid, an R package for cluster validation, J. Stat. Software 25 (4) (2011), 10.18637/jss.v025.i04.[51] S. Kantabutra, J.C. Tang, Efficiency analysis of public universities in Thailand, Tert. Educ. Manag. 16 (1) (2010) 15–33, https://doi.org/10.1080/ 13583881003629798.[52] H. Jiang, M. Hua, J. Zhang, P. Cheng, Z. Ye, M. Huang, Q. Jin, Sustainability efficiency assessment of wastewater treatment plants in China: a data envelopment analysis based on cluster benchmarking, J. Clean Prod. 244 (2020) 118729, https://doi.org/10.1016/j.jclepro.2019.118729.[53] S. Cinaroglu, Integrated k-means clustering with data envelopment analysis of public hospital efficiency, Health Care Manag. Sci. (2019) 1–14, https://doi.org/ 10.1007/s10729-019-09491-3.[54] E. De La Hoz, R. Zuluaga, A. Mendoza, Assessing and classification of academic efficiency in engineering teaching programs, J. Eff. Respons. Educ. Sci. 14 (2021) 41–52, https://doi.org/10.7160/eriesj.2021.140104.[55] M. Katharaki, G. G Katharakis, A comparative assessment of Greek universities’ efficiency using quantitative analysis, Int. J. Educ. Res. 49 (4–5) (2010) 115–128, https://doi.org/10.1016/j.ijer.2010.11.001, 2010.[56] G. Cossani, L. Codoceo, H. C´ aceres, J. Tabilo, Technical efficiency in Chile’s higher education system: a comparison of rankings and accreditation, Eval. Program Plann. 92 (2022) 102058, https://doi.org/10.1016/j.evalprogplan.2022.102058.[57] A. Kumar, R.R. Thakur, Objectivity in performance ranking of higher education institutions using dynamic data envelopment analysis, Int. J. Prod. Perform. Manag. 68 (4) (2019) 774–796, https://doi.org/10.1108/IJPPM-03-2018-0089.12159Data envelopment analysisCluster analysisClassificationHigher education institutionsPublicationORIGINALClassification of industrial engineering programs in Colombia based on state tests.pdfClassification of industrial engineering programs in Colombia based on state tests.pdfArtículoapplication/pdf1966775https://repositorio.cuc.edu.co/bitstreams/a2560f99-1db0-496a-aead-b93930a8704f/download57526d64d71bb75c546f529768940758MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/95a16a61-3653-46bb-8ac7-aaad48342e33/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTClassification of industrial engineering programs in Colombia based on state tests.pdf.txtClassification of industrial engineering programs in Colombia based on state tests.pdf.txtExtracted texttext/plain53592https://repositorio.cuc.edu.co/bitstreams/d11b2a63-43c8-4083-859f-d72364afd58a/download7229e9839262a56e1a90f44c21b6993eMD53THUMBNAILClassification of industrial engineering programs in Colombia based on state tests.pdf.jpgClassification of industrial engineering programs in Colombia based on state tests.pdf.jpgGenerated Thumbnailimage/jpeg13207https://repositorio.cuc.edu.co/bitstreams/351d834e-9920-4f33-a6b5-54ff7453fdca/download91a3644864d6eeab948600e1cb6077b0MD5411323/10508oai:repositorio.cuc.edu.co:11323/105082024-09-17 14:18:02.326https://creativecommons.org/licenses/by-nc-nd/4.0/© 2023 The Authors. Published by Elsevier Ltd.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=