Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites
Heavy metals (HMs) have attracted considerable attention lately because of their widespread occurrence in aquatic environments and potential biological toxicity to animals and humans. The development of economical, efficient, and engineerable adsorbents such as agricultural solid waste-based bionano...
- Autores:
-
El Messaoudi, Noureddine
Miyah, Youssef
Şenol, Zeynep Mine
Kazan Kaya, Emine Sena
Gubernat, Sylwia
Georgin, Jordana
Franco, Dison S.P.
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13512
- Acceso en línea:
- https://hdl.handle.net/11323/13512
https://repositorio.cuc.edu.co/
- Palabra clave:
- Adsorption
Agricultural solid waste
Bionanocomposite
Heavy metal
Wastewater treatment
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a596b45100b816bf32bf6f413a516de5 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13512 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
title |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
spellingShingle |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites Adsorption Agricultural solid waste Bionanocomposite Heavy metal Wastewater treatment |
title_short |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
title_full |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
title_fullStr |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
title_full_unstemmed |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
title_sort |
Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites |
dc.creator.fl_str_mv |
El Messaoudi, Noureddine Miyah, Youssef Şenol, Zeynep Mine Kazan Kaya, Emine Sena Gubernat, Sylwia Georgin, Jordana Franco, Dison S.P. |
dc.contributor.author.none.fl_str_mv |
El Messaoudi, Noureddine Miyah, Youssef Şenol, Zeynep Mine Kazan Kaya, Emine Sena Gubernat, Sylwia Georgin, Jordana Franco, Dison S.P. |
dc.subject.proposal.eng.fl_str_mv |
Adsorption Agricultural solid waste Bionanocomposite Heavy metal Wastewater treatment |
topic |
Adsorption Agricultural solid waste Bionanocomposite Heavy metal Wastewater treatment |
description |
Heavy metals (HMs) have attracted considerable attention lately because of their widespread occurrence in aquatic environments and potential biological toxicity to animals and humans. The development of economical, efficient, and engineerable adsorbents such as agricultural solid waste-based bionanocomposites (ASWBNCs) for removing HMs from water by adsorption has become a research focus. The review systematically explores the synthesis methodologies of these nanocomposites, emphasizing the utilization of agricultural residues and their conversion into efficient adsorbents. The structural characteristics, including morphology and composition, are discussed, shedding light on the factors influencing the adsorption performance. The mechanisms governing the adsorption of HMs onto ASWBNCs are elucidated, providing insights into the fundamental processes at play. Furthermore, the review evaluates the impact of various parameters, such as pH, temperature, and initial metal concentration, on adsorption efficiency. This review would contribute to preparing engineerable ASWBNCs for HMs removal and provide a roadmap for researchers and others involved with remediating HMs-affected water. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-24T12:18:46Z |
dc.date.available.none.fl_str_mv |
2024-10-24T12:18:46Z |
dc.date.issued.none.fl_str_mv |
2024-06-07 |
dc.type.none.fl_str_mv |
Artículo de revista |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.none.fl_str_mv |
Text |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.none.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.none.fl_str_mv |
Noureddine El Messaoudi, Youssef Miyah, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Emine Sena Kazan-Kaya, Sylwia Gubernat, Jordana Georgin, Dison S.P. Franco, Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites, Nano-Structures & Nano-Objects, Volume 38, 2024, 101220, ISSN 2352-507X, https://doi.org/10.1016/j.nanoso.2024.101220 |
dc.identifier.issn.none.fl_str_mv |
2352-507X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13512 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.nanoso.2024.101220 |
dc.identifier.instname.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.none.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.none.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Noureddine El Messaoudi, Youssef Miyah, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Emine Sena Kazan-Kaya, Sylwia Gubernat, Jordana Georgin, Dison S.P. Franco, Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites, Nano-Structures & Nano-Objects, Volume 38, 2024, 101220, ISSN 2352-507X, https://doi.org/10.1016/j.nanoso.2024.101220 2352-507X 10.1016/j.nanoso.2024.101220 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/13512 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.none.fl_str_mv |
Nano-Structures and Nano-Objects |
dc.relation.references.none.fl_str_mv |
M.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I. M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros, Y.A. G. Mahmoud, Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review, Toxics 2023, Vol. 11, Page 580 11 (2023) 580, https://doi.org/10.3390/ TOXICS11070580 M.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I. M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros, Y.A. G. Mahmoud, Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review, Toxics 2023, Vol. 11, Page 580 11 (2023) 580, https://doi.org/10.3390/ TOXICS11070580 K.K. Sodhi, L.C. Mishra, C.K. Singh, M. Kumar, Perspective on the heavy metal pollution and recent remediation strategies, Curr. Res. Microb. Sci. 3 (2022) 100166, https://doi.org/10.1016/J.CRMICR.2022.100166. A. El Mouden, N. El Messaoudi, A. El Guerraf, A. Bouich, V. Mehmeti, A. Lacherai, A. Jada, F. Sher, Multifunctional cobalt oxide nanocomposites for efficient removal of heavy metals from aqueous solutions, Chemosphere 317 (2023) 137922, https://doi.org/10.1016/J.CHEMOSPHERE.2023.137922. S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865. S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865. S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865. T. Ahmed, M. Noman, M. Ijaz, S. Ali, M. Rizwan, U. Ijaz, A. Hameed, U. Ahmad, Y. Wang, G. Sun, B. Li, Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture, Ecotoxicol. Environ. Saf. 227 (2021) 112888, https://doi.org/ 10.1016/J.ECOENV.2021.112888. Z.M. S¸ enol, E. Elma, N. El Messaoudi, V. Mehmeti, Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: Experimental and Monte Carlo simulations studies, J. Mol. Liq. 391 (2023) 123310, https://doi.org/10.1016/J.MOLLIQ.2023.123310. E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097. E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097. E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097. D. Ramírez Ortega, D.F. Gonzalez ´ Esquivel, T. Blanco Ayala, B. Pineda, S. Gomez ´ Manzo, J. Marcial Quino, P. Carrillo Mora, V. P´erez de la Cruz, R. Ortega, G. Esquivel, B. Ayala, G. Manzo, M. Quino, C. Mora, Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity, Toxics 2021, Vol. 9, Page 23 9 (2021) 23, https://doi.org/10.3390/ TOXICS9020023. T.I. Lidsky, J.S. Schneider, Lead neurotoxicity in children: basic mechanisms and clinical correlates, Brain 126 (2003) 5–19, https://doi.org/10.1093/BRAIN/ AWG014. A. El Mouden, N. El Messaoudi, A. El Guerraf, A. Bouich, V. Mehmeti, A. Lacherai, A. Jada, J.H. Pinˆe Am´erico-Pinheiro, Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@Fe3O4 nanocomposite fabricated as nanoadsorbent, Environ. Res. 225 (2023) 115606, https://doi.org/10.1016/J. ENVRES.2023.115606. M.M. Al-Sulaiti, L. Soubra, M.A. Al-Ghouti, The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review, Curr. Pollut. Rep. 8 (2022) 249–272, https://doi.org/10.1007/S40726-022-00226-7/ TABLES/9. S.Z. Zulkipli, C.P. Tan, Y.G. Seah, H.J. Liew, Y.Y. Sung, M. Ando, M. Wang, Y. Liang, A. McMinn, W.J. Mok, Assessment of mercury contamination and food composition in commercially important marine fishes in the southern South China Sea, Reg. Stud. Mar. Sci. 58 (2023) 102795, https://doi.org/10.1016/J. RSMA.2022.102795. E.Y. Hern´ andez-Cruz, I. Amador-Martínez, A.K. Aranda-Rivera, A. Cruz-Gregorio, J. Pedraza Chaverri, Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation, Chem. Biol. Interact. 361 (2022) 109961, https://doi.org/10.1016/J.CBI.2022.109961. N.M. Smereczanski, ´ M.M. Brzoska, ´ Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data, Int. J. Mol. Sci. 24 (2023) 8413, https://doi.org/10.3390/IJMS24098413/S1. I. Palma-Lara, M. Martínez-Castillo, J.C. Quintana-P´erez, M.G. Arellano-Mendoza, F. Tamay-Cach, O.L. Valenzuela-Limon, ´ E.A. García-Montalvo, A. Hernandez- ´ Zavala, Arsenic exposure: A public health problem leading to several cancers, Regul. Toxicol. Pharmacol. 110 (2020) 104539, https://doi.org/10.1016/J. YRTPH.2019.104539. C. Ren, Y. Zhou, W. Liu, Q. Wang, Paradoxical effects of arsenic in the lungs, Environ. Heal. Prev. Med. 2021 261 26 (2021) 1–13, https://doi.org/10.1186/ S12199-021-00998-2. M. Khalid, S. Hassani, M. Abdollahi, Metal-induced oxidative stress: an evidencebased update of advantages and disadvantages, Curr. Opin. Toxicol. 20–21 (2020) 55–68, https://doi.org/10.1016/J.COTOX.2020.05.006. Q. Sun, Y. Li, L. Shi, R. Hussain, K. Mehmood, Z. Tang, H. Zhang, Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity, Toxicology 469 (2022) 153136, https://doi.org/10.1016/J.TOX.2022.153136. ] H. Routti, T.C. Atwood, T. Bechshoft, A. Boltunov, T.M. Ciesielski, J.P. Desforges, R. Dietz, G.W. Gabrielsen, B.M. Jenssen, R.J. Letcher, M.A. McKinney, A. D. Morris, F.F. Rig´et, C. Sonne, B. Styrishave, S. Tartu, State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic, Sci. Total Environ. 664 (2019) 1063–1083, https:// doi.org/10.1016/J.SCITOTENV.2019.02.030 A. Naija, H.C. Yalcin, Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish, Toxicol. Rep. 10 (2023) 498–508, https://doi.org/10.1016/J.TOXREP.2023.04.009. L. Mani´c, D. Wallace, P.U. Onganer, Y.M. Taalab, A.A. Farooqi, B. Antonijevi´c, A. Buha Djordjevic, Epigenetic mechanisms in metal carcinogenesis, Toxicol. Rep. 9 (2022) 778–787, https://doi.org/10.1016/J.TOXREP.2022.03.037. L. Zhao, R. Islam, Y. Wang, X. Zhang, L.-Z. Liu, L. Zhao, R. Islam, Y. Wang, X. Zhang, L.-Z. Liu, Epigenetic Regulation in Chromium-, Nickel- and CadmiumInduced Carcinogenesis, Cancers 2022, Vol. 14, Page 5768 14 (2022) 5768, https://doi.org/10.3390/CANCERS14235768. L. Dusengemungu, B. Mubemba, C. Gwanama, Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects, Sci. Rep. 2022 121 12 (2022) 1–16, https://doi.org/ 10.1038/s41598-022-15458-2. N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, M. El Hajam, L. Noureen, A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials, J. Water Process Eng. 55 (2023) 104150, https://doi.org/10.1016/J.JWPE.2023.104150. Z. Irshad, I. Bibi, A. Ghafoor, F. Majid, S. Kamal, S. Ezzine, Z.M. Elqahtani, N. Alwadai, N. El Messaoudi, M. Iqbal, Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation, Results Phys. 42 (2022) 106006, https://doi.org/10.1016/J.RINP.2022.106006. R. EL Kaim Billah, A. Zaghloul, H.A. Ahsaine, A. BaQais, I. Khadoudi, N. El Messaoudi, M. Agunaou, A. Soufiane, R. Jugade, Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite, Int. J. Environ. Anal. Chem. (2022), https://doi.org/ 10.1080/03067319.2022.2130690. D. Arslan, H. Ertap, Z.M. S¸ enol, N. El Messaoudi, V. Mehmeti, Preparation of Polyacrylamide Titanium Dioxide Hybrid Nanocomposite by Direct Polymerization and Its Applicability in Removing Crystal Violet from Aqueous Solution, J. Polym. Environ. 32 (2024) 573–587, https://doi.org/10.1007/ S10924-023-03004-8. N. El Messaoudi, D.S.P. Franco, S. Gubernat, J. Georgin, Z.M. S¸ enol, Z. Cigero ˘ glu, ˘ D. Allouss, M. El Hajam, Advances and future perspectives of water defluoridation by adsorption technology: A review, Environ. Res. 252 (2024) 118857, https://doi.org/10.1016/J.ENVRES.2024.118857. J. Georgin, D.S.P. Franco, M.S. Manzar, L. Meili, N. El Messaoudi, A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology, Environ. Sci. Pollut. Res. 2024 (2024) 1–34, https://doi.org/10.1007/S11356-024-32876-Z. Z.M. S¸ enol, N. El Messaoudi, Z. Cigeroglu, ˘ Y. Miyah, H. Arslanoglu, ˘ N. Baglam, ˘ E. S. Kazan-Kaya, P. Kaur, J. Georgin, Removal of food dyes using biological materials via adsorption: A review, Food Chem. 450 (2024) 139398, https://doi. org/10.1016/J.FOODCHEM.2024.139398. F.C. Femina Carolin, T. Kamalesh, P.S. Kumar, G. Rangasamy, A Critical Review on the Sustainable Approaches for the Removal of Toxic Heavy Metals from Water Systems, Ind. Eng. Chem. Res. 62 (2023) 8575–8601, https://doi.org/10.1021/ ACS.IECR.3C00709/ASSET/IMAGES/MEDIUM/IE3C00709_0008.GIF. S. Das, C.K. Singh, K.K. Sodhi, V.K. Singh, Circular economy approaches for water reuse and emerging contaminant mitigation: innovations in water treatment, Environ. Dev. Sustain. 2023 (2023) 1–42, https://doi.org/10.1007/S10668-023- 04183-Z. Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng. 26 (2018) 289–300, https://doi.org/10.1016/ J.JWPE.2018.11.003. S. Lagdali, Y. Miyah, M. El-Habacha, G. Mahmoudy, M. Benjelloun, S. Iaich, M. Zerbet, M. Chiban, F. Sinan, Performance assessment of a phengite clay-based flat membrane for microfiltration of real-wastewater from clothes washing: Characterization, cost estimation, and regeneration, Case Stud. Chem. Environ. Eng. 8 (2023) 100388, https://doi.org/10.1016/J.CSCEE.2023.100388. Y. Miyah, N. El Messaoudi, M. Benjelloun, Y. Acikbas, Z.M. S¸ enol, Z. Cigero ˘ glu, ˘ E. A. Lopez-Maldonado, Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review, Chemosphere 358 (2024) 142236, https:// doi.org/10.1016/J.CHEMOSPHERE.2024.142236. Y. Miyah, S. Ssouni, M. Benjelloun, F. Mejbar, M. El-Habacha, S. Iaich, E. H. Arjdal, A. Lahrichi, F. Zerrouq, DFT theoretical analysis and experimental approach combination to understand the toxic dye’s adsorption mechanism on the corncob-activated carbon surface, J. Mol. Struct. 1288 (2023) 135742, https://doi.org/10.1016/J.MOLSTRUC.2023.135742. F. Mejbar, Y. Miyah, M. Benjelloun, S. Ssouni, K. Saka, A. Lahrichi, F. Zerrouq, High-performance of Cu@eggshells for toxic dyes catalytic wet peroxide oxidation: Kinetics, design of experiments, regeneration, and cost analysis, Case Stud. Chem. Environ. Eng. 9 (2024) 100572, https://doi.org/10.1016/J. CSCEE.2023.100572 M. Benjelloun, Y. Miyah, G.A. Evrendilek, A.E.O. Lalami, I. Demir, B. Atmaca, S. Ssouni, S. Lairini, R. Bouslamti, Synergistic effect of coupling ozonation/ adsorption system for toxic dye efficient removal: chemometric optimization by Box–Behnken response surface methodology, Desalin. Water Treat. 306 (2023) 220–235, https://doi.org/10.5004/DWT.2023.29821 S. Ssouni, Y. Miyah, M. Benjelloun, F. Mejbar, M. El-Habacha, S. Iaich, A. Ait Addi, A. Lahrichi, High-performance of muscovite clay for toxic dyes’ removal: Adsorption mechanism, response surface approach, regeneration, and phytotoxicity assessment, Case Stud. Chem. Environ. Eng. 8 (2023) 100456, https://doi.org/10.1016/J.CSCEE.2023.100456. M. Albqmi, Z. Frontistis, Z. Raji, A. Karim, A. Karam, S. Khalloufi, Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review, Waste 2023, Vol. 1, Pages 775-805 1 (2023) 775–805, https://doi.org/10.3390/WASTE1030046. A. El Mouden, A. El Guerraf, N. El Messaoudi, R. Haounati, A. Ait El Fakir, A. Lacherai, Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution, Chem. Afr. 5 (2022) 745–759, https://doi.org/10.1007/S42250-022-00350-3. M.A. Rather, S. Bhuyan, R. Chowdhury, R. Sarma, S. Roy, P.R. Neog, Nanoremediation strategies to address environmental problems, Sci. Total Environ. 886 (2023) 163998, https://doi.org/10.1016/J. SCITOTENV.2023.163998. Y. Miyah, M. Benjelloun, R. Salim, L. Nahali, F. Mejbar, A. Lahrichi, S. Iaich, F. Zerrouq, Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder, J. Mol. Liq. 362 (2022) 119739, https://doi.org/10.1016/J. MOLLIQ.2022.119739. N. El Messaoudi, A. Dbik, M. El Khomri, A. Sabour, S. Bentahar, A. Lacherai, Date stones of Phoenix dactylifera and jujube shells of Ziziphus lotus as potential biosorbents for anionic dye removal, Int J. Phytoremediat. 19 (2017) 1047–1052, https://doi.org/10.1080/15226514.2017.1319331. Y. Miyah, A. Lahrichi, R. Kachkoul, G. El Mouhri, M. Idrissi, S. Iaich, F. Zerrouq, Multi-parametric filtration effect of the dyes mixture removal with the low cost materials, Arab J. Basic Appl. Sci. 27 (2020) 248–258, https://doi.org/10.1080/ 25765299.2020.1776008. N. El Messaoudi, M. El Khomri, A. Dbik, S. Bentahar, A. Lacherai, Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus), J. Dispers. Sci. Technol. 38 (2016) 1168–1174, https://doi.org/10.1080/01932691.2016.1228070 Y. Miyah, A. Lahrichi, M. Idrissi, A. Khalil, F. Zerrouq, Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies, Surf. Interfaces 11 (2018) 74–81, https://doi.org/10.1016/J. SURFIN.2018.03.006. M. Benjelloun, Y. Miyah, R. Bouslamti, L. Nahali, F. Mejbar, S. Lairini, The FastEfficient Adsorption Process of the Toxic Dye onto Shells Powders of Walnut and Peanut: Experiments, Equilibrium, Thermodynamic, and Regeneration Studies, Chem. Afr. 2022 52. 5 (2022) 375–393, https://doi.org/10.1007/S42250-022- 00328-1. N.El Messaoudi, A.El Mouden, M.El Khomri, A. Bouich, Y. Fernine, Z. Cigero ˘ glu, ˘ J.H.P. Am´erico-Pinheiro, N. Labjar, A. Jada, M. Sillanp¨ a¨ a, A. Lacherai, Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf, Fluid Phase Equilib. 563 (2022) 113585, https://doi.org/10.1016/J.FLUID.2022.113585. M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, Y. Fernine, A. Lacherai, A. Jada, Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes, Chem. Afr. 7 (2022) 1083–1095, https://doi.org/10.1007/S42250-022-00395-4. M.El Khomri, N.El Messaoudi, A. Dbik, S. Bentahar, Y. Fernine, A. Bouich, A. Lacherai, A. Jada, Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye, Emergent Mater. 5 (2022) 1679–1688, https://doi.org/10.1007/S42247-022- 00390-Y. M. Benjelloun, Y. Miyah, S. Ssouni, S. Iaich, M. El-habacha, S. Lagdali, K. Saka, E. M. Iboustaten, A.A. Addi, S. Lairini, R. Bouslamti, Capparis spinosa L waste activated carbon as an efficient adsorbent for Crystal Violet toxic dye removal: modeling, optimization by experimental design, and ecological analysis, Chin. J. Chem. Eng. (2024), https://doi.org/10.1016/J.CJCHE.2024.04.010. E.P. Kuncoro, T. Soedarti, T.W.C. Putranto, H. Darmokoesoemo, N.R. Abadi, H. S. Kusuma, Characterization of a mixture of algae waste-bentonite used as adsorbent for the removal of Pb2+ from aqueous solution, Data Br. 16 (2018) 908–913, https://doi.org/10.1016/J.DIB.2017.12.030. E.P. Kuncoro, D.R. Mitha Isnadina, H. Darmokoesoemo, F. Dzembarahmatiny, H. S. Kusuma, Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite, Data Br. 16 (2018) 354–360, https://doi.org/10.1016/J.DIB.2017.11.060. E.P. Kuncoro, D.R.M. Isnadina, H. Darmokoesoemo, O.R. Fauziah, H.S. Kusuma, Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite, Data Br. 16 (2018) 622–629, https://doi.org/10.1016/J.DIB.2017.11.098. R.A. Khera, A. Ahmad, S.M. Hassan, A. Nazir, A. Kausar, H.S. Kusuma, J. Niasr, N. Masood, U. Younas, R. Nawaz, M.I. Khan, R.A. Khera, S.M. Hassan, Kinet. Equilib. Stud. Copp., zinc, Nickel ions Adsorpt. Remov. Archontophoenix Alexandra.: Cond. Optim. RSM (2020), https://doi.org/10.5004/ dwt.2020.25937. Y.A.B. Neolaka, A.A.P. Riwu, U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, H. Darmokoesoemo, H.S. Kusuma, Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes, Results Chem. 5 (2023) 100711, https://doi.org/10.1016/J. RECHEM.2022.100711. Y.A.B. Neolaka, Y. Lawa, J. Naat, A.C. Lalang, B.A. Widyaningrum, G.F. Ngasu, K. A. Niga, H. Darmokoesoemo, M. Iqbal, H.S. Kusuma, Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder, Results Eng. 17 (2023) 100824, https://doi.org/10.1016/J. RINENG.2022.100824. H.S. Kusuma, N. Illiyanasafa, D.E.C. Jaya, H. Darmokoesoemo, N.R. Putra, Utilization of the microalga Chlorella vulgaris for mercury bioremediation from wastewater and biomass production, Sustain. Chem. Pharm. 37 (2024) 101346, https://doi.org/10.1016/J.SCP.2023.101346. N. El Messaoudi, M. El Khomri, N. Chlif, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells, Ground Sustain Dev. 12 (2021) 100552, https://doi.org/10.1016/j.gsd.2021.100552 M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, A. Lacherai, N. Faska, A. Jada, Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution, Chem. Eng. Commun. 209 (2022) 1304–1315, https://doi.org/10.1080/00986445.2021.1963960 Y. Tang, W. Zhao, L. Gao, G. Zhu, Y. Jiang, Y. Rui, P. Zhang, Harnessing synergy: Integrating agricultural waste and nanomaterials for enhanced sustainability, Environ. Pollut. 341 (2024) 123023, https://doi.org/10.1016/J. ENVPOL.2023.123023 N. El Messaoudi, M. El Khomri, A. Dabagh, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, M. Iqbal, A. Jada, F. Sher, E.C. ´ Lima, Synthesis of a novel nanocomposite based on date stones/CuFe2O4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution, Https://Doi. Org. /10. 1080/ 00207233. 2021. 1929469 79 (2021) 417–435, https://doi.org/10.1080/ 00207233.2021.1929469. N. El Messaoudi, M. El Khomri, A. Dabagh, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, M. Iqbal, A. Jada, F. Sher, E.C. ´ Lima, Synthesis of a novel nanocomposite based on date stones/CuFe2O4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution, Int. J. Environ. Stud. 79 (2022) 417–435, https://doi.org/10.1080/00207233.2021.1929469 A. Blasi, A. Verardi, C.G. Lopresto, S. Siciliano, P. Sangiorgio, Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview, Recycl. 2023, Vol. 8, Page 61 8 (2023) 61, https://doi.org/10.3390/ RECYCLING8040061. H.E. Al-Hazmi, J. Łuczak, S. Habibzadeh, M.S. Hasanin, A. Mohammadi, A. Esmaeili, S.-J. Kim, M. Khodadadi Yazdi, N. Rabiee, M. Badawi, M.R. Saeb, Polysaccharide nanocomposites in wastewater treatment: A review, Chemosphere 347 (2024) 140578, https://doi.org/10.1016/J.CHEMOSPHERE.2023.140578. N. El Messaoudi, M. El Khomri, Z.G. Chegini, A. Bouich, A. Dbik, S. Bentahar, N. Labjar, M. Iqbal, A. Jada, A. Lacherai, Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles, Nanotechnol. Environ. Eng. 7 (2022) 797–811, https://doi.org/10.1007/S41204-021-00173-6. J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6 (2020) e04691, https://doi.org/ 10.1016/J.HELIYON.2020.E04691. Z.T. Chong, L.S. Soh, W.F. Yong, Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants: Modification, remediation and industry application, Results Eng. 17 (2023) 100960, https://doi.org/10.1016/J. RINENG.2023.100960. S. Kainth, P. Sharma, O.P. Pandey, Green sorbents from agricultural wastes: A review of sustainable adsorption materials, Appl. Surf. Sci. Adv. 19 (2024) 100562, https://doi.org/10.1016/j.apsadv.2023.100562. N. El Messaoudi, M. El Khomri, Z.G. Chegini, A. Dbik, S. Bentahar, M. Iqbal, A. Jada, A. Lacherai, Desorption of crystal violet from alkali-treated agricultural material waste: an experimental study, kinetic, equilibrium and thermodynamic modeling, Pigm Resin Technol. 51 (2022) 309–319, https://doi.org/10.1108/prt02-2021-0019. A.A. Oyekanmi, M.M. Hanafiah, T.T. Dele-Afolabi, A. Ahmad, M.B. Alshammari, Development of nanoparticles loaded composites from agricultural wastes for cationic dye removal from aqueous solution – A review, J. Environ. Chem. Eng. 10 (2022) 108263, https://doi.org/10.1016/j.jece.2022.108263. F.A. Ahmad, The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water, Heliyon 9 (2023) e16449, https://doi.org/10.1016/j.heliyon.2023. e16449. T.K. Sen, Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review, Molecules 28 (2023), https://doi.org/10.3390/molecules28145575. R. Phiri, S. Mavinkere Rangappa, S. Siengchin, Agro-waste for renewable and sustainable green production: A review, J. Clean. Prod. 434 (2024) 139989, https://doi.org/10.1016/j.jclepro.2023.139989. X. Nqoro, R. Taziwa, P. Popoola, Recent progress in the conversion of agricultural waste into functional materials, Biomass-.-. Convers. Biorefinery. (2023), https:// doi.org/10.1007/s13399-023-05044-5. A. Alsulaili, K. Elsayed, A. Refaie, Utilization of agriculture waste materials as sustainable adsorbents for heavy metal removal: A comprehensive review, J. Eng. Res. (2023), https://doi.org/10.1016/j.jer.2023.09.018. P.C. Nath, A. Ojha, S. Debnath, M. Sharma, K. Sridhar, P.K. Nayak, B.S. Inbaraj, Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review, Agronomy 13 (2023), https://doi.org/10.3390/agronomy13020561. P. Kumar Sarangi, S. Subudhi, L. Bhatia, K. Saha, D. Mudgil, K. Prasad Shadangi, R.K. Srivastava, B. Pattnaik, R.K. Arya, Utilization of agricultural waste biomass and recycling toward circular bioeconomy, Environ. Sci. Pollut. Res. 30 (2023) 8526–8539, https://doi.org/10.1007/s11356-022-20669-1 N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, A. Bouich, E.S. Kazan-Kaya, L. Noureen, J.H.P. Am´erico-Pinheiro, Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption, Adv. Chem. Pollut., Environ. Manag. Prot. 10 (2024) 305–345, https://doi.org/10.1016/BS. APMP.2023.06.016. N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, E.S. Kazan-Kaya, Y. Fernine, S. Gubernat, Z. Lopicic, Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review, Biomass-.-. Convers. Biorefinery 2024. (2024) 1–22, https://doi.org/10.1007/S13399-023- 05264-9. S. Muhammad, H.P.S. Abdul Khalil, S. Abd Hamid, Y.M. Albadn, A.B. Suriani, S. Kamaruzzaman, A. Mohamed, A.A. Allaq, E.B. Yahya, Insights into Agricultural-Waste-Based Nano-Activated Carbon Fabrication and Modifications for Wastewater Treatment Application, Agriculture 12 (2022), https://doi.org/ 10.3390/agriculture12101737. G.J.F. Cruz, D. Mondal, J. Rimaycuna, K. Soukup, M.M. Gomez, ´ J.L. Solis, J. Lang, Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water, J. Environ. Chem. Eng. 8 (2020), https://doi.org/10.1016/j. jece.2020.103800. J. Gupta, M. Kumari, A. Mishra, M. Akram, I.S. Thakur, Agro-forestry waste management- A review, Chemosphere 287 (2022), https://doi.org/10.1016/j. chemosphere.2021.132321. J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng, Z. Zhang, A review on agroindustrial waste (AIW) derived adsorbents for water and wastewater treatment, J. Environ. Manag. 227 (2018) 395–405, https://doi.org/10.1016/J. JENVMAN.2018.08.069. S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustain. Mater. Technol. 9 (2016) 10–40, https://doi.org/10.1016/J. SUSMAT.2016.06.002. Z.M. S¸ enol, N.El Messaoudi, Y. Fernine, Z.S. Keskin, Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies, Biomass-.-. Convers. Biorefinery. (2023) 1–14, https://doi.org/10.1007/S13399-023-03781-1. Y. Khairnar, D. Hansora, C. Hazra, D. Kundu, S. Tayde, S. Tonde, J. Naik, A. Chatterjee, Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications, Carbohydr. Polym. Technol. Appl. 2 (2021) 100065, https://doi.org/10.1016/J. CARPTA.2021.100065. S. Babu, S. Singh Rathore, R. Singh, S. Kumar, V.K. Singh, S.K. Yadav, V. Yadav, R. Raj, D. Yadav, K. Shekhawat, O. Ali Wani, Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review, Bioresour. Technol. 360 (2022) 127566, https://doi.org/10.1016/J. BIORTECH.2022.127566. K.Y. Perera, D. Pradhan, A. Rafferty, A.K. Jaiswal, S. Jaiswal, A comprehensive review on metal oxide-nanocellulose composites in sustainable active and intelligent food packaging, Food Chem. Adv. 3 (2023) 100436, https://doi.org/ 10.1016/J.FOCHA.2023.100436. E. Capanoglu, E. Nemli, F. Tomas-Barberan, Novel Approaches in the Valorization of Agricultural Wastes and Their Applications, J. Agric. Food Chem. 70 (2022) 6787–6804, https://doi.org/10.1021/ACS.JAFC.1C07104/ASSET/IMAGES/ LARGE/JF1C07104_0001.JPEG. R. Dungani, H.P.S. Abdul Khalil, N.A.S. Aprilia, I. Sumardi, P. Aditiawati, A. Darwis, T. Karliati, A. Sulaeman, E. Rosamah, M. Riza, Bionanomaterial from agricultural waste and its application, Cellul. Nanofibre Compos. Prod. Prop. Appl. (2017) 45–88, https://doi.org/10.1016/B978-0-08-100957-4.00003-6 B.K. Biswal, R. Balasubramanian, Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review, J. Environ. Chem. Eng. 11 (2023) 110986, https://doi.org/10.1016/J.JECE.2023.110986. Y. Fei, Y.H. Hu, Recent progress in removal of heavy metals from wastewater: A comprehensive review, Chemosphere 335 (2023) 139077, https://doi.org/ 10.1016/J.CHEMOSPHERE.2023.139077. P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett. 8 (2010) 199–216, https://doi.org/ 10.1007/s10311-010-0297-8. N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem. 76 (2019) 17–38, https://doi.org/10.1016/J.JIEC.2019.03.029. H. Ali, E. Khan, I. Ilahi, Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation, J. Chem. 2019 (2019) 6730305, https://doi.org/10.1155/ 2019/6730305. C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, V.H. Guerrero, Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environ. Technol. Innov. 22 (2021) 101504, https://doi.org/10.1016/J.ETI.2021.101504. N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, J. Hazard. Mater. 151 (2008) 1–8, https://doi.org/10.1016/J.JHAZMAT.2007.09.101. J.P. Vareda, A.J.M. Valente, L. Dur˜ aes, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review, J. Environ. Manag. 246 (2019) 101–118, https://doi.org/10.1016/J.JENVMAN.2019.05.126. L.S. V´elez-P´erez, J. Ramirez-Nava, G. Hernandez-Flores, ´ O. Talavera-Mendoza, C. Escamilla-Alvarado, H.M. Poggi-Varaldo, O. Solorza-Feria, J.A. Lopez-Díaz, ´ Industrial acid mine drainage and municipal wastewater co-treatment by dualchamber microbial fuel cells, Int. J. Hydrog. Energy 45 (2020) 13757–13766, https://doi.org/10.1016/J.IJHYDENE.2019.12.037. V. Parth, N.N. Murthy, P.R. Saxena, Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications, E3 J. Environ. Res. Manag. 2 (2011) 27–34. S. Rezapour, M. Azizi, A. Nouri, Pollution Analysis and Health Implications of Heavy Metals under Different Urban Soil Types in a Semi-Arid Environment, Sustainability 15 (2023), https://doi.org/10.3390/su151612157. Q. Zhou, N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, X. Yao, Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017, Glob. Ecol. Conserv. 22 (2020) e00925, https://doi.org/10.1016/J. GECCO.2020.E00925. P.N. Obasi, B.E.B. Akudinobi, Heavy metals occurrence, assessment and distribution in water resources of the lead–zinc mining areas of Abakaliki, Southeastern Nigeria, Int. J. Environ. Sci. Technol. 16 (2019) 8617–8638, https://doi.org/10.1007/s13762-019-02489-y. A.-E. Birn, L. Shipton, T. Schrecker, Canadian mining and ill health in Latin America: a call to action, Can. J. Public Heal. 109 (2018) 786–790, https://doi. org/10.17269/s41997-018-0113-y. T.T.N. Le, V.T. Le, M.U. Dao, Q.V. Nguyen, T.T. Vu, M.H. Nguyen, D.L. Tran, H. S. Le, Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions, Chem. Eng. Commun. 206 (2019) 1337–1352, https://doi.org/10.1080/ 00986445.2018.1558215. M.M.S. Cabral Pinto, E.A. Ferreira da Silva, Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment, Int. J. Environ. Res. Public Health 16 (2019), https://doi.org/ 10.3390/ijerph16010002. M.M.S. Cabral Pinto, P. Marinho-Reis, A. Almeida, E. Pinto, O. Neves, M. Inacio, ´ B. Gerardo, S. Freitas, M.R. Simoes, ˜ P.A. Dinis, L. Diniz, E. Ferreira da Silva, P. I. Moreira, Links between Cognitive Status and Trace Element Levels in Hair for an Environmentally Exposed Population: A Case Study in the Surroundings of the Estarreja Industrial Area, Int. J. Environ. Res. Public Health 16 (2019), https:// doi.org/10.3390/ijerph16224560. A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of Heavy Metals from Industrial Wastewaters: A Review, ChemBioEng Rev. 4 (2017) 37–59, https://doi. org/10.1002/cben.201600010. A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G.N. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett. 17 (2019) 729–754, https://doi.org/ 10.1007/s10311-018-00828-y S. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev. 48 (2019) 463–487, https://doi.org/10.1039/C8CS00493E. S. Gubernat, J. Czarnota, A. Masłon, ´ P. Koszelnik, A. Pękala, A. Skwarczynska- ´ Wojsa, Efficiency of phosphorus removal and recovery from wastewater using marl and travertine and their thermally treated forms, J. Water Process Eng. 53 (2023) 103642, https://doi.org/10.1016/j.jwpe.2023.103642. S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, Phosphorus removal from wastewater using marl and travertine and their thermal modifications, Desalin. Water Treat. 275 (2022) 35–46, https://doi.org/10.5004/dwt.2022.28529. S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, Reactive Materials in the Removal of Phosphorus Compounds from Wastewater-A Review, Mater. (Basel) 13 (2020) 3377, https://doi.org/10.3390/ma13153377. S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, M. Chutkowski, M. Tupaj, J. Gumieniak, A. Kramek, T. Galek, Removal of Phosphorus with the Use of Marl and Travertine and Their Thermally Modified Forms—Factors Affecting the Sorption Capacity of Materials and the Kinetics of the Sorption Process, Mater. (Basel) 16 (2023) 1225, https://doi.org/10.3390/ma16031225. J. Jampílek, K. Kra´ľova, ´ Preparation of nanocomposites from agricultural waste and their versatile applications, Multifunct. Hybrid. Nanomater. Sustain. Agric. -Food Ecosyst. (2020) 51–98, https://doi.org/10.1016/B978-0-12-821354- 4.00004-2. Keshu, M. Rani, U. Shanker, Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane, Int. J. Biol. Macromol. 268 (2024) 131535, https://doi.org/10.1016/J.IJBIOMAC.2024.131535. A.M. Zayed, B.S. Metwally, M.A. Masoud, M.F. Mubarak, H. Shendy, M. M. Abdelsatar, P. Petrounias, A.H. Ragab, A.A. Hassan, M.S.M. Abdel Wahed, Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems, RSC Adv. 13 (2023) 24887–24898, https://doi.org/ 10.1039/D3RA03105E. N. Zhang, F. Reguyal, S. Praneeth, A.K. Sarmah, A green approach of biocharsupported magnetic nanocomposites from white tea waste: Production, characterization and plausible synthesis mechanisms, Sci. Total Environ. 886 (2023) 163923, https://doi.org/10.1016/J.SCITOTENV.2023.163923. E.F. Mohamed, H. Ali, New Pt/TiO2/Ti2Fe2O7 nanocomposite using sugarcane bagasse agro-waste for photodegradation of toluene gas pollutant under sunlight, Mater. Sci. Eng. B. 295 (2023) 116583, https://doi.org/10.1016/J. MSEB.2023.116583. ] S.G. Hernandez-Castro, L. Z. Flores-Lopez, ´ H. Espinoza-Gomez, G. Alonso-Nunez, ˜ Photocatalytic activity of silver nanoparticles@cellulose nanocomposites, from pistachio husk, in the toxic azo commercial dye degradation, Int. J. Biol. Macromol. 254 (2024) 127805, https://doi.org/10.1016/J. IJBIOMAC.2023.127805. H.S. Kusuma, D.E.C. Jaya, Analysis of Esterification Research in Indonesia for 25 Years using Bibliometric Method, Egypt. J. Chem. 66 (2023) 1–9, https://doi.org/ 10.21608/EJCHEM.2023.180021.7309 S.M. El-Sayed, H.S. El-Sayed, Boosting the nutritional value of stirred yogurt by adding nano-sized avocado seed powder and Lactobacillus acidophilus, Egypt. J. Chem. 67 (2024) 13–25, https://doi.org/10.21608/EJCHEM.2024.254083.8968. H.S. Kusuma, G.I.Al Lantip, X. Mutiara, M. Iqbal, Evaluation of Mini Bibliometric Analysis, Moisture Ratio, Drying Kinetics, and Effective Moisture Diffusivity in the Drying Process of Clove Leaves using Microwave-Assisted Drying, Appl. Food Res. 3 (2023) 100304, https://doi.org/10.1016/J.AFRES.2023.100304. J. Opbroek, E. Pereira Barboza, M. Nieuwenhuijsen, P. Dadvand, N. Mueller, Urban green spaces and behavioral and cognitive development in children: A health impact assessment of the Barcelona “Eixos Verds” Plan (Green Axis Plan), Environ. Res. 244 (2024) 117909, https://doi.org/10.1016/J. ENVRES.2023.117909. M.M. Rhaman, M.R. Karim, M.K.M.Z. Hyder, Y. Ahmed, R.K. Nath, Removal of Chromium (VI) from Effluent by a Magnetic Bioadsorbent Based on Jute Stick Powder and its Adsorption Isotherm, Kinetics and Regeneration Study, Water Air. Soil Pollut. 231 (2020) 1–18, https://doi.org/10.1007/S11270-020-04544-8/ METRICS. M. El-habacha, Y. Miyah, S. Lagdali, G. Mahmoudy, A. Dabagh, M. Chiban, F. Sinan, S. Iaich, M. Zerbet, General overview to understand the adsorption mechanism of textile dyes and heavy metals on the surface of different clay materials, Arab. J. Chem. 16 (2023) 105248, https://doi.org/10.1016/J. ARABJC.2023.105248. L. Parida, T.N. Patel, Systemic impact of heavy metals and their role in cancer development: a review, Environ. Monit. Assess. 2023 1956 195 (2023) 1–27, https://doi.org/10.1007/S10661-023-11399-Z. M. Azam, S.M. Wabaidur, M.R. Khan, S.I. Al-Resayes, M.S. Islam, Heavy Metal Ions Removal from Aqueous Solutions by Treated Ajwa Date Pits: Kinetic, Isotherm, and Thermodynamic Approach, Polym. 2022, Vol. 14, Page 914 14 (2022) 914, https://doi.org/10.3390/POLYM14050914. R.B. Gapusan, M.D.L. Balela, Adsorption of anionic methyl orange dye and lead (II) heavy metal ion by polyaniline-kapok fiber nanocomposite, Mater. Chem. Phys. 243 (2020) 122682, https://doi.org/10.1016/J. MATCHEMPHYS.2020.122682. M. Ngabura, S.A. Hussain, W.A.W.A. Ghani, M.S. Jami, Y.P. Tan, Utilization of renewable durian peels for biosorption of zinc from wastewater, J. Environ. Chem. Eng. 6 (2018) 2528–2539, https://doi.org/10.1016/J.JECE.2018.03.052. G.C. Saha, M.I.U. Hoque, M.A.M. Miah, R. Holze, D.A. Chowdhury, S. Khandaker, S. Chowdhury, Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta(L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies, J. Environ. Chem. Eng. 5 (2017) 2151–2162, https://doi.org/10.1016/J.JECE.2017.04.013. A. Takdastan, S. Samarbaf, Y. Tahmasebi, N. Alavi, A.A. Babaei, Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling, J. Ind. Eng. Chem. 78 (2019) 352–363, https://doi.org/ 10.1016/J.JIEC.2019.05.034. H. Hernandez-Cocoletzi, ´ R.A. Salinas, E. Aguila-Almanza, ´ E. Rubio-Rosas, W. S. Chai, K.W. Chew, C. Mariscal-Hern´ andez, P.L. Show, Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent, Environ. Technol. Innov. 20 (2020) 101109, https://doi.org/10.1016/J. ETI.2020.101109. S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag. 209 (2018) 382–392, https:// doi.org/10.1016/J.JENVMAN.2017.12.080. L. Li, D. Zhong, Y. Xu, N. Zhong, A novel superparamagnetic micro-nano-bioadsorbent PDA/Fe3O4/BC for removal of hexavalent chromium ions from simulated and electroplating wastewater, Environ. Sci. Pollut. Res. 26 (2019) 23981–23993, https://doi.org/10.1007/S11356-019-05674-1/METRICS. F.X. Dong, L. Yan, X.H. Zhou, S.T. Huang, J.Y. Liang, W.X. Zhang, Z.W. Guo, P. R. Guo, W. Qian, L.J. Kong, W. Chu, Z.H. Diao, Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism, J. Hazard. Mater. 416 (2021) 125930, https://doi.org/ 10.1016/J.JHAZMAT.2021.125930 B. Chu, Y. Amano, M. Machida, Preparation of bean dreg derived N-doped activated carbon with high adsorption for Cr(VI), Colloids Surf. A Physicochem. Eng. Asp. 586 (2020) 124262, https://doi.org/10.1016/J. COLSURFA.2019.124262 U. Dalal, S.N. Reddy, A novel nano zero-valent iron biomaterial for chromium (Cr 6+ to Cr 3+) reduction, Environ. Sci. Pollut. Res. 26 (2019) 10631–10640, https://doi.org/10.1007/S11356-019-04528-0/METRICS. J. Niki´c, A. Tubi´c, M. Watson, S. Maleti´c, M. Soli ˇ ´c, T. Majki´c, J. Agbaba, Arsenic Removal from Water by Green Synthesized Magnetic Nanoparticles, Water 2019, Vol. 11, Page 2520 11 (2019) 2520, https://doi.org/10.3390/W11122520. S.G. Mohammad, D.E. Abulyazied, S.M. Ahmed, Application of polyaniline/ activated carbon nanocomposites derived from different agriculture wastes for the removal of Pb(II) from aqueous media, Desalin. Water Treat. 170 (2019) 199–210, https://doi.org/10.5004/DWT.2019.24694. S. Fooladgar, A. Teimouri, S. Ghanavati Nasab, Highly Efficient Removal of Lead Ions from Aqueous Solutions Using Chitosan/Rice Husk Ash/Nano Alumina with a Focus on Optimization by Response Surface Methodology: Isotherm, Kinetic, and Thermodynamic Studies, J. Polym. Environ. 27 (2019) 1025–1042, https:// doi.org/10.1007/S10924-019-01385-3/METRICS. S. Kaur, A. Roy, Bioremediation of heavy metals from wastewater using nanomaterials, Environ. Dev. Sustain. 23 (2021) 9617–9640, https://doi.org/ 10.1007/S10668-020-01078-1/METRICS. Z. Cigero ˘ glu, ˘ N. El Messaoudi, Z.M. S¸ enol, G. Bas¸kan, J. Georgin, S. Gubernat, Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: A review, Mater. Today Sustain. 26 (2024) 100735, https://doi.org/ 10.1016/J.MTSUST.2024.100735. K.H. Hama Aziz, R. Kareem, Recent advances in water remediation from toxic heavy metals using biochar as a green and efficient adsorbent: A review, Case Stud. Chem. Environ. Eng. 8 (2023) 100495, https://doi.org/10.1016/J. CSCEE.2023.100495. K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf, K. O. Rahman, Heavy metal pollution in the aquatic environment: efficient and lowcost removal approaches to eliminate their toxicity: a review, RSC Adv. 13 (2023) 17595–17610, https://doi.org/10.1039/D3RA00723E. A.N. Doyo, R. Kumar, M.A. Barakat, Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater, J. Taiwan Inst. Chem. Eng. 151 (2023) 105095, https://doi.org/ 10.1016/J.JTICE.2023.105095. M.A. Al-Ghouti, D. Da’ana, M. Abu-Dieyeh, M. Khraisheh, Adsorptive removal of mercury from water by adsorbents derived from date pits, Sci. Rep. 2019 91. 9 (1) (2019) 15, https://doi.org/10.1038/s41598-019-51594-y. E. Ben Khalifa, B. Rzig, R. Chakroun, H. Nouagui, B. Hamrouni, Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent, Chemom. Intell. Lab. Syst. 189 (2019) 18–26, https://doi.org/ 10.1016/J.CHEMOLAB.2019.03.014. A.L. Yang, S.Y. Yang, Y.K. Zhu, Magnetic modification of used tea leaves for uranium adsorption, N. Carbon Mater. 36 (2021) 821–826, https://doi.org/ 10.1016/S1872-5805(21)60053-7. B.C. Nyamunda, T. Chivhanga, U. Guyo, F. Chigondo, Removal of Zn (II) and Cu (II) Ions from Industrial Wastewaters Using Magnetic Biochar Derived from Water Hyacinth, J. Eng. (U. Kingd. 2019 (2019), https://doi.org/10.1155/2019/ 5656983. H. Chen, Y. Zhou, J. Wang, J. Lu, Y. Zhou, Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+, J. Hazard. Mater. 389 (2020) 121897 https://doi.org/10.1016/J.JHAZMAT.2019.121897 M.E. Mahmoud, S.M. El-Bahy, S.M.T. Elweshahy, Decorated Mn-ferrite nanoparticle@Zn–Al layered double hydroxide@Cellulose@ activated biochar nanocomposite for efficient remediation of methylene blue and mercury (II), Bioresour. Technol. 342 (2021) 126029, https://doi.org/10.1016/J. BIORTECH.2021.126029. B.G. Fouda-Mbanga, E. Prabakaran, K. Pillay, Synthesis and characterization of CDs/Al2O3 nanofibers nanocomposite for Pb2+ ions adsorption and reuse for latent fingerprint detection, Arab. J. Chem. 13 (2020) 6762–6781, https://doi. org/10.1016/J.ARABJC.2020.06.030. N.S. Alsaiari, F.M. Alzahrani, K.M. Katubi, A. Amari, F.Ben Rebah, M.A. Tahoon, Polyethylenimine-Modified Magnetic Chitosan for the Uptake of Arsenic from Water, Appl. Sci. 2021, Vol. 11, Page 5630 11 (2021) 5630, https://doi.org/ 10.3390/APP11125630. A. Ashfaq, R. Nadeem, H. Gong, U. Rashid, S. Noreen, S.U. Rehman, Z. Ahmed, M. Adil, N. Akhtar, M.Z. Ashfaq, F.A. Alharthi, E.A. Kazerooni, Fabrication of Novel Agrowaste (Banana and Potato Peels)-Based Biochar/TiO2 Nanocomposite for Adsorption of Cr(VI), Statistical Optimization via RSM Approach, Polym. 2022, Vol. 14, Page 2644 14 (2022) 2644, https://doi.org/10.3390/ POLYM14132644. S.H. Kong, C.Y.J. Chin, P.N.Y. Yek, C.C. Wong, C.S. Wong, K.Y. Cheong, R. K. Liew, S.S. Lam, Removal of heavy metals using activated carbon from microwave steam activation of palm kernel shell, Environ. Adv. 9 (2022) 100272, https://doi.org/10.1016/J.ENVADV.2022.100272. V. Priyan V, N. Kumar, S. Narayanasamy, Toxicological assessment and adsorptive removal of lead (Pb) and Congo red (CR) from water by synthesized iron oxide/activated carbon (Fe3O4/AC) nanocomposite, Chemosphere 294 (2022) 133758, https://doi.org/10.1016/J.CHEMOSPHERE.2022.133758. V. thi Quyen, T.H. Pham, J. Kim, D.M. Thanh, P.Q. Thang, Q. Van Le, S.H. Jung, T.Y. Kim, Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater, Chemosphere 284 (2021) 131312, https://doi.org/ 10.1016/J.CHEMOSPHERE.2021.131312. F. Maghsoodi Goushki, M. Reza Islami, V. Nejadshafiee, Preparation of ecofriendly nanocomposites based on immobilization of magnetic activated carbon with tartaric acid: Application for adsorption of heavy metals and evaluation of their catalytic activity in C-C coupling reaction, Mater. Sci. Eng. B. 277 (2022) 115591, https://doi.org/10.1016/J.MSEB.2021.115591. M.F. Zawrah, B.G. Alhogbi, Preparation and characterization of SiO2@C nanocomposites from rice husk for removal of heavy metals from aqueous solution, Ceram. Int. 47 (2021) 23240–23248, https://doi.org/10.1016/J. CERAMINT.2021.05.036. L.S. Mustapha, S.O. Durosinmi, S.O. Jacob-Oricha, S.Y. Lau, K.S. Obayomi, Rapid and effective adsorption of selected heavy metals from battery wastewater using silicon-oxide nanoparticles derived rice husk, Groundw. Sustain. Dev. 23 (2023) 101024, https://doi.org/10.1016/J.GSD.2023.101024. B.G. Fouda-Mbanga, T. Velempini, K. Pillay, Z. Tywabi-Ngeva, Hydrothermal development of magnetic-hydrochar nanocomposite from pineapple leaves and its performance as an adsorbent for the uptake of Mn2+ and reuse of the metal loaded adsorbent in latent fingerprint, J. Saudi Chem. Soc. 27 (2023) 101624, https://doi.org/10.1016/J.JSCS.2023.101624. M. Masuku, J.F. Nure, H.I. Atagana, N. Hlongwa, T.T.I. Nkambule, Advancing the development of nanocomposite adsorbent through zinc-doped nickel ferritepinecone biochar for removal of chromium (VI) from wastewater, Sci. Total Environ. 908 (2024) 168136, https://doi.org/10.1016/J. SCITOTENV.2023.168136. K. Kayalvizhi, N.M.I. Alhaji, D. Saravanakkumar, S.B. Mohamed, K. Kaviyarasu, A. Ayeshamariam, A.M. Al-Mohaimeed, M.R. AbdelGawwad, M.S. Elshikh, Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study, Environ. Res. 203 (2022) 111814, https:// doi.org/10.1016/J.ENVRES.2021.111814. J.S. Algethami, M.A.M. Alhamami, A.A. Alqadami, S. Melhi, A.F. Seliem, Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies, Environ. Technol. Innov. 32 (2023) 103404, https://doi.org/ 10.1016/J.ETI.2023.103404. T.Thi Huong, T.Y.Doan Trang, Removal of Lead Ions from Aqueous Media Using Rice Husk Modified with Manganese Oxide, Environ. Ecol. Res. 11 (2023) 340–361, https://doi.org/10.13189/eer.2023.110209. L. Yan, L. Kong, Z. Qu, L. Li, G. Shen, Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal, ACS Sustain. Chem. Eng. 3 (2015) 125–132, https://doi.org/10.1021/sc500619r. L. Zhou, Y. Huang, W. Qiu, Z. Sun, Z. Liu, Z. Song, Adsorption properties of nanoMnO2-biochar composites for copper in aqueous solution, Molecules 22 (1) (2017) 13, https://doi.org/10.3390/molecules22010173. R. Li, W. Liang, J.J. Wang, L.A. Gaston, D. Huang, H. Huang, S. Lei, M.K. Awasthi, B. Zhou, R. Xiao, Z. Zhang, Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash, J. Environ. Manag. 212 (2018) 77–87, https://doi.org/10.1016/j.jenvman.2017.12.034. H. Lyu, J. Tang, Y. Huang, L. Gai, E.Y. Zeng, K. Liber, Y. Gong, Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite, Chem. Eng. J. 322 (2017) 516–524, https://doi. org/10.1016/j.cej.2017.04.058. M. Zulfiqar, S.Y. Lee, A.A. Mafize, N.A.M.A. Kahar, K. Johari, N.E. Rabat, Ecient removal of PB(II) from aqueous solutions by using oil palm bio-waste/MWCNTs reinforced pva hydrogel composites: Kinetic, isotherm and thermodynamic modeling, Polym. (Basel) 12 (2020), https://doi.org/10.3390/polym12020430. I.A.A. Hamza, B.S. Martincigh, J.C. Ngila, V.O. Nyamori, Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Phys. Chem. Earth. 66 (2013), https://doi.org/10.1016/j. pce.2013.08.006 Z. Niu, W. Feng, H. Huang, B. Wang, L. Chen, Y. Miao, S. Su, Green synthesis of a novel Mn–Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal, Chemosphere 252 (2020), https://doi.org/10.1016/j. chemosphere.2020.126529. H. Liu, P. Li, F. Qiu, T. Zhang, J. Xu, Controllable preparation of FeOOH/CuO@ WBC composite based on water bamboo cellulose applied for enhanced arsenic removal, Food Bioprod. Process. 123 (2020), https://doi.org/10.1016/j. fbp.2020.06.018. E. Morifi, L. Chimuka, H. Richards, L. Senyolo, K. Pillay, Modified Macadamia nutshell nanocomposite for selective removal of hexavalent chromium from wastewater, South Afr. J. Chem. Eng. 42 (2022), https://doi.org/10.1016/j. sajce.2022.09.001. U.K. Sahu, S.S. Mahapatra, R.K. Patel, Synthesis and characterization of an ecofriendly composite of jute fiber and Fe2O3 nanoparticles and its application as an adsorbent for removal of As(V) from water, J. Mol. Liq. 237 (2017), https://doi. org/10.1016/j.molliq.2017.04.092. Y.A.B. Neolaka, G. Supriyanto, H.S. Kusuma, Adsorption performance of Cr(VI)- imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution, J. Environ. Chem. Eng. 6 (2018) 3436–3443, https://doi.org/10.1016/J.JECE.2018.04.053 Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A. Pau Riwu, H. Darmokoesoemo, G. Supriyanto, C.I. Holdsworth, A.N. Amenaghawon, H.S. Kusuma, A Cr(VI)- imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater, React. Funct. Polym. 147 (2020) 104451, https://doi.org/10.1016/J. REACTFUNCTPOLYM.2019.104451. U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, O.A. Osibote, H. Darmokoesoemo, H. S. Kusuma, Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review, J. Mater. Res. Technol. 14 (2021) 2751–2774, https://doi.org/10.1016/J.JMRT.2021.07.140. Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, A.W. Mango, H. Darmokoesoemo, B.A. Widyaningrum, M. Iqbal, H.S. Kusuma, Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater, J. Mater. Res. Technol. 18 (2022) 2896–2909, https:// doi.org/10.1016/J.JMRT.2022.03.153. Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A.P. Riwu, M. Iqbal, H. Darmokoesoemo, H. S. Kusuma, The adsorption of Cr(VI) from water samples using graphene oxidemagnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics, J. Mater. Res. Technol. 9 (2020) 6544–6556, https://doi.org/ 10.1016/J.JMRT.2020.04.040. Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, Y.E. Lindu, H. Darmokoesoemo, B. A. Widyaningrum, M. Iqbal, H.S. Kusuma, Evaluation of magnetic material IIP@ GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr(VI) from aqueous solutions, React. Funct. Polym. 166 (2021) 105000, https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105000. Y. Miyah, M. Benjelloun, A. Lahrichi, F. Mejbar, S. Iaich, G. El Mouhri, R. Kachkoul, F. Zerrouq, Highly-efficient treated oil shale ash adsorbent for toxic dyes removal: Kinetics, isotherms, regeneration, cost analysis and optimization by experimental design, J. Environ. Chem. Eng. 9 (2021) 106694, https://doi.org/ 10.1016/J.JECE.2021.106694. M. Benjelloun, Y. Miyah, R. Bouslamti, L. Nahali, F. Mejbar, S. Lairini, The FastEfficient Adsorption Process of the Toxic Dye onto Shells Powders of Walnut and Peanut: Experiments, Equilibrium, Thermodynamic, and Regeneration Studies, Chem. Afr. 2022 52. 5 (2022) 375–393, https://doi.org/10.1007/S42250-022- 00328-1. L. Ifa, S. Yani, N. Nurjannah, D. Darnengsih, A. Rusnaenah, M. Mel, M. Mahfud, H. S. Kusuma, Techno-economic analysis of bio-briquette from cashew nut shell waste, Heliyon 6 (2020) e05009, https://doi.org/10.1016/j.heliyon.2020. e05009 L. Ifa, T. Syarif, S. Sartia, J. Juliani, N. Nurdjannah, H.S. Kusuma, Technoeconomics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm oil, Heliyon 8 (2022) e09146, https://doi.org/10.1016/ J.HELIYON.2022.E09146 M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies, J. Environ. Chem. Eng. 5 (2017), https://doi.org/10.1016/j.jece.2016.12.002. Y. Liu, Q. Gao, S. Pu, H. Wang, K. Xia, B. Han, C. Zhou, Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb 2+ ions from aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 568 (2019), https://doi.org/10.1016/j. colsurfa.2019.02.017. T. Altun, H. Ecevit, Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads, Environ. Eng. Res. 25 (2020), https://doi. org/10.4491/eer.2019.112. V.T. Le, T.K.N. Tran, D.L. Tran, H.S. Le, V.D. Doan, Q.D. Bui, H.T. Nguyen, Onepot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution, J. Dispers. Sci. Technol. 40 (2019), https:// doi.org/10.1080/01932691.2018.1541414. S. Daneshfozoun, M.A. Abdullah, B. Abdullah, Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal, Ind. Crops Prod. 105 (2017), https://doi.org/10.1016/j.indcrop.2017.05.011. M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpa¨¨ a, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind. 20 (2018), https://doi.org/10.1016/j.wri.2018.10.001. T. Jayaramudu, K. Varaprasad, H.C. Kim, A. Kafy, J.W. Kim, J. Kim, Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties, Carbohydr. Polym. 171 (2017), https://doi.org/10.1016/j.carbpol.2017.04.077 D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review, J. Water Process Eng. 49 (2022) 102988, https://doi.org/ 10.1016/j.jwpe.2022.102988 J. Georgin, D.S.P. Franco, K. Da Boit Martinello, E.C. Lima, L.F.O. Silva, A review of the toxicology presence and removal of ketoprofen through adsorption technology, J. Environ. Chem. Eng. 10 (2022) 107798, https://doi.org/10.1016/ j.jece.2022.107798. H. Moussout, Y. Dehmani, D.S.P. Franco, J. Georgin, Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer, J. Mol. Liq. 383 (2023) 122106, https://doi. org/10.1016/j.molliq.2023.122106. J. Georgin, D. Stracke, P. Franco, F. Sher, A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology, Chem. Eng. Res. Des. 193 (2023) 99–120, https://doi.org/10.1016/j.cherd.2023.03.025. H. Wang, Z. Zhang, R. Sun, H. Lin, L. Gong, M. Fang, W.H. Hu, HPV infection and anemia status stratify the survival of early T2 laryngeal squamous cell carcinoma, J. Voice 29 (2015) 356–362, https://doi.org/10.1016/j.jvoice.2014.08.016. Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J. 242 (2014) 36–42, https://doi.org/10.1016/j. cej.2013.12.061 S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresour. Technol. 175 (2015) 391–395, https://doi.org/10.1016/j. biortech.2014.10.104. S.A. Baig, J. Zhu, N. Muhammad, T. Sheng, X. Xu, Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions, Biomass-.-. Bioenergy 71 (2014) 299–310, https://doi.org/10.1016/j. biombioe.2014.09.027. S.H. Wang, K.B. Stevenson, L. Hines, J.R. Mediavilla, Y. Khan, R. Soni, W. Dutch, E. Brandt, T. Bannerman, B.N. Kreiswirth, P. Pancholi, Evaluation of repetitive element polymerase chain reaction for surveillance of methicillin-resistant Staphylococcus aureus at a large academic medical center and community hospitals, Diagn. Microbiol. Infect. Dis. 81 (2015) 13–17, https://doi.org/ 10.1016/j.diagmicrobio.2014.05.005. C. Gan, Y. Liu, X. Tan, S. Wang, G. Zeng, B. Zheng, T. Li, Z. Jiang, W. Liu, Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution, RSC Adv. 5 (2015) 35107–35115, https://doi.org/10.1039/c5ra04416b M.C. Wang, G.D. Sheng, Y.P. Qiu, A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions, Int. J. Environ. Sci. Technol. 12 (2015) 1719–1726, https://doi.org/10.1007/s13762-014-0538-7. S. ye Wang, Y. kui Tang, C. Chen, J. tao Wu, Z. Huang, Y. yuan Mo, K. xuan Zhang, J. bo Chen, Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal, Bioresour. Technol. 186 (2015) 360–364, https://doi.org/10.1016/j.biortech.2015.03.139 X. Hu, Z. Ding, A.R. Zimmerman, S. Wang, B. Gao, Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis, Water Res 68 (2015) 206–216, https://doi.org/10.1016/j.watres.2014.10.009 C.O. Cope, D.S. Webster, D.A. Sabatini, Arsenate adsorption onto iron oxide amended rice husk char, Sci. Total Environ. 488–489 (2014) 554–561, https:// doi.org/10.1016/j.scitotenv.2013.12.120. Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J. 231 (2013) 512–518, https://doi.org/10.1016/j.cej.2013.07.036. M. Inyang, B. Gao, A. Zimmerman, Y. Zhou, X. Cao, Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars, Environ. Sci. Pollut. Res. 22 (2015) 1868–1876, https://doi.org/10.1007/s11356-014-2740-z M. Gulumian, C. Andraos, A. Afantitis, T. Puzyn, N.J. Coville, Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int. J. Mol. Sci. 2021, Vol. 22, Page 8347 22 (2021) 8347, https://doi.org/10.3390/IJMS22158347 M. Rahmati, M. Mozafari, Biological response to carbon-family nanomaterials: Interactions at the nano-bio interface, Front. Bioeng. Biotechnol. 7 (2019) 417659, https://doi.org/10.3389/FBIOE.2019.00004/BIBTEX. R. Mota, A.C. Rodrigues, R. Silva-Carvalho, L. Costa, D. Martins, P. Sampaio, F. Dourado, M. Gama, Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy, Nanomaterials 12 (2022) 2605, https://doi.org/ 10.3390/NANO12152605/S1. N. El Messaoudi, M. El Khomri, Y. Fernine, A. Bouich, A. Lacherai, A. Jada, F. Sher, E.C. Lima, Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment, Ground Sustain Dev. 16 (2022) 100728, https://doi.org/10.1016/j.gsd.2022.100728. D. Kołodynska, ´ J. Bąk, M. Kozioł, L.V. Pylypchuk, Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar, Nanoscale Res. Lett. 12 (2017), https://doi.org/10.1186/s11671-017-2201-y. P. Singh, A. Sarswat, C.U. Pittman, T. Mlsna, D. Mohan, Sustainable LowConcentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents - A Mechanistic Study, ACS Omega 5 (2020) 2575–2593, https://doi.org/10.1021/ acsomega.9b02842. S. Torabian, R. Qin, C. Noulas, Y. Lu, G. Wang, Biochar: An organic amendment to crops and an environmental solution, AIMS Agric. Food 6 (2021) 401–405, https://doi.org/10.3934/AGRFOOD.2021024. B.T. Nguyen, J. Lehmann, J. Kinyangi, R. Smernik, S.J. Riha, M.H. Engelhard, Long-term black carbon dynamics in cultivated soil, Biogeochemistry 92 (2009) 163–176, https://doi.org/10.1007/s10533-008-9248-x. W. Buss, M.C. Graham, G. MacKinnon, O. Maˇsek, Strategies for producing biochars with minimum PAH contamination, J. Anal. Appl. Pyrolysis 119 (2016) 24–30, https://doi.org/10.1016/j.jaap.2016.04.001. L. Dunnigan, B.J. Morton, P.A. Hall, C.W. Kwong, Production of biochar and bioenergy from rice husk: Influence of feedstock drying on particulate matter and the associated polycyclic aromatic hydrocarbon emissions, Atmos. Environ. 190 (2018) 218–225, https://doi.org/10.1016/j.atmosenv.2018.07.028 Y.Y. Wang, X.R. Jing, L.L. Li, W.J. Liu, Z.H. Tong, H. Jiang, Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms, ACS Sustain. Chem. Eng. 5 (2017) 481–488, https://doi.org/10.1021/acssuschemeng.6b01859. G. Visioli, F.D. Conti, C. Menta, M. Bandiera, A. Malcevschi, D.L. Jones, T. Vamerali, Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays, Environ. Monit. Assess. 188 (2016) 1–11, https://doi. org/10.1007/s10661-016-5173-y. D.L. Gelardi, C. Li, S.J. Parikh, An emerging environmental concern: Biocharinduced dust emissions and their potentially toxic properties, Sci. Total Environ. 678 (2019) 813–820, https://doi.org/10.1016/j.scitotenv.2019.05.007. D. Lakshmi, D. Akhil, A. Kartik, K.P. Gopinath, J. Arun, A. Bhatnagar, J. Rinklebe, W. Kim, G. Muthusamy, Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar, Sci. Total Environ. 801 (2021), https://doi. org/10.1016/j.scitotenv.2021.149623 R.M.B.O. Duarte, A.C. Duarte, Multidimensional analytical techniques in environmental research: Evolution of concepts, Elsevier Inc, 2020, https://doi. org/10.1016/B978-0-12-818896-5.00001-6. L. Wei, Y. Zhang, Q. Lu, Z. Yuan, H. Li, Q. Huang, Estimating the spatial distribution of soil total arsenic in the suspected contaminated area using UAVBorne hyperspectral imagery and deep learning, Ecol. Indic. 133 (2021) 108384, https://doi.org/10.1016/j.ecolind.2021.108384 M. Vigneshkumar, K. Yarrakula, Titanium metal identification in southern region of Tamil Nadu using hyperspectral imagery, Indian J. Geo-Mar. Sci. 47 (2018) 2100–2105. J. Jian, Y. Fang, W.-L. Li, Q.-Y. Chen, H.-Y. Tian, S.-L. You, Estimate of Heavy Metals in Soil with Non-Soil Removed, J. Data Anal. Inf. Process. 05 (2017) 140–155, https://doi.org/10.4236/jdaip.2017.54011. Y. Liu, W. Li, G. Wu, X. Xu, Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data-A case study along Le’an River, China, Geo-Spat. Inf. Sci. 14 (2011) 10–16, https://doi.org/10.1007/ s11806-011-0424-0 R. Abdlaty, M. Gobara, I. Naiem, M. Mokhtar, Innovative technique for analysis of wastewater contaminants using hyperspectral imaging, J. Spectr. Imaging 9 (2020) 1–10, https://doi.org/10.1255/jsi.2020.a12. D. Wei, H.H. Ngo, W. Guo, W. Xu, Y. Zhang, B. Du, Q. Wei, Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties, Bioresour. Technol. 214 (2016) 259–265, https://doi.org/10.1016/j.biortech.2016.04.109. M.A. Mohammad Alwi, E. Normaya, H. Ismail, A. Iqbal, B. Mat Piah, M.A. Abu Samah, M.N. Ahmad, Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium, ACS Omega 6 (2021) 25179–25192, https://doi.org/10.1021/acsomega.1c02699. W. Chen, N. Habibul, X.Y. Liu, G.P. Sheng, H.Q. Yu, FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter, Environ. Sci. Technol. 49 (2015) 2052–2058, https://doi.org/10.1021/es5049495. J. Lehmann, D. Solomon, Organic carbon chemistry in soils observed by synchrotron-based spectroscopy, Elsevier Masson SAS, 2010, https://doi.org/ 10.1016/s0166-2481(10)34010-4 H. Hu, J. Zhao, L. Wang, L. Shang, L. Cui, Y. Gao, B. Li, Y.F. Li, Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives, TrAC - Trends Anal. Chem. 122 (2020) 115721, https://doi.org/10.1016/j.trac.2019.115721 P.M. Kopittke, P. Wang, E. Lombi, E. Donner, Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems, J. Environ. Qual. 46 (2017) 1175–1189, https://doi.org/10.2134/ jeq2016.09.0361 S. Moreira, M. Ficaris, A.E.S. Vives, V.F. Nascimento Filho, O.L.A.D. Zucchi, R. C. Barroso, E.F.O. De Jesus, Heavy metals in groundwater using synchrotron radiation total reflection X-ray analysis, Instrum. Sci. Technol. 34 (2006) 567–585, https://doi.org/10.1080/10739140600811682 H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. 9 (2013) 276–282. N.A. Khan, S. Ibrahim, P. Subramaniam, Elimination of heavy metals from wastewater using agricultural wastes as adsorbents, Malays. J. Sci. 23 (2004) 43–51. Heavy Metal Removal from Wastewater Using Low Cost Adsorbents, (2015). 〈http s://doi.org/10.4172/2155-6199.1000315〉. S. Tamjidi, A. Ameri, A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater, Environ. Sci. Pollut. Res. 27 (2020) 31105–31119. J. Acharya, U. Kumar, P.M. Rafi, Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent-a review, Int. J. Curr. Eng. Technol. 8 (2018) 526–530. |
dc.relation.citationendpage.none.fl_str_mv |
18 |
dc.relation.citationstartpage.none.fl_str_mv |
1 |
dc.relation.citationissue.none.fl_str_mv |
101220 |
dc.relation.citationvolume.none.fl_str_mv |
38 |
dc.rights.none.fl_str_mv |
© 2024 |
dc.rights.license.none.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2024 https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.none.fl_str_mv |
18 páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier B.V. |
dc.publisher.place.none.fl_str_mv |
Netherlands |
publisher.none.fl_str_mv |
Elsevier B.V. |
dc.source.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2352507X24001318?via%3Dihub |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/d453d8de-d3ec-4767-af5d-e9eef08ca2af/download https://repositorio.cuc.edu.co/bitstreams/a7e60e60-c8fb-4345-bafa-43acc2178431/download https://repositorio.cuc.edu.co/bitstreams/4fcc0c0e-e21f-435c-973c-c385235031af/download https://repositorio.cuc.edu.co/bitstreams/6b8b19b6-96a7-44b2-89c5-a069fbcdb6fb/download |
bitstream.checksum.fl_str_mv |
1c2479904e72b32098e2ecbe01dfc866 73a5432e0b76442b22b026844140d683 224b39d0621346bdcb63c6d04e8f4eed 4b9f0e53869b15debc7d0d8720b50f7c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166674574999552 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2024https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2El Messaoudi, NoureddineMiyah, YoussefŞenol, Zeynep MineKazan Kaya, Emine SenaGubernat, SylwiaGeorgin, JordanaFranco, Dison S.P.2024-10-24T12:18:46Z2024-10-24T12:18:46Z2024-06-07Noureddine El Messaoudi, Youssef Miyah, Zeynep Mine Şenol, Zeynep Ciğeroğlu, Emine Sena Kazan-Kaya, Sylwia Gubernat, Jordana Georgin, Dison S.P. Franco, Comprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites, Nano-Structures & Nano-Objects, Volume 38, 2024, 101220, ISSN 2352-507X, https://doi.org/10.1016/j.nanoso.2024.1012202352-507Xhttps://hdl.handle.net/11323/1351210.1016/j.nanoso.2024.101220Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Heavy metals (HMs) have attracted considerable attention lately because of their widespread occurrence in aquatic environments and potential biological toxicity to animals and humans. The development of economical, efficient, and engineerable adsorbents such as agricultural solid waste-based bionanocomposites (ASWBNCs) for removing HMs from water by adsorption has become a research focus. The review systematically explores the synthesis methodologies of these nanocomposites, emphasizing the utilization of agricultural residues and their conversion into efficient adsorbents. The structural characteristics, including morphology and composition, are discussed, shedding light on the factors influencing the adsorption performance. The mechanisms governing the adsorption of HMs onto ASWBNCs are elucidated, providing insights into the fundamental processes at play. Furthermore, the review evaluates the impact of various parameters, such as pH, temperature, and initial metal concentration, on adsorption efficiency. This review would contribute to preparing engineerable ASWBNCs for HMs removal and provide a roadmap for researchers and others involved with remediating HMs-affected water.18 páginasapplication/pdfengElsevier B.V.Netherlandshttps://www.sciencedirect.com/science/article/pii/S2352507X24001318?via%3DihubComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocompositesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Nano-Structures and Nano-ObjectsM.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I. M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros, Y.A. G. Mahmoud, Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review, Toxics 2023, Vol. 11, Page 580 11 (2023) 580, https://doi.org/10.3390/ TOXICS11070580M.K. Abd Elnabi, N.E. Elkaliny, M.M. Elyazied, S.H. Azab, S.A. Elkhalifa, S. Elmasry, M.S. Mouhamed, E.M. Shalamesh, N.A. Alhorieny, A.E. Abd Elaty, I. M. Elgendy, A.E. Etman, K.E. Saad, K. Tsigkou, S.S. Ali, M. Kornaros, Y.A. G. Mahmoud, Toxicity of Heavy Metals and Recent Advances in Their Removal: A Review, Toxics 2023, Vol. 11, Page 580 11 (2023) 580, https://doi.org/10.3390/ TOXICS11070580K.K. Sodhi, L.C. Mishra, C.K. Singh, M. Kumar, Perspective on the heavy metal pollution and recent remediation strategies, Curr. Res. Microb. Sci. 3 (2022) 100166, https://doi.org/10.1016/J.CRMICR.2022.100166.A. El Mouden, N. El Messaoudi, A. El Guerraf, A. Bouich, V. Mehmeti, A. Lacherai, A. Jada, F. Sher, Multifunctional cobalt oxide nanocomposites for efficient removal of heavy metals from aqueous solutions, Chemosphere 317 (2023) 137922, https://doi.org/10.1016/J.CHEMOSPHERE.2023.137922.S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865.S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865.S. Mitra, A.J. Chakraborty, A.M. Tareq, T.Bin Emran, F. Nainu, A. Khusro, A. M. Idris, M.U. Khandaker, H. Osman, F.A. Alhumaydhi, J. Simal-Gandara, Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity, J. King Saud. Univ. - Sci. 34 (2022) 101865, https://doi.org/10.1016/J.JKSUS.2022.101865.T. Ahmed, M. Noman, M. Ijaz, S. Ali, M. Rizwan, U. Ijaz, A. Hameed, U. Ahmad, Y. Wang, G. Sun, B. Li, Current trends and future prospective in nanoremediation of heavy metals contaminated soils: A way forward towards sustainable agriculture, Ecotoxicol. Environ. Saf. 227 (2021) 112888, https://doi.org/ 10.1016/J.ECOENV.2021.112888.Z.M. S¸ enol, E. Elma, N. El Messaoudi, V. Mehmeti, Performance of cross-linked chitosan-zeolite composite adsorbent for removal of Pb2+ ions from aqueous solutions: Experimental and Monte Carlo simulations studies, J. Mol. Liq. 391 (2023) 123310, https://doi.org/10.1016/J.MOLLIQ.2023.123310.E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097.E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097.E.E.Y. Amuah, B. Fei-Baffoe, R.W. Kazapoe, P. Dankwa, I.K. Okyere, L.N. A. Sackey, D.B. Nang, P. Kpiebaya, From the ground up: Unveiling Ghana’s soil quality crisis and its ecological and health implications, Innov. Green. Dev. 3 (2024) 100097, https://doi.org/10.1016/J.IGD.2023.100097.D. Ramírez Ortega, D.F. Gonzalez ´ Esquivel, T. Blanco Ayala, B. Pineda, S. Gomez ´ Manzo, J. Marcial Quino, P. Carrillo Mora, V. P´erez de la Cruz, R. Ortega, G. Esquivel, B. Ayala, G. Manzo, M. Quino, C. Mora, Cognitive Impairment Induced by Lead Exposure during Lifespan: Mechanisms of Lead Neurotoxicity, Toxics 2021, Vol. 9, Page 23 9 (2021) 23, https://doi.org/10.3390/ TOXICS9020023.T.I. Lidsky, J.S. Schneider, Lead neurotoxicity in children: basic mechanisms and clinical correlates, Brain 126 (2003) 5–19, https://doi.org/10.1093/BRAIN/ AWG014.A. El Mouden, N. El Messaoudi, A. El Guerraf, A. Bouich, V. Mehmeti, A. Lacherai, A. Jada, J.H. Pinˆe Am´erico-Pinheiro, Removal of cadmium and lead ions from aqueous solutions by novel dolomite-quartz@Fe3O4 nanocomposite fabricated as nanoadsorbent, Environ. Res. 225 (2023) 115606, https://doi.org/10.1016/J. ENVRES.2023.115606.M.M. Al-Sulaiti, L. Soubra, M.A. Al-Ghouti, The Causes and Effects of Mercury and Methylmercury Contamination in the Marine Environment: A Review, Curr. Pollut. Rep. 8 (2022) 249–272, https://doi.org/10.1007/S40726-022-00226-7/ TABLES/9.S.Z. Zulkipli, C.P. Tan, Y.G. Seah, H.J. Liew, Y.Y. Sung, M. Ando, M. Wang, Y. Liang, A. McMinn, W.J. Mok, Assessment of mercury contamination and food composition in commercially important marine fishes in the southern South China Sea, Reg. Stud. Mar. Sci. 58 (2023) 102795, https://doi.org/10.1016/J. RSMA.2022.102795.E.Y. Hern´ andez-Cruz, I. Amador-Martínez, A.K. Aranda-Rivera, A. Cruz-Gregorio, J. Pedraza Chaverri, Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation, Chem. Biol. Interact. 361 (2022) 109961, https://doi.org/10.1016/J.CBI.2022.109961.N.M. Smereczanski, ´ M.M. Brzoska, ´ Current Levels of Environmental Exposure to Cadmium in Industrialized Countries as a Risk Factor for Kidney Damage in the General Population: A Comprehensive Review of Available Data, Int. J. Mol. Sci. 24 (2023) 8413, https://doi.org/10.3390/IJMS24098413/S1.I. Palma-Lara, M. Martínez-Castillo, J.C. Quintana-P´erez, M.G. Arellano-Mendoza, F. Tamay-Cach, O.L. Valenzuela-Limon, ´ E.A. García-Montalvo, A. Hernandez- ´ Zavala, Arsenic exposure: A public health problem leading to several cancers, Regul. Toxicol. Pharmacol. 110 (2020) 104539, https://doi.org/10.1016/J. YRTPH.2019.104539.C. Ren, Y. Zhou, W. Liu, Q. Wang, Paradoxical effects of arsenic in the lungs, Environ. Heal. Prev. Med. 2021 261 26 (2021) 1–13, https://doi.org/10.1186/ S12199-021-00998-2.M. Khalid, S. Hassani, M. Abdollahi, Metal-induced oxidative stress: an evidencebased update of advantages and disadvantages, Curr. Opin. Toxicol. 20–21 (2020) 55–68, https://doi.org/10.1016/J.COTOX.2020.05.006.Q. Sun, Y. Li, L. Shi, R. Hussain, K. Mehmood, Z. Tang, H. Zhang, Heavy metals induced mitochondrial dysfunction in animals: Molecular mechanism of toxicity, Toxicology 469 (2022) 153136, https://doi.org/10.1016/J.TOX.2022.153136.] H. Routti, T.C. Atwood, T. Bechshoft, A. Boltunov, T.M. Ciesielski, J.P. Desforges, R. Dietz, G.W. Gabrielsen, B.M. Jenssen, R.J. Letcher, M.A. McKinney, A. D. Morris, F.F. Rig´et, C. Sonne, B. Styrishave, S. Tartu, State of knowledge on current exposure, fate and potential health effects of contaminants in polar bears from the circumpolar Arctic, Sci. Total Environ. 664 (2019) 1063–1083, https:// doi.org/10.1016/J.SCITOTENV.2019.02.030A. Naija, H.C. Yalcin, Evaluation of cadmium and mercury on cardiovascular and neurological systems: Effects on humans and fish, Toxicol. Rep. 10 (2023) 498–508, https://doi.org/10.1016/J.TOXREP.2023.04.009.L. Mani´c, D. Wallace, P.U. Onganer, Y.M. Taalab, A.A. Farooqi, B. Antonijevi´c, A. Buha Djordjevic, Epigenetic mechanisms in metal carcinogenesis, Toxicol. Rep. 9 (2022) 778–787, https://doi.org/10.1016/J.TOXREP.2022.03.037.L. Zhao, R. Islam, Y. Wang, X. Zhang, L.-Z. Liu, L. Zhao, R. Islam, Y. Wang, X. Zhang, L.-Z. Liu, Epigenetic Regulation in Chromium-, Nickel- and CadmiumInduced Carcinogenesis, Cancers 2022, Vol. 14, Page 5768 14 (2022) 5768, https://doi.org/10.3390/CANCERS14235768.L. Dusengemungu, B. Mubemba, C. Gwanama, Evaluation of heavy metal contamination in copper mine tailing soils of Kitwe and Mufulira, Zambia, for reclamation prospects, Sci. Rep. 2022 121 12 (2022) 1–16, https://doi.org/ 10.1038/s41598-022-15458-2.N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, M. El Hajam, L. Noureen, A comparative review of the adsorption and photocatalytic degradation of tetracycline in aquatic environment by g-C3N4-based materials, J. Water Process Eng. 55 (2023) 104150, https://doi.org/10.1016/J.JWPE.2023.104150.Z. Irshad, I. Bibi, A. Ghafoor, F. Majid, S. Kamal, S. Ezzine, Z.M. Elqahtani, N. Alwadai, N. El Messaoudi, M. Iqbal, Ni doped SrFe12O19 nanoparticles synthesized via micro-emulsion route and photocatalytic activity evaluation for the degradation of crystal violet under visible light irradiation, Results Phys. 42 (2022) 106006, https://doi.org/10.1016/J.RINP.2022.106006.R. EL Kaim Billah, A. Zaghloul, H.A. Ahsaine, A. BaQais, I. Khadoudi, N. El Messaoudi, M. Agunaou, A. Soufiane, R. Jugade, Methyl orange adsorption studies on glutaraldehyde cross-linking chitosan/fluorapatite-based natural phosphate composite, Int. J. Environ. Anal. Chem. (2022), https://doi.org/ 10.1080/03067319.2022.2130690.D. Arslan, H. Ertap, Z.M. S¸ enol, N. El Messaoudi, V. Mehmeti, Preparation of Polyacrylamide Titanium Dioxide Hybrid Nanocomposite by Direct Polymerization and Its Applicability in Removing Crystal Violet from Aqueous Solution, J. Polym. Environ. 32 (2024) 573–587, https://doi.org/10.1007/ S10924-023-03004-8.N. El Messaoudi, D.S.P. Franco, S. Gubernat, J. Georgin, Z.M. S¸ enol, Z. Cigero ˘ glu, ˘ D. Allouss, M. El Hajam, Advances and future perspectives of water defluoridation by adsorption technology: A review, Environ. Res. 252 (2024) 118857, https://doi.org/10.1016/J.ENVRES.2024.118857.J. Georgin, D.S.P. Franco, M.S. Manzar, L. Meili, N. El Messaoudi, A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology, Environ. Sci. Pollut. Res. 2024 (2024) 1–34, https://doi.org/10.1007/S11356-024-32876-Z.Z.M. S¸ enol, N. El Messaoudi, Z. Cigeroglu, ˘ Y. Miyah, H. Arslanoglu, ˘ N. Baglam, ˘ E. S. Kazan-Kaya, P. Kaur, J. Georgin, Removal of food dyes using biological materials via adsorption: A review, Food Chem. 450 (2024) 139398, https://doi. org/10.1016/J.FOODCHEM.2024.139398.F.C. Femina Carolin, T. Kamalesh, P.S. Kumar, G. Rangasamy, A Critical Review on the Sustainable Approaches for the Removal of Toxic Heavy Metals from Water Systems, Ind. Eng. Chem. Res. 62 (2023) 8575–8601, https://doi.org/10.1021/ ACS.IECR.3C00709/ASSET/IMAGES/MEDIUM/IE3C00709_0008.GIF.S. Das, C.K. Singh, K.K. Sodhi, V.K. Singh, Circular economy approaches for water reuse and emerging contaminant mitigation: innovations in water treatment, Environ. Dev. Sustain. 2023 (2023) 1–42, https://doi.org/10.1007/S10668-023- 04183-Z.Q. Chen, Y. Yao, X. Li, J. Lu, J. Zhou, Z. Huang, Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates, J. Water Process Eng. 26 (2018) 289–300, https://doi.org/10.1016/ J.JWPE.2018.11.003.S. Lagdali, Y. Miyah, M. El-Habacha, G. Mahmoudy, M. Benjelloun, S. Iaich, M. Zerbet, M. Chiban, F. Sinan, Performance assessment of a phengite clay-based flat membrane for microfiltration of real-wastewater from clothes washing: Characterization, cost estimation, and regeneration, Case Stud. Chem. Environ. Eng. 8 (2023) 100388, https://doi.org/10.1016/J.CSCEE.2023.100388.Y. Miyah, N. El Messaoudi, M. Benjelloun, Y. Acikbas, Z.M. S¸ enol, Z. Cigero ˘ glu, ˘ E. A. Lopez-Maldonado, Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review, Chemosphere 358 (2024) 142236, https:// doi.org/10.1016/J.CHEMOSPHERE.2024.142236.Y. Miyah, S. Ssouni, M. Benjelloun, F. Mejbar, M. El-Habacha, S. Iaich, E. H. Arjdal, A. Lahrichi, F. Zerrouq, DFT theoretical analysis and experimental approach combination to understand the toxic dye’s adsorption mechanism on the corncob-activated carbon surface, J. Mol. Struct. 1288 (2023) 135742, https://doi.org/10.1016/J.MOLSTRUC.2023.135742.F. Mejbar, Y. Miyah, M. Benjelloun, S. Ssouni, K. Saka, A. Lahrichi, F. Zerrouq, High-performance of Cu@eggshells for toxic dyes catalytic wet peroxide oxidation: Kinetics, design of experiments, regeneration, and cost analysis, Case Stud. Chem. Environ. Eng. 9 (2024) 100572, https://doi.org/10.1016/J. CSCEE.2023.100572M. Benjelloun, Y. Miyah, G.A. Evrendilek, A.E.O. Lalami, I. Demir, B. Atmaca, S. Ssouni, S. Lairini, R. Bouslamti, Synergistic effect of coupling ozonation/ adsorption system for toxic dye efficient removal: chemometric optimization by Box–Behnken response surface methodology, Desalin. Water Treat. 306 (2023) 220–235, https://doi.org/10.5004/DWT.2023.29821S. Ssouni, Y. Miyah, M. Benjelloun, F. Mejbar, M. El-Habacha, S. Iaich, A. Ait Addi, A. Lahrichi, High-performance of muscovite clay for toxic dyes’ removal: Adsorption mechanism, response surface approach, regeneration, and phytotoxicity assessment, Case Stud. Chem. Environ. Eng. 8 (2023) 100456, https://doi.org/10.1016/J.CSCEE.2023.100456.M. Albqmi, Z. Frontistis, Z. Raji, A. Karim, A. Karam, S. Khalloufi, Adsorption of Heavy Metals: Mechanisms, Kinetics, and Applications of Various Adsorbents in Wastewater Remediation—A Review, Waste 2023, Vol. 1, Pages 775-805 1 (2023) 775–805, https://doi.org/10.3390/WASTE1030046.A. El Mouden, A. El Guerraf, N. El Messaoudi, R. Haounati, A. Ait El Fakir, A. Lacherai, Date Stone Functionalized with 3-Aminopropyltriethoxysilane as a Potential Biosorbent for Heavy Metal Ions Removal from Aqueous Solution, Chem. Afr. 5 (2022) 745–759, https://doi.org/10.1007/S42250-022-00350-3.M.A. Rather, S. Bhuyan, R. Chowdhury, R. Sarma, S. Roy, P.R. Neog, Nanoremediation strategies to address environmental problems, Sci. Total Environ. 886 (2023) 163998, https://doi.org/10.1016/J. SCITOTENV.2023.163998.Y. Miyah, M. Benjelloun, R. Salim, L. Nahali, F. Mejbar, A. Lahrichi, S. Iaich, F. Zerrouq, Experimental and DFT theoretical study for understanding the adsorption mechanism of toxic dye onto innovative material Fb-HAp based on fishbone powder, J. Mol. Liq. 362 (2022) 119739, https://doi.org/10.1016/J. MOLLIQ.2022.119739.N. El Messaoudi, A. Dbik, M. El Khomri, A. Sabour, S. Bentahar, A. Lacherai, Date stones of Phoenix dactylifera and jujube shells of Ziziphus lotus as potential biosorbents for anionic dye removal, Int J. Phytoremediat. 19 (2017) 1047–1052, https://doi.org/10.1080/15226514.2017.1319331.Y. Miyah, A. Lahrichi, R. Kachkoul, G. El Mouhri, M. Idrissi, S. Iaich, F. Zerrouq, Multi-parametric filtration effect of the dyes mixture removal with the low cost materials, Arab J. Basic Appl. Sci. 27 (2020) 248–258, https://doi.org/10.1080/ 25765299.2020.1776008.N. El Messaoudi, M. El Khomri, A. Dbik, S. Bentahar, A. Lacherai, Selective and competitive removal of dyes from binary and ternary systems in aqueous solutions by pretreated jujube shell (Zizyphus lotus), J. Dispers. Sci. Technol. 38 (2016) 1168–1174, https://doi.org/10.1080/01932691.2016.1228070Y. Miyah, A. Lahrichi, M. Idrissi, A. Khalil, F. Zerrouq, Adsorption of methylene blue dye from aqueous solutions onto walnut shells powder: Equilibrium and kinetic studies, Surf. Interfaces 11 (2018) 74–81, https://doi.org/10.1016/J. SURFIN.2018.03.006.M. Benjelloun, Y. Miyah, R. Bouslamti, L. Nahali, F. Mejbar, S. Lairini, The FastEfficient Adsorption Process of the Toxic Dye onto Shells Powders of Walnut and Peanut: Experiments, Equilibrium, Thermodynamic, and Regeneration Studies, Chem. Afr. 2022 52. 5 (2022) 375–393, https://doi.org/10.1007/S42250-022- 00328-1.N.El Messaoudi, A.El Mouden, M.El Khomri, A. Bouich, Y. Fernine, Z. Cigero ˘ glu, ˘ J.H.P. Am´erico-Pinheiro, N. Labjar, A. Jada, M. Sillanp¨ a¨ a, A. Lacherai, Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf, Fluid Phase Equilib. 563 (2022) 113585, https://doi.org/10.1016/J.FLUID.2022.113585.M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, Y. Fernine, A. Lacherai, A. Jada, Optimization Based on Response Surface Methodology of Anionic Dye Desorption From Two Agricultural Solid Wastes, Chem. Afr. 7 (2022) 1083–1095, https://doi.org/10.1007/S42250-022-00395-4.M.El Khomri, N.El Messaoudi, A. Dbik, S. Bentahar, Y. Fernine, A. Bouich, A. Lacherai, A. Jada, Modification of low-cost adsorbent prepared from agricultural solid waste for the adsorption and desorption of cationic dye, Emergent Mater. 5 (2022) 1679–1688, https://doi.org/10.1007/S42247-022- 00390-Y.M. Benjelloun, Y. Miyah, S. Ssouni, S. Iaich, M. El-habacha, S. Lagdali, K. Saka, E. M. Iboustaten, A.A. Addi, S. Lairini, R. Bouslamti, Capparis spinosa L waste activated carbon as an efficient adsorbent for Crystal Violet toxic dye removal: modeling, optimization by experimental design, and ecological analysis, Chin. J. Chem. Eng. (2024), https://doi.org/10.1016/J.CJCHE.2024.04.010.E.P. Kuncoro, T. Soedarti, T.W.C. Putranto, H. Darmokoesoemo, N.R. Abadi, H. S. Kusuma, Characterization of a mixture of algae waste-bentonite used as adsorbent for the removal of Pb2+ from aqueous solution, Data Br. 16 (2018) 908–913, https://doi.org/10.1016/J.DIB.2017.12.030.E.P. Kuncoro, D.R. Mitha Isnadina, H. Darmokoesoemo, F. Dzembarahmatiny, H. S. Kusuma, Characterization and isotherm data for adsorption of Cd2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite, Data Br. 16 (2018) 354–360, https://doi.org/10.1016/J.DIB.2017.11.060.E.P. Kuncoro, D.R.M. Isnadina, H. Darmokoesoemo, O.R. Fauziah, H.S. Kusuma, Characterization, kinetic, and isotherm data for adsorption of Pb2+ from aqueous solution by adsorbent from mixture of bagasse-bentonite, Data Br. 16 (2018) 622–629, https://doi.org/10.1016/J.DIB.2017.11.098.R.A. Khera, A. Ahmad, S.M. Hassan, A. Nazir, A. Kausar, H.S. Kusuma, J. Niasr, N. Masood, U. Younas, R. Nawaz, M.I. Khan, R.A. Khera, S.M. Hassan, Kinet. Equilib. Stud. Copp., zinc, Nickel ions Adsorpt. Remov. Archontophoenix Alexandra.: Cond. Optim. RSM (2020), https://doi.org/10.5004/ dwt.2020.25937.Y.A.B. Neolaka, A.A.P. Riwu, U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, H. Darmokoesoemo, H.S. Kusuma, Potential of activated carbon from various sources as a low-cost adsorbent to remove heavy metals and synthetic dyes, Results Chem. 5 (2023) 100711, https://doi.org/10.1016/J. RECHEM.2022.100711.Y.A.B. Neolaka, Y. Lawa, J. Naat, A.C. Lalang, B.A. Widyaningrum, G.F. Ngasu, K. A. Niga, H. Darmokoesoemo, M. Iqbal, H.S. Kusuma, Adsorption of methyl red from aqueous solution using Bali cow bones (Bos javanicus domesticus) hydrochar powder, Results Eng. 17 (2023) 100824, https://doi.org/10.1016/J. RINENG.2022.100824.H.S. Kusuma, N. Illiyanasafa, D.E.C. Jaya, H. Darmokoesoemo, N.R. Putra, Utilization of the microalga Chlorella vulgaris for mercury bioremediation from wastewater and biomass production, Sustain. Chem. Pharm. 37 (2024) 101346, https://doi.org/10.1016/J.SCP.2023.101346.N. El Messaoudi, M. El Khomri, N. Chlif, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, Desorption of Congo red from dye-loaded Phoenix dactylifera date stones and Ziziphus lotus jujube shells, Ground Sustain Dev. 12 (2021) 100552, https://doi.org/10.1016/j.gsd.2021.100552M. El Khomri, N. El Messaoudi, A. Dbik, S. Bentahar, A. Lacherai, N. Faska, A. Jada, Regeneration of argan nutshell and almond shell using HNO3 for their reusability to remove cationic dye from aqueous solution, Chem. Eng. Commun. 209 (2022) 1304–1315, https://doi.org/10.1080/00986445.2021.1963960Y. Tang, W. Zhao, L. Gao, G. Zhu, Y. Jiang, Y. Rui, P. Zhang, Harnessing synergy: Integrating agricultural waste and nanomaterials for enhanced sustainability, Environ. Pollut. 341 (2024) 123023, https://doi.org/10.1016/J. ENVPOL.2023.123023N. El Messaoudi, M. El Khomri, A. Dabagh, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, M. Iqbal, A. Jada, F. Sher, E.C. ´ Lima, Synthesis of a novel nanocomposite based on date stones/CuFe2O4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution, Https://Doi. Org. /10. 1080/ 00207233. 2021. 1929469 79 (2021) 417–435, https://doi.org/10.1080/ 00207233.2021.1929469.N. El Messaoudi, M. El Khomri, A. Dabagh, Z.G. Chegini, A. Dbik, S. Bentahar, A. Lacherai, M. Iqbal, A. Jada, F. Sher, E.C. ´ Lima, Synthesis of a novel nanocomposite based on date stones/CuFe2O4 nanoparticles for eliminating cationic and anionic dyes from aqueous solution, Int. J. Environ. Stud. 79 (2022) 417–435, https://doi.org/10.1080/00207233.2021.1929469A. Blasi, A. Verardi, C.G. Lopresto, S. Siciliano, P. Sangiorgio, Lignocellulosic Agricultural Waste Valorization to Obtain Valuable Products: An Overview, Recycl. 2023, Vol. 8, Page 61 8 (2023) 61, https://doi.org/10.3390/ RECYCLING8040061.H.E. Al-Hazmi, J. Łuczak, S. Habibzadeh, M.S. Hasanin, A. Mohammadi, A. Esmaeili, S.-J. Kim, M. Khodadadi Yazdi, N. Rabiee, M. Badawi, M.R. Saeb, Polysaccharide nanocomposites in wastewater treatment: A review, Chemosphere 347 (2024) 140578, https://doi.org/10.1016/J.CHEMOSPHERE.2023.140578.N. El Messaoudi, M. El Khomri, Z.G. Chegini, A. Bouich, A. Dbik, S. Bentahar, N. Labjar, M. Iqbal, A. Jada, A. Lacherai, Dye removal from aqueous solution using nanocomposite synthesized from oxalic acid-modified agricultural solid waste and ZnFe2O4 nanoparticles, Nanotechnol. Environ. Eng. 7 (2022) 797–811, https://doi.org/10.1007/S41204-021-00173-6.J. Briffa, E. Sinagra, R. Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon 6 (2020) e04691, https://doi.org/ 10.1016/J.HELIYON.2020.E04691.Z.T. Chong, L.S. Soh, W.F. Yong, Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants: Modification, remediation and industry application, Results Eng. 17 (2023) 100960, https://doi.org/10.1016/J. RINENG.2023.100960.S. Kainth, P. Sharma, O.P. Pandey, Green sorbents from agricultural wastes: A review of sustainable adsorption materials, Appl. Surf. Sci. Adv. 19 (2024) 100562, https://doi.org/10.1016/j.apsadv.2023.100562.N. El Messaoudi, M. El Khomri, Z.G. Chegini, A. Dbik, S. Bentahar, M. Iqbal, A. Jada, A. Lacherai, Desorption of crystal violet from alkali-treated agricultural material waste: an experimental study, kinetic, equilibrium and thermodynamic modeling, Pigm Resin Technol. 51 (2022) 309–319, https://doi.org/10.1108/prt02-2021-0019.A.A. Oyekanmi, M.M. Hanafiah, T.T. Dele-Afolabi, A. Ahmad, M.B. Alshammari, Development of nanoparticles loaded composites from agricultural wastes for cationic dye removal from aqueous solution – A review, J. Environ. Chem. Eng. 10 (2022) 108263, https://doi.org/10.1016/j.jece.2022.108263.F.A. Ahmad, The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water, Heliyon 9 (2023) e16449, https://doi.org/10.1016/j.heliyon.2023. e16449.T.K. Sen, Agricultural Solid Wastes Based Adsorbent Materials in the Remediation of Heavy Metal Ions from Water and Wastewater by Adsorption: A Review, Molecules 28 (2023), https://doi.org/10.3390/molecules28145575.R. Phiri, S. Mavinkere Rangappa, S. Siengchin, Agro-waste for renewable and sustainable green production: A review, J. Clean. Prod. 434 (2024) 139989, https://doi.org/10.1016/j.jclepro.2023.139989.X. Nqoro, R. Taziwa, P. Popoola, Recent progress in the conversion of agricultural waste into functional materials, Biomass-.-. Convers. Biorefinery. (2023), https:// doi.org/10.1007/s13399-023-05044-5.A. Alsulaili, K. Elsayed, A. Refaie, Utilization of agriculture waste materials as sustainable adsorbents for heavy metal removal: A comprehensive review, J. Eng. Res. (2023), https://doi.org/10.1016/j.jer.2023.09.018.P.C. Nath, A. Ojha, S. Debnath, M. Sharma, K. Sridhar, P.K. Nayak, B.S. Inbaraj, Biogeneration of Valuable Nanomaterials from Agro-Wastes: A Comprehensive Review, Agronomy 13 (2023), https://doi.org/10.3390/agronomy13020561.P. Kumar Sarangi, S. Subudhi, L. Bhatia, K. Saha, D. Mudgil, K. Prasad Shadangi, R.K. Srivastava, B. Pattnaik, R.K. Arya, Utilization of agricultural waste biomass and recycling toward circular bioeconomy, Environ. Sci. Pollut. Res. 30 (2023) 8526–8539, https://doi.org/10.1007/s11356-022-20669-1N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, A. Bouich, E.S. Kazan-Kaya, L. Noureen, J.H.P. Am´erico-Pinheiro, Green synthesis of nanoparticles for remediation organic pollutants in wastewater by adsorption, Adv. Chem. Pollut., Environ. Manag. Prot. 10 (2024) 305–345, https://doi.org/10.1016/BS. APMP.2023.06.016.N. El Messaoudi, Z. Cigero ˘ glu, ˘ Z.M. S¸ enol, E.S. Kazan-Kaya, Y. Fernine, S. Gubernat, Z. Lopicic, Green synthesis of CuFe2O4 nanoparticles from bioresource extracts and their applications in different areas: a review, Biomass-.-. Convers. Biorefinery 2024. (2024) 1–22, https://doi.org/10.1007/S13399-023- 05264-9.S. Muhammad, H.P.S. Abdul Khalil, S. Abd Hamid, Y.M. Albadn, A.B. Suriani, S. Kamaruzzaman, A. Mohamed, A.A. Allaq, E.B. Yahya, Insights into Agricultural-Waste-Based Nano-Activated Carbon Fabrication and Modifications for Wastewater Treatment Application, Agriculture 12 (2022), https://doi.org/ 10.3390/agriculture12101737.G.J.F. Cruz, D. Mondal, J. Rimaycuna, K. Soukup, M.M. Gomez, ´ J.L. Solis, J. Lang, Agrowaste derived biochars impregnated with ZnO for removal of arsenic and lead in water, J. Environ. Chem. Eng. 8 (2020), https://doi.org/10.1016/j. jece.2020.103800.J. Gupta, M. Kumari, A. Mishra, M. Akram, I.S. Thakur, Agro-forestry waste management- A review, Chemosphere 287 (2022), https://doi.org/10.1016/j. chemosphere.2021.132321.J. Mo, Q. Yang, N. Zhang, W. Zhang, Y. Zheng, Z. Zhang, A review on agroindustrial waste (AIW) derived adsorbents for water and wastewater treatment, J. Environ. Manag. 227 (2018) 395–405, https://doi.org/10.1016/J. JENVMAN.2018.08.069.S. De Gisi, G. Lofrano, M. Grassi, M. Notarnicola, Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review, Sustain. Mater. Technol. 9 (2016) 10–40, https://doi.org/10.1016/J. SUSMAT.2016.06.002.Z.M. S¸ enol, N.El Messaoudi, Y. Fernine, Z.S. Keskin, Bioremoval of rhodamine B dye from aqueous solution by using agricultural solid waste (almond shell): experimental and DFT modeling studies, Biomass-.-. Convers. Biorefinery. (2023) 1–14, https://doi.org/10.1007/S13399-023-03781-1.Y. Khairnar, D. Hansora, C. Hazra, D. Kundu, S. Tayde, S. Tonde, J. Naik, A. Chatterjee, Cellulose bionanocomposites for sustainable planet and people: A global snapshot of preparation, properties, and applications, Carbohydr. Polym. Technol. Appl. 2 (2021) 100065, https://doi.org/10.1016/J. CARPTA.2021.100065.S. Babu, S. Singh Rathore, R. Singh, S. Kumar, V.K. Singh, S.K. Yadav, V. Yadav, R. Raj, D. Yadav, K. Shekhawat, O. Ali Wani, Exploring agricultural waste biomass for energy, food and feed production and pollution mitigation: A review, Bioresour. Technol. 360 (2022) 127566, https://doi.org/10.1016/J. BIORTECH.2022.127566.K.Y. Perera, D. Pradhan, A. Rafferty, A.K. Jaiswal, S. Jaiswal, A comprehensive review on metal oxide-nanocellulose composites in sustainable active and intelligent food packaging, Food Chem. Adv. 3 (2023) 100436, https://doi.org/ 10.1016/J.FOCHA.2023.100436.E. Capanoglu, E. Nemli, F. Tomas-Barberan, Novel Approaches in the Valorization of Agricultural Wastes and Their Applications, J. Agric. Food Chem. 70 (2022) 6787–6804, https://doi.org/10.1021/ACS.JAFC.1C07104/ASSET/IMAGES/ LARGE/JF1C07104_0001.JPEG.R. Dungani, H.P.S. Abdul Khalil, N.A.S. Aprilia, I. Sumardi, P. Aditiawati, A. Darwis, T. Karliati, A. Sulaeman, E. Rosamah, M. Riza, Bionanomaterial from agricultural waste and its application, Cellul. Nanofibre Compos. Prod. Prop. Appl. (2017) 45–88, https://doi.org/10.1016/B978-0-08-100957-4.00003-6B.K. Biswal, R. Balasubramanian, Use of biochar as a low-cost adsorbent for removal of heavy metals from water and wastewater: A review, J. Environ. Chem. Eng. 11 (2023) 110986, https://doi.org/10.1016/J.JECE.2023.110986.Y. Fei, Y.H. Hu, Recent progress in removal of heavy metals from wastewater: A comprehensive review, Chemosphere 335 (2023) 139077, https://doi.org/ 10.1016/J.CHEMOSPHERE.2023.139077.P.C. Nagajyoti, K.D. Lee, T.V.M. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett. 8 (2010) 199–216, https://doi.org/ 10.1007/s10311-010-0297-8.N. Abdullah, N. Yusof, W.J. Lau, J. Jaafar, A.F. Ismail, Recent trends of heavy metal removal from water/wastewater by membrane technologies, J. Ind. Eng. Chem. 76 (2019) 17–38, https://doi.org/10.1016/J.JIEC.2019.03.029.H. Ali, E. Khan, I. Ilahi, Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation, J. Chem. 2019 (2019) 6730305, https://doi.org/10.1155/ 2019/6730305.C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, V.H. Guerrero, Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environ. Technol. Innov. 22 (2021) 101504, https://doi.org/10.1016/J.ETI.2021.101504.N.K. Srivastava, C.B. Majumder, Novel biofiltration methods for the treatment of heavy metals from industrial wastewater, J. Hazard. Mater. 151 (2008) 1–8, https://doi.org/10.1016/J.JHAZMAT.2007.09.101.J.P. Vareda, A.J.M. Valente, L. Dur˜ aes, Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review, J. Environ. Manag. 246 (2019) 101–118, https://doi.org/10.1016/J.JENVMAN.2019.05.126.L.S. V´elez-P´erez, J. Ramirez-Nava, G. Hernandez-Flores, ´ O. Talavera-Mendoza, C. Escamilla-Alvarado, H.M. Poggi-Varaldo, O. Solorza-Feria, J.A. Lopez-Díaz, ´ Industrial acid mine drainage and municipal wastewater co-treatment by dualchamber microbial fuel cells, Int. J. Hydrog. Energy 45 (2020) 13757–13766, https://doi.org/10.1016/J.IJHYDENE.2019.12.037.V. Parth, N.N. Murthy, P.R. Saxena, Assessment of heavy metal contamination in soil around hazardous waste disposal sites in Hyderabad city (India): natural and anthropogenic implications, E3 J. Environ. Res. Manag. 2 (2011) 27–34.S. Rezapour, M. Azizi, A. Nouri, Pollution Analysis and Health Implications of Heavy Metals under Different Urban Soil Types in a Semi-Arid Environment, Sustainability 15 (2023), https://doi.org/10.3390/su151612157.Q. Zhou, N. Yang, Y. Li, B. Ren, X. Ding, H. Bian, X. Yao, Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017, Glob. Ecol. Conserv. 22 (2020) e00925, https://doi.org/10.1016/J. GECCO.2020.E00925.P.N. Obasi, B.E.B. Akudinobi, Heavy metals occurrence, assessment and distribution in water resources of the lead–zinc mining areas of Abakaliki, Southeastern Nigeria, Int. J. Environ. Sci. Technol. 16 (2019) 8617–8638, https://doi.org/10.1007/s13762-019-02489-y.A.-E. Birn, L. Shipton, T. Schrecker, Canadian mining and ill health in Latin America: a call to action, Can. J. Public Heal. 109 (2018) 786–790, https://doi. org/10.17269/s41997-018-0113-y.T.T.N. Le, V.T. Le, M.U. Dao, Q.V. Nguyen, T.T. Vu, M.H. Nguyen, D.L. Tran, H. S. Le, Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions, Chem. Eng. Commun. 206 (2019) 1337–1352, https://doi.org/10.1080/ 00986445.2018.1558215.M.M.S. Cabral Pinto, E.A. Ferreira da Silva, Heavy Metals of Santiago Island (Cape Verde) Alluvial Deposits: Baseline Value Maps and Human Health Risk Assessment, Int. J. Environ. Res. Public Health 16 (2019), https://doi.org/ 10.3390/ijerph16010002.M.M.S. Cabral Pinto, P. Marinho-Reis, A. Almeida, E. Pinto, O. Neves, M. Inacio, ´ B. Gerardo, S. Freitas, M.R. Simoes, ˜ P.A. Dinis, L. Diniz, E. Ferreira da Silva, P. I. Moreira, Links between Cognitive Status and Trace Element Levels in Hair for an Environmentally Exposed Population: A Case Study in the Surroundings of the Estarreja Industrial Area, Int. J. Environ. Res. Public Health 16 (2019), https:// doi.org/10.3390/ijerph16224560.A. Azimi, A. Azari, M. Rezakazemi, M. Ansarpour, Removal of Heavy Metals from Industrial Wastewaters: A Review, ChemBioEng Rev. 4 (2017) 37–59, https://doi. org/10.1002/cben.201600010.A. Bashir, L.A. Malik, S. Ahad, T. Manzoor, M.A. Bhat, G.N. Dar, A.H. Pandith, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Environ. Chem. Lett. 17 (2019) 729–754, https://doi.org/ 10.1007/s10311-018-00828-yS. Bolisetty, M. Peydayesh, R. Mezzenga, Sustainable technologies for water purification from heavy metals: review and analysis, Chem. Soc. Rev. 48 (2019) 463–487, https://doi.org/10.1039/C8CS00493E.S. Gubernat, J. Czarnota, A. Masłon, ´ P. Koszelnik, A. Pękala, A. Skwarczynska- ´ Wojsa, Efficiency of phosphorus removal and recovery from wastewater using marl and travertine and their thermally treated forms, J. Water Process Eng. 53 (2023) 103642, https://doi.org/10.1016/j.jwpe.2023.103642.S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, Phosphorus removal from wastewater using marl and travertine and their thermal modifications, Desalin. Water Treat. 275 (2022) 35–46, https://doi.org/10.5004/dwt.2022.28529.S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, Reactive Materials in the Removal of Phosphorus Compounds from Wastewater-A Review, Mater. (Basel) 13 (2020) 3377, https://doi.org/10.3390/ma13153377.S. Gubernat, A. Masłon, ´ J. Czarnota, P. Koszelnik, M. Chutkowski, M. Tupaj, J. Gumieniak, A. Kramek, T. Galek, Removal of Phosphorus with the Use of Marl and Travertine and Their Thermally Modified Forms—Factors Affecting the Sorption Capacity of Materials and the Kinetics of the Sorption Process, Mater. (Basel) 16 (2023) 1225, https://doi.org/10.3390/ma16031225.J. Jampílek, K. Kra´ľova, ´ Preparation of nanocomposites from agricultural waste and their versatile applications, Multifunct. Hybrid. Nanomater. Sustain. Agric. -Food Ecosyst. (2020) 51–98, https://doi.org/10.1016/B978-0-12-821354- 4.00004-2.Keshu, M. Rani, U. Shanker, Synthesis and characterization of novel guar gum based waste material derived nanocomposite for effective removal of hexabromocyclododecane and lindane, Int. J. Biol. Macromol. 268 (2024) 131535, https://doi.org/10.1016/J.IJBIOMAC.2024.131535.A.M. Zayed, B.S. Metwally, M.A. Masoud, M.F. Mubarak, H. Shendy, M. M. Abdelsatar, P. Petrounias, A.H. Ragab, A.A. Hassan, M.S.M. Abdel Wahed, Efficient dye removal from industrial wastewater using sustainable activated carbon and its polyamide nanocomposite derived from agricultural and industrial wastes in column systems, RSC Adv. 13 (2023) 24887–24898, https://doi.org/ 10.1039/D3RA03105E.N. Zhang, F. Reguyal, S. Praneeth, A.K. Sarmah, A green approach of biocharsupported magnetic nanocomposites from white tea waste: Production, characterization and plausible synthesis mechanisms, Sci. Total Environ. 886 (2023) 163923, https://doi.org/10.1016/J.SCITOTENV.2023.163923.E.F. Mohamed, H. Ali, New Pt/TiO2/Ti2Fe2O7 nanocomposite using sugarcane bagasse agro-waste for photodegradation of toluene gas pollutant under sunlight, Mater. Sci. Eng. B. 295 (2023) 116583, https://doi.org/10.1016/J. MSEB.2023.116583.] S.G. Hernandez-Castro, L. Z. Flores-Lopez, ´ H. Espinoza-Gomez, G. Alonso-Nunez, ˜ Photocatalytic activity of silver nanoparticles@cellulose nanocomposites, from pistachio husk, in the toxic azo commercial dye degradation, Int. J. Biol. Macromol. 254 (2024) 127805, https://doi.org/10.1016/J. IJBIOMAC.2023.127805.H.S. Kusuma, D.E.C. Jaya, Analysis of Esterification Research in Indonesia for 25 Years using Bibliometric Method, Egypt. J. Chem. 66 (2023) 1–9, https://doi.org/ 10.21608/EJCHEM.2023.180021.7309S.M. El-Sayed, H.S. El-Sayed, Boosting the nutritional value of stirred yogurt by adding nano-sized avocado seed powder and Lactobacillus acidophilus, Egypt. J. Chem. 67 (2024) 13–25, https://doi.org/10.21608/EJCHEM.2024.254083.8968.H.S. Kusuma, G.I.Al Lantip, X. Mutiara, M. Iqbal, Evaluation of Mini Bibliometric Analysis, Moisture Ratio, Drying Kinetics, and Effective Moisture Diffusivity in the Drying Process of Clove Leaves using Microwave-Assisted Drying, Appl. Food Res. 3 (2023) 100304, https://doi.org/10.1016/J.AFRES.2023.100304.J. Opbroek, E. Pereira Barboza, M. Nieuwenhuijsen, P. Dadvand, N. Mueller, Urban green spaces and behavioral and cognitive development in children: A health impact assessment of the Barcelona “Eixos Verds” Plan (Green Axis Plan), Environ. Res. 244 (2024) 117909, https://doi.org/10.1016/J. ENVRES.2023.117909.M.M. Rhaman, M.R. Karim, M.K.M.Z. Hyder, Y. Ahmed, R.K. Nath, Removal of Chromium (VI) from Effluent by a Magnetic Bioadsorbent Based on Jute Stick Powder and its Adsorption Isotherm, Kinetics and Regeneration Study, Water Air. Soil Pollut. 231 (2020) 1–18, https://doi.org/10.1007/S11270-020-04544-8/ METRICS.M. El-habacha, Y. Miyah, S. Lagdali, G. Mahmoudy, A. Dabagh, M. Chiban, F. Sinan, S. Iaich, M. Zerbet, General overview to understand the adsorption mechanism of textile dyes and heavy metals on the surface of different clay materials, Arab. J. Chem. 16 (2023) 105248, https://doi.org/10.1016/J. ARABJC.2023.105248.L. Parida, T.N. Patel, Systemic impact of heavy metals and their role in cancer development: a review, Environ. Monit. Assess. 2023 1956 195 (2023) 1–27, https://doi.org/10.1007/S10661-023-11399-Z.M. Azam, S.M. Wabaidur, M.R. Khan, S.I. Al-Resayes, M.S. Islam, Heavy Metal Ions Removal from Aqueous Solutions by Treated Ajwa Date Pits: Kinetic, Isotherm, and Thermodynamic Approach, Polym. 2022, Vol. 14, Page 914 14 (2022) 914, https://doi.org/10.3390/POLYM14050914.R.B. Gapusan, M.D.L. Balela, Adsorption of anionic methyl orange dye and lead (II) heavy metal ion by polyaniline-kapok fiber nanocomposite, Mater. Chem. Phys. 243 (2020) 122682, https://doi.org/10.1016/J. MATCHEMPHYS.2020.122682.M. Ngabura, S.A. Hussain, W.A.W.A. Ghani, M.S. Jami, Y.P. Tan, Utilization of renewable durian peels for biosorption of zinc from wastewater, J. Environ. Chem. Eng. 6 (2018) 2528–2539, https://doi.org/10.1016/J.JECE.2018.03.052.G.C. Saha, M.I.U. Hoque, M.A.M. Miah, R. Holze, D.A. Chowdhury, S. Khandaker, S. Chowdhury, Biosorptive removal of lead from aqueous solutions onto Taro (Colocasiaesculenta(L.) Schott) as a low cost bioadsorbent: Characterization, equilibria, kinetics and biosorption-mechanism studies, J. Environ. Chem. Eng. 5 (2017) 2151–2162, https://doi.org/10.1016/J.JECE.2017.04.013.A. Takdastan, S. Samarbaf, Y. Tahmasebi, N. Alavi, A.A. Babaei, Alkali modified oak waste residues as a cost-effective adsorbent for enhanced removal of cadmium from water: Isotherm, kinetic, thermodynamic and artificial neural network modeling, J. Ind. Eng. Chem. 78 (2019) 352–363, https://doi.org/ 10.1016/J.JIEC.2019.05.034.H. Hernandez-Cocoletzi, ´ R.A. Salinas, E. Aguila-Almanza, ´ E. Rubio-Rosas, W. S. Chai, K.W. Chew, C. Mariscal-Hern´ andez, P.L. Show, Natural hydroxyapatite from fishbone waste for the rapid adsorption of heavy metals of aqueous effluent, Environ. Technol. Innov. 20 (2020) 101109, https://doi.org/10.1016/J. ETI.2020.101109.S.Y. Lee, H.J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag. 209 (2018) 382–392, https:// doi.org/10.1016/J.JENVMAN.2017.12.080.L. Li, D. Zhong, Y. Xu, N. Zhong, A novel superparamagnetic micro-nano-bioadsorbent PDA/Fe3O4/BC for removal of hexavalent chromium ions from simulated and electroplating wastewater, Environ. Sci. Pollut. Res. 26 (2019) 23981–23993, https://doi.org/10.1007/S11356-019-05674-1/METRICS.F.X. Dong, L. Yan, X.H. Zhou, S.T. Huang, J.Y. Liang, W.X. Zhang, Z.W. Guo, P. R. Guo, W. Qian, L.J. Kong, W. Chu, Z.H. Diao, Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: Performance, kinetics and mechanism, J. Hazard. Mater. 416 (2021) 125930, https://doi.org/ 10.1016/J.JHAZMAT.2021.125930B. Chu, Y. Amano, M. Machida, Preparation of bean dreg derived N-doped activated carbon with high adsorption for Cr(VI), Colloids Surf. A Physicochem. Eng. Asp. 586 (2020) 124262, https://doi.org/10.1016/J. COLSURFA.2019.124262U. Dalal, S.N. Reddy, A novel nano zero-valent iron biomaterial for chromium (Cr 6+ to Cr 3+) reduction, Environ. Sci. Pollut. Res. 26 (2019) 10631–10640, https://doi.org/10.1007/S11356-019-04528-0/METRICS.J. Niki´c, A. Tubi´c, M. Watson, S. Maleti´c, M. Soli ˇ ´c, T. Majki´c, J. Agbaba, Arsenic Removal from Water by Green Synthesized Magnetic Nanoparticles, Water 2019, Vol. 11, Page 2520 11 (2019) 2520, https://doi.org/10.3390/W11122520.S.G. Mohammad, D.E. Abulyazied, S.M. Ahmed, Application of polyaniline/ activated carbon nanocomposites derived from different agriculture wastes for the removal of Pb(II) from aqueous media, Desalin. Water Treat. 170 (2019) 199–210, https://doi.org/10.5004/DWT.2019.24694.S. Fooladgar, A. Teimouri, S. Ghanavati Nasab, Highly Efficient Removal of Lead Ions from Aqueous Solutions Using Chitosan/Rice Husk Ash/Nano Alumina with a Focus on Optimization by Response Surface Methodology: Isotherm, Kinetic, and Thermodynamic Studies, J. Polym. Environ. 27 (2019) 1025–1042, https:// doi.org/10.1007/S10924-019-01385-3/METRICS.S. Kaur, A. Roy, Bioremediation of heavy metals from wastewater using nanomaterials, Environ. Dev. Sustain. 23 (2021) 9617–9640, https://doi.org/ 10.1007/S10668-020-01078-1/METRICS.Z. Cigero ˘ glu, ˘ N. El Messaoudi, Z.M. S¸ enol, G. Bas¸kan, J. Georgin, S. Gubernat, Clay-based nanomaterials and their adsorptive removal efficiency for dyes and antibiotics: A review, Mater. Today Sustain. 26 (2024) 100735, https://doi.org/ 10.1016/J.MTSUST.2024.100735.K.H. Hama Aziz, R. Kareem, Recent advances in water remediation from toxic heavy metals using biochar as a green and efficient adsorbent: A review, Case Stud. Chem. Environ. Eng. 8 (2023) 100495, https://doi.org/10.1016/J. CSCEE.2023.100495.K.H. Hama Aziz, F.S. Mustafa, K.M. Omer, S. Hama, R.F. Hamarawf, K. O. Rahman, Heavy metal pollution in the aquatic environment: efficient and lowcost removal approaches to eliminate their toxicity: a review, RSC Adv. 13 (2023) 17595–17610, https://doi.org/10.1039/D3RA00723E.A.N. Doyo, R. Kumar, M.A. Barakat, Recent advances in cellulose, chitosan, and alginate based biopolymeric composites for adsorption of heavy metals from wastewater, J. Taiwan Inst. Chem. Eng. 151 (2023) 105095, https://doi.org/ 10.1016/J.JTICE.2023.105095.M.A. Al-Ghouti, D. Da’ana, M. Abu-Dieyeh, M. Khraisheh, Adsorptive removal of mercury from water by adsorbents derived from date pits, Sci. Rep. 2019 91. 9 (1) (2019) 15, https://doi.org/10.1038/s41598-019-51594-y.E. Ben Khalifa, B. Rzig, R. Chakroun, H. Nouagui, B. Hamrouni, Application of response surface methodology for chromium removal by adsorption on low-cost biosorbent, Chemom. Intell. Lab. Syst. 189 (2019) 18–26, https://doi.org/ 10.1016/J.CHEMOLAB.2019.03.014.A.L. Yang, S.Y. Yang, Y.K. Zhu, Magnetic modification of used tea leaves for uranium adsorption, N. Carbon Mater. 36 (2021) 821–826, https://doi.org/ 10.1016/S1872-5805(21)60053-7.B.C. Nyamunda, T. Chivhanga, U. Guyo, F. Chigondo, Removal of Zn (II) and Cu (II) Ions from Industrial Wastewaters Using Magnetic Biochar Derived from Water Hyacinth, J. Eng. (U. Kingd. 2019 (2019), https://doi.org/10.1155/2019/ 5656983.H. Chen, Y. Zhou, J. Wang, J. Lu, Y. Zhou, Polydopamine modified cyclodextrin polymer as efficient adsorbent for removing cationic dyes and Cu2+, J. Hazard. Mater. 389 (2020) 121897 https://doi.org/10.1016/J.JHAZMAT.2019.121897M.E. Mahmoud, S.M. El-Bahy, S.M.T. Elweshahy, Decorated Mn-ferrite nanoparticle@Zn–Al layered double hydroxide@Cellulose@ activated biochar nanocomposite for efficient remediation of methylene blue and mercury (II), Bioresour. Technol. 342 (2021) 126029, https://doi.org/10.1016/J. BIORTECH.2021.126029.B.G. Fouda-Mbanga, E. Prabakaran, K. Pillay, Synthesis and characterization of CDs/Al2O3 nanofibers nanocomposite for Pb2+ ions adsorption and reuse for latent fingerprint detection, Arab. J. Chem. 13 (2020) 6762–6781, https://doi. org/10.1016/J.ARABJC.2020.06.030.N.S. Alsaiari, F.M. Alzahrani, K.M. Katubi, A. Amari, F.Ben Rebah, M.A. Tahoon, Polyethylenimine-Modified Magnetic Chitosan for the Uptake of Arsenic from Water, Appl. Sci. 2021, Vol. 11, Page 5630 11 (2021) 5630, https://doi.org/ 10.3390/APP11125630.A. Ashfaq, R. Nadeem, H. Gong, U. Rashid, S. Noreen, S.U. Rehman, Z. Ahmed, M. Adil, N. Akhtar, M.Z. Ashfaq, F.A. Alharthi, E.A. Kazerooni, Fabrication of Novel Agrowaste (Banana and Potato Peels)-Based Biochar/TiO2 Nanocomposite for Adsorption of Cr(VI), Statistical Optimization via RSM Approach, Polym. 2022, Vol. 14, Page 2644 14 (2022) 2644, https://doi.org/10.3390/ POLYM14132644.S.H. Kong, C.Y.J. Chin, P.N.Y. Yek, C.C. Wong, C.S. Wong, K.Y. Cheong, R. K. Liew, S.S. Lam, Removal of heavy metals using activated carbon from microwave steam activation of palm kernel shell, Environ. Adv. 9 (2022) 100272, https://doi.org/10.1016/J.ENVADV.2022.100272.V. Priyan V, N. Kumar, S. Narayanasamy, Toxicological assessment and adsorptive removal of lead (Pb) and Congo red (CR) from water by synthesized iron oxide/activated carbon (Fe3O4/AC) nanocomposite, Chemosphere 294 (2022) 133758, https://doi.org/10.1016/J.CHEMOSPHERE.2022.133758.V. thi Quyen, T.H. Pham, J. Kim, D.M. Thanh, P.Q. Thang, Q. Van Le, S.H. Jung, T.Y. Kim, Biosorbent derived from coffee husk for efficient removal of toxic heavy metals from wastewater, Chemosphere 284 (2021) 131312, https://doi.org/ 10.1016/J.CHEMOSPHERE.2021.131312.F. Maghsoodi Goushki, M. Reza Islami, V. Nejadshafiee, Preparation of ecofriendly nanocomposites based on immobilization of magnetic activated carbon with tartaric acid: Application for adsorption of heavy metals and evaluation of their catalytic activity in C-C coupling reaction, Mater. Sci. Eng. B. 277 (2022) 115591, https://doi.org/10.1016/J.MSEB.2021.115591.M.F. Zawrah, B.G. Alhogbi, Preparation and characterization of SiO2@C nanocomposites from rice husk for removal of heavy metals from aqueous solution, Ceram. Int. 47 (2021) 23240–23248, https://doi.org/10.1016/J. CERAMINT.2021.05.036.L.S. Mustapha, S.O. Durosinmi, S.O. Jacob-Oricha, S.Y. Lau, K.S. Obayomi, Rapid and effective adsorption of selected heavy metals from battery wastewater using silicon-oxide nanoparticles derived rice husk, Groundw. Sustain. Dev. 23 (2023) 101024, https://doi.org/10.1016/J.GSD.2023.101024.B.G. Fouda-Mbanga, T. Velempini, K. Pillay, Z. Tywabi-Ngeva, Hydrothermal development of magnetic-hydrochar nanocomposite from pineapple leaves and its performance as an adsorbent for the uptake of Mn2+ and reuse of the metal loaded adsorbent in latent fingerprint, J. Saudi Chem. Soc. 27 (2023) 101624, https://doi.org/10.1016/J.JSCS.2023.101624.M. Masuku, J.F. Nure, H.I. Atagana, N. Hlongwa, T.T.I. Nkambule, Advancing the development of nanocomposite adsorbent through zinc-doped nickel ferritepinecone biochar for removal of chromium (VI) from wastewater, Sci. Total Environ. 908 (2024) 168136, https://doi.org/10.1016/J. SCITOTENV.2023.168136.K. Kayalvizhi, N.M.I. Alhaji, D. Saravanakkumar, S.B. Mohamed, K. Kaviyarasu, A. Ayeshamariam, A.M. Al-Mohaimeed, M.R. AbdelGawwad, M.S. Elshikh, Adsorption of copper and nickel by using sawdust chitosan nanocomposite beads – A kinetic and thermodynamic study, Environ. Res. 203 (2022) 111814, https:// doi.org/10.1016/J.ENVRES.2021.111814.J.S. Algethami, M.A.M. Alhamami, A.A. Alqadami, S. Melhi, A.F. Seliem, Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies, Environ. Technol. Innov. 32 (2023) 103404, https://doi.org/ 10.1016/J.ETI.2023.103404.T.Thi Huong, T.Y.Doan Trang, Removal of Lead Ions from Aqueous Media Using Rice Husk Modified with Manganese Oxide, Environ. Ecol. Res. 11 (2023) 340–361, https://doi.org/10.13189/eer.2023.110209.L. Yan, L. Kong, Z. Qu, L. Li, G. Shen, Magnetic biochar decorated with ZnS nanocrytals for Pb (II) removal, ACS Sustain. Chem. Eng. 3 (2015) 125–132, https://doi.org/10.1021/sc500619r.L. Zhou, Y. Huang, W. Qiu, Z. Sun, Z. Liu, Z. Song, Adsorption properties of nanoMnO2-biochar composites for copper in aqueous solution, Molecules 22 (1) (2017) 13, https://doi.org/10.3390/molecules22010173.R. Li, W. Liang, J.J. Wang, L.A. Gaston, D. Huang, H. Huang, S. Lei, M.K. Awasthi, B. Zhou, R. Xiao, Z. Zhang, Facilitative capture of As(V), Pb(II) and methylene blue from aqueous solutions with MgO hybrid sponge-like carbonaceous composite derived from sugarcane leafy trash, J. Environ. Manag. 212 (2018) 77–87, https://doi.org/10.1016/j.jenvman.2017.12.034.H. Lyu, J. Tang, Y. Huang, L. Gai, E.Y. Zeng, K. Liber, Y. Gong, Removal of hexavalent chromium from aqueous solutions by a novel biochar supported nanoscale iron sulfide composite, Chem. Eng. J. 322 (2017) 516–524, https://doi. org/10.1016/j.cej.2017.04.058.M. Zulfiqar, S.Y. Lee, A.A. Mafize, N.A.M.A. Kahar, K. Johari, N.E. Rabat, Ecient removal of PB(II) from aqueous solutions by using oil palm bio-waste/MWCNTs reinforced pva hydrogel composites: Kinetic, isotherm and thermodynamic modeling, Polym. (Basel) 12 (2020), https://doi.org/10.3390/polym12020430.I.A.A. Hamza, B.S. Martincigh, J.C. Ngila, V.O. Nyamori, Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite, Phys. Chem. Earth. 66 (2013), https://doi.org/10.1016/j. pce.2013.08.006Z. Niu, W. Feng, H. Huang, B. Wang, L. Chen, Y. Miao, S. Su, Green synthesis of a novel Mn–Zn ferrite/biochar composite from waste batteries and pine sawdust for Pb2+ removal, Chemosphere 252 (2020), https://doi.org/10.1016/j. chemosphere.2020.126529.H. Liu, P. Li, F. Qiu, T. Zhang, J. Xu, Controllable preparation of FeOOH/CuO@ WBC composite based on water bamboo cellulose applied for enhanced arsenic removal, Food Bioprod. Process. 123 (2020), https://doi.org/10.1016/j. fbp.2020.06.018.E. Morifi, L. Chimuka, H. Richards, L. Senyolo, K. Pillay, Modified Macadamia nutshell nanocomposite for selective removal of hexavalent chromium from wastewater, South Afr. J. Chem. Eng. 42 (2022), https://doi.org/10.1016/j. sajce.2022.09.001.U.K. Sahu, S.S. Mahapatra, R.K. Patel, Synthesis and characterization of an ecofriendly composite of jute fiber and Fe2O3 nanoparticles and its application as an adsorbent for removal of As(V) from water, J. Mol. Liq. 237 (2017), https://doi. org/10.1016/j.molliq.2017.04.092.Y.A.B. Neolaka, G. Supriyanto, H.S. Kusuma, Adsorption performance of Cr(VI)- imprinted poly(4-VP-co-MMA) supported on activated Indonesia (Ende-Flores) natural zeolite structure for Cr(VI) removal from aqueous solution, J. Environ. Chem. Eng. 6 (2018) 3436–3443, https://doi.org/10.1016/J.JECE.2018.04.053Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A. Pau Riwu, H. Darmokoesoemo, G. Supriyanto, C.I. Holdsworth, A.N. Amenaghawon, H.S. Kusuma, A Cr(VI)- imprinted-poly(4-VP-co-EGDMA) sorbent prepared using precipitation polymerization and its application for selective adsorptive removal and solid phase extraction of Cr(VI) ions from electroplating industrial wastewater, React. Funct. Polym. 147 (2020) 104451, https://doi.org/10.1016/J. REACTFUNCTPOLYM.2019.104451.U.O. Aigbe, K.E. Ukhurebor, R.B. Onyancha, O.A. Osibote, H. Darmokoesoemo, H. S. Kusuma, Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review, J. Mater. Res. Technol. 14 (2021) 2751–2774, https://doi.org/10.1016/J.JMRT.2021.07.140.Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, A.W. Mango, H. Darmokoesoemo, B.A. Widyaningrum, M. Iqbal, H.S. Kusuma, Efficiency of activated natural zeolite-based magnetic composite (ANZ-Fe3O4) as a novel adsorbent for removal of Cr(VI) from wastewater, J. Mater. Res. Technol. 18 (2022) 2896–2909, https:// doi.org/10.1016/J.JMRT.2022.03.153.Y.A.B. Neolaka, Y. Lawa, J.N. Naat, A.A.P. Riwu, M. Iqbal, H. Darmokoesoemo, H. S. Kusuma, The adsorption of Cr(VI) from water samples using graphene oxidemagnetic (GO-Fe3O4) synthesized from natural cellulose-based graphite (kusambi wood or Schleichera oleosa): Study of kinetics, isotherms and thermodynamics, J. Mater. Res. Technol. 9 (2020) 6544–6556, https://doi.org/ 10.1016/J.JMRT.2020.04.040.Y.A.B. Neolaka, Y. Lawa, J. Naat, A.A.P. Riwu, Y.E. Lindu, H. Darmokoesoemo, B. A. Widyaningrum, M. Iqbal, H.S. Kusuma, Evaluation of magnetic material IIP@ GO-Fe3O4 based on Kesambi wood (Schleichera oleosa) as a potential adsorbent for the removal of Cr(VI) from aqueous solutions, React. Funct. Polym. 166 (2021) 105000, https://doi.org/10.1016/J.REACTFUNCTPOLYM.2021.105000.Y. Miyah, M. Benjelloun, A. Lahrichi, F. Mejbar, S. Iaich, G. El Mouhri, R. Kachkoul, F. Zerrouq, Highly-efficient treated oil shale ash adsorbent for toxic dyes removal: Kinetics, isotherms, regeneration, cost analysis and optimization by experimental design, J. Environ. Chem. Eng. 9 (2021) 106694, https://doi.org/ 10.1016/J.JECE.2021.106694.M. Benjelloun, Y. Miyah, R. Bouslamti, L. Nahali, F. Mejbar, S. Lairini, The FastEfficient Adsorption Process of the Toxic Dye onto Shells Powders of Walnut and Peanut: Experiments, Equilibrium, Thermodynamic, and Regeneration Studies, Chem. Afr. 2022 52. 5 (2022) 375–393, https://doi.org/10.1007/S42250-022- 00328-1.L. Ifa, S. Yani, N. Nurjannah, D. Darnengsih, A. Rusnaenah, M. Mel, M. Mahfud, H. S. Kusuma, Techno-economic analysis of bio-briquette from cashew nut shell waste, Heliyon 6 (2020) e05009, https://doi.org/10.1016/j.heliyon.2020. e05009L. Ifa, T. Syarif, S. Sartia, J. Juliani, N. Nurdjannah, H.S. Kusuma, Technoeconomics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm oil, Heliyon 8 (2022) e09146, https://doi.org/10.1016/ J.HELIYON.2022.E09146M. Akram, H.N. Bhatti, M. Iqbal, S. Noreen, S. Sadaf, Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies, J. Environ. Chem. Eng. 5 (2017), https://doi.org/10.1016/j.jece.2016.12.002.Y. Liu, Q. Gao, S. Pu, H. Wang, K. Xia, B. Han, C. Zhou, Carboxyl-functionalized lotus seedpod: A highly efficient and reusable agricultural waste-based adsorbent for removal of toxic Pb 2+ ions from aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 568 (2019), https://doi.org/10.1016/j. colsurfa.2019.02.017.T. Altun, H. Ecevit, Cr(VI) removal using Fe2O3-chitosan-cherry kernel shell pyrolytic charcoal composite beads, Environ. Eng. Res. 25 (2020), https://doi. org/10.4491/eer.2019.112.V.T. Le, T.K.N. Tran, D.L. Tran, H.S. Le, V.D. Doan, Q.D. Bui, H.T. Nguyen, Onepot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution, J. Dispers. Sci. Technol. 40 (2019), https:// doi.org/10.1080/01932691.2018.1541414.S. Daneshfozoun, M.A. Abdullah, B. Abdullah, Preparation and characterization of magnetic biosorbent based on oil palm empty fruit bunch fibers, cellulose and Ceiba pentandra for heavy metal ions removal, Ind. Crops Prod. 105 (2017), https://doi.org/10.1016/j.indcrop.2017.05.011.M. Jain, M. Yadav, T. Kohout, M. Lahtinen, V.K. Garg, M. Sillanpa¨¨ a, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resour. Ind. 20 (2018), https://doi.org/10.1016/j.wri.2018.10.001.T. Jayaramudu, K. Varaprasad, H.C. Kim, A. Kafy, J.W. Kim, J. Kim, Calcinated tea and cellulose composite films and its dielectric and lead adsorption properties, Carbohydr. Polym. 171 (2017), https://doi.org/10.1016/j.carbpol.2017.04.077D.S.P. Franco, J. Georgin, E.C. Lima, L.F.O. Silva, Journal of Water Process Engineering Advances made in removing paraquat herbicide by adsorption technology: A review, J. Water Process Eng. 49 (2022) 102988, https://doi.org/ 10.1016/j.jwpe.2022.102988J. Georgin, D.S.P. Franco, K. Da Boit Martinello, E.C. Lima, L.F.O. Silva, A review of the toxicology presence and removal of ketoprofen through adsorption technology, J. Environ. Chem. Eng. 10 (2022) 107798, https://doi.org/10.1016/ j.jece.2022.107798.H. Moussout, Y. Dehmani, D.S.P. Franco, J. Georgin, Towards an in-depth experimental and theoretical understanding of the cadmium uptake mechanism on a synthesized chitin biopolymer, J. Mol. Liq. 383 (2023) 122106, https://doi. org/10.1016/j.molliq.2023.122106.J. Georgin, D. Stracke, P. Franco, F. Sher, A review of the antibiotic ofloxacin: Current status of ecotoxicology and scientific advances in its removal from aqueous systems by adsorption technology, Chem. Eng. Res. Des. 193 (2023) 99–120, https://doi.org/10.1016/j.cherd.2023.03.025.H. Wang, Z. Zhang, R. Sun, H. Lin, L. Gong, M. Fang, W.H. Hu, HPV infection and anemia status stratify the survival of early T2 laryngeal squamous cell carcinoma, J. Voice 29 (2015) 356–362, https://doi.org/10.1016/j.jvoice.2014.08.016.Z. Song, F. Lian, Z. Yu, L. Zhu, B. Xing, W. Qiu, Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution, Chem. Eng. J. 242 (2014) 36–42, https://doi.org/10.1016/j. cej.2013.12.061S. Wang, B. Gao, A.R. Zimmerman, Y. Li, L. Ma, W.G. Harris, K.W. Migliaccio, Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite, Bioresour. Technol. 175 (2015) 391–395, https://doi.org/10.1016/j. biortech.2014.10.104.S.A. Baig, J. Zhu, N. Muhammad, T. Sheng, X. Xu, Effect of synthesis methods on magnetic Kans grass biochar for enhanced As(III, V) adsorption from aqueous solutions, Biomass-.-. Bioenergy 71 (2014) 299–310, https://doi.org/10.1016/j. biombioe.2014.09.027.S.H. Wang, K.B. Stevenson, L. Hines, J.R. Mediavilla, Y. Khan, R. Soni, W. Dutch, E. Brandt, T. Bannerman, B.N. Kreiswirth, P. Pancholi, Evaluation of repetitive element polymerase chain reaction for surveillance of methicillin-resistant Staphylococcus aureus at a large academic medical center and community hospitals, Diagn. Microbiol. Infect. Dis. 81 (2015) 13–17, https://doi.org/ 10.1016/j.diagmicrobio.2014.05.005.C. Gan, Y. Liu, X. Tan, S. Wang, G. Zeng, B. Zheng, T. Li, Z. Jiang, W. Liu, Effect of porous zinc-biochar nanocomposites on Cr(VI) adsorption from aqueous solution, RSC Adv. 5 (2015) 35107–35115, https://doi.org/10.1039/c5ra04416bM.C. Wang, G.D. Sheng, Y.P. Qiu, A novel manganese-oxide/biochar composite for efficient removal of lead(II) from aqueous solutions, Int. J. Environ. Sci. Technol. 12 (2015) 1719–1726, https://doi.org/10.1007/s13762-014-0538-7.S. ye Wang, Y. kui Tang, C. Chen, J. tao Wu, Z. Huang, Y. yuan Mo, K. xuan Zhang, J. bo Chen, Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead(II) removal, Bioresour. Technol. 186 (2015) 360–364, https://doi.org/10.1016/j.biortech.2015.03.139X. Hu, Z. Ding, A.R. Zimmerman, S. Wang, B. Gao, Batch and column sorption of arsenic onto iron-impregnated biochar synthesized through hydrolysis, Water Res 68 (2015) 206–216, https://doi.org/10.1016/j.watres.2014.10.009C.O. Cope, D.S. Webster, D.A. Sabatini, Arsenate adsorption onto iron oxide amended rice husk char, Sci. Total Environ. 488–489 (2014) 554–561, https:// doi.org/10.1016/j.scitotenv.2013.12.120.Y. Zhou, B. Gao, A.R. Zimmerman, J. Fang, Y. Sun, X. Cao, Sorption of heavy metals on chitosan-modified biochars and its biological effects, Chem. Eng. J. 231 (2013) 512–518, https://doi.org/10.1016/j.cej.2013.07.036.M. Inyang, B. Gao, A. Zimmerman, Y. Zhou, X. Cao, Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars, Environ. Sci. Pollut. Res. 22 (2015) 1868–1876, https://doi.org/10.1007/s11356-014-2740-zM. Gulumian, C. Andraos, A. Afantitis, T. Puzyn, N.J. Coville, Importance of Surface Topography in Both Biological Activity and Catalysis of Nanomaterials: Can Catalysis by Design Guide Safe by Design? Int. J. Mol. Sci. 2021, Vol. 22, Page 8347 22 (2021) 8347, https://doi.org/10.3390/IJMS22158347M. Rahmati, M. Mozafari, Biological response to carbon-family nanomaterials: Interactions at the nano-bio interface, Front. Bioeng. Biotechnol. 7 (2019) 417659, https://doi.org/10.3389/FBIOE.2019.00004/BIBTEX.R. Mota, A.C. Rodrigues, R. Silva-Carvalho, L. Costa, D. Martins, P. Sampaio, F. Dourado, M. Gama, Tracking Bacterial Nanocellulose in Animal Tissues by Fluorescence Microscopy, Nanomaterials 12 (2022) 2605, https://doi.org/ 10.3390/NANO12152605/S1.N. El Messaoudi, M. El Khomri, Y. Fernine, A. Bouich, A. Lacherai, A. Jada, F. Sher, E.C. Lima, Hydrothermally engineered Eriobotrya japonica leaves/MgO nanocomposites with potential applications in wastewater treatment, Ground Sustain Dev. 16 (2022) 100728, https://doi.org/10.1016/j.gsd.2022.100728.D. Kołodynska, ´ J. Bąk, M. Kozioł, L.V. Pylypchuk, Investigations of Heavy Metal Ion Sorption Using Nanocomposites of Iron-Modified Biochar, Nanoscale Res. Lett. 12 (2017), https://doi.org/10.1186/s11671-017-2201-y.P. Singh, A. Sarswat, C.U. Pittman, T. Mlsna, D. Mohan, Sustainable LowConcentration Arsenite [As(III)] Removal in Single and Multicomponent Systems Using Hybrid Iron Oxide-Biochar Nanocomposite Adsorbents - A Mechanistic Study, ACS Omega 5 (2020) 2575–2593, https://doi.org/10.1021/ acsomega.9b02842.S. Torabian, R. Qin, C. Noulas, Y. Lu, G. Wang, Biochar: An organic amendment to crops and an environmental solution, AIMS Agric. Food 6 (2021) 401–405, https://doi.org/10.3934/AGRFOOD.2021024.B.T. Nguyen, J. Lehmann, J. Kinyangi, R. Smernik, S.J. Riha, M.H. Engelhard, Long-term black carbon dynamics in cultivated soil, Biogeochemistry 92 (2009) 163–176, https://doi.org/10.1007/s10533-008-9248-x.W. Buss, M.C. Graham, G. MacKinnon, O. Maˇsek, Strategies for producing biochars with minimum PAH contamination, J. Anal. Appl. Pyrolysis 119 (2016) 24–30, https://doi.org/10.1016/j.jaap.2016.04.001.L. Dunnigan, B.J. Morton, P.A. Hall, C.W. Kwong, Production of biochar and bioenergy from rice husk: Influence of feedstock drying on particulate matter and the associated polycyclic aromatic hydrocarbon emissions, Atmos. Environ. 190 (2018) 218–225, https://doi.org/10.1016/j.atmosenv.2018.07.028Y.Y. Wang, X.R. Jing, L.L. Li, W.J. Liu, Z.H. Tong, H. Jiang, Biotoxicity Evaluations of Three Typical Biochars Using a Simulated System of Fast Pyrolytic Biochar Extracts on Organisms of Three Kingdoms, ACS Sustain. Chem. Eng. 5 (2017) 481–488, https://doi.org/10.1021/acssuschemeng.6b01859.G. Visioli, F.D. Conti, C. Menta, M. Bandiera, A. Malcevschi, D.L. Jones, T. Vamerali, Assessing biochar ecotoxicology for soil amendment by root phytotoxicity bioassays, Environ. Monit. Assess. 188 (2016) 1–11, https://doi. org/10.1007/s10661-016-5173-y.D.L. Gelardi, C. Li, S.J. Parikh, An emerging environmental concern: Biocharinduced dust emissions and their potentially toxic properties, Sci. Total Environ. 678 (2019) 813–820, https://doi.org/10.1016/j.scitotenv.2019.05.007.D. Lakshmi, D. Akhil, A. Kartik, K.P. Gopinath, J. Arun, A. Bhatnagar, J. Rinklebe, W. Kim, G. Muthusamy, Artificial intelligence (AI) applications in adsorption of heavy metals using modified biochar, Sci. Total Environ. 801 (2021), https://doi. org/10.1016/j.scitotenv.2021.149623R.M.B.O. Duarte, A.C. Duarte, Multidimensional analytical techniques in environmental research: Evolution of concepts, Elsevier Inc, 2020, https://doi. org/10.1016/B978-0-12-818896-5.00001-6.L. Wei, Y. Zhang, Q. Lu, Z. Yuan, H. Li, Q. Huang, Estimating the spatial distribution of soil total arsenic in the suspected contaminated area using UAVBorne hyperspectral imagery and deep learning, Ecol. Indic. 133 (2021) 108384, https://doi.org/10.1016/j.ecolind.2021.108384M. Vigneshkumar, K. Yarrakula, Titanium metal identification in southern region of Tamil Nadu using hyperspectral imagery, Indian J. Geo-Mar. Sci. 47 (2018) 2100–2105.J. Jian, Y. Fang, W.-L. Li, Q.-Y. Chen, H.-Y. Tian, S.-L. You, Estimate of Heavy Metals in Soil with Non-Soil Removed, J. Data Anal. Inf. Process. 05 (2017) 140–155, https://doi.org/10.4236/jdaip.2017.54011.Y. Liu, W. Li, G. Wu, X. Xu, Feasibility of estimating heavy metal contaminations in floodplain soils using laboratory-based hyperspectral data-A case study along Le’an River, China, Geo-Spat. Inf. Sci. 14 (2011) 10–16, https://doi.org/10.1007/ s11806-011-0424-0R. Abdlaty, M. Gobara, I. Naiem, M. Mokhtar, Innovative technique for analysis of wastewater contaminants using hyperspectral imaging, J. Spectr. Imaging 9 (2020) 1–10, https://doi.org/10.1255/jsi.2020.a12.D. Wei, H.H. Ngo, W. Guo, W. Xu, Y. Zhang, B. Du, Q. Wei, Biosorption of effluent organic matter onto magnetic biochar composite: Behavior of fluorescent components and their binding properties, Bioresour. Technol. 214 (2016) 259–265, https://doi.org/10.1016/j.biortech.2016.04.109.M.A. Mohammad Alwi, E. Normaya, H. Ismail, A. Iqbal, B. Mat Piah, M.A. Abu Samah, M.N. Ahmad, Two-Dimensional Infrared Correlation Spectroscopy, Conductor-like Screening Model for Real Solvents, and Density Functional Theory Study on the Adsorption Mechanism of Polyvinylpolypyrrolidone for Effective Phenol Removal in an Aqueous Medium, ACS Omega 6 (2021) 25179–25192, https://doi.org/10.1021/acsomega.1c02699.W. Chen, N. Habibul, X.Y. Liu, G.P. Sheng, H.Q. Yu, FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter, Environ. Sci. Technol. 49 (2015) 2052–2058, https://doi.org/10.1021/es5049495.J. Lehmann, D. Solomon, Organic carbon chemistry in soils observed by synchrotron-based spectroscopy, Elsevier Masson SAS, 2010, https://doi.org/ 10.1016/s0166-2481(10)34010-4H. Hu, J. Zhao, L. Wang, L. Shang, L. Cui, Y. Gao, B. Li, Y.F. Li, Synchrotron-based techniques for studying the environmental health effects of heavy metals: Current status and future perspectives, TrAC - Trends Anal. Chem. 122 (2020) 115721, https://doi.org/10.1016/j.trac.2019.115721P.M. Kopittke, P. Wang, E. Lombi, E. Donner, Synchrotron-based X-Ray Approaches for Examining Toxic Trace Metal(loid)s in Soil–Plant Systems, J. Environ. Qual. 46 (2017) 1175–1189, https://doi.org/10.2134/ jeq2016.09.0361S. Moreira, M. Ficaris, A.E.S. Vives, V.F. Nascimento Filho, O.L.A.D. Zucchi, R. C. Barroso, E.F.O. De Jesus, Heavy metals in groundwater using synchrotron radiation total reflection X-ray analysis, Instrum. Sci. Technol. 34 (2006) 567–585, https://doi.org/10.1080/10739140600811682H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. 9 (2013) 276–282.N.A. Khan, S. Ibrahim, P. Subramaniam, Elimination of heavy metals from wastewater using agricultural wastes as adsorbents, Malays. J. Sci. 23 (2004) 43–51.Heavy Metal Removal from Wastewater Using Low Cost Adsorbents, (2015). 〈http s://doi.org/10.4172/2155-6199.1000315〉.S. Tamjidi, A. Ameri, A review of the application of sea material shells as low cost and effective bio-adsorbent for removal of heavy metals from wastewater, Environ. Sci. Pollut. Res. 27 (2020) 31105–31119.J. Acharya, U. Kumar, P.M. Rafi, Removal of heavy metal ions from wastewater by chemically modified agricultural waste material as potential adsorbent-a review, Int. J. Curr. Eng. Technol. 8 (2018) 526–530.18110122038AdsorptionAgricultural solid wasteBionanocompositeHeavy metalWastewater treatmentPublicationORIGINALComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdfComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdfapplication/pdf3446989https://repositorio.cuc.edu.co/bitstreams/d453d8de-d3ec-4767-af5d-e9eef08ca2af/download1c2479904e72b32098e2ecbe01dfc866MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/a7e60e60-c8fb-4345-bafa-43acc2178431/download73a5432e0b76442b22b026844140d683MD52TEXTComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdf.txtComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdf.txtExtracted texttext/plain100346https://repositorio.cuc.edu.co/bitstreams/4fcc0c0e-e21f-435c-973c-c385235031af/download224b39d0621346bdcb63c6d04e8f4eedMD53THUMBNAILComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdf.jpgComprehensive analytical review of heavy metal removal efficiency using agricultural solid waste-based bionanocomposites.pdf.jpgGenerated Thumbnailimage/jpeg14582https://repositorio.cuc.edu.co/bitstreams/6b8b19b6-96a7-44b2-89c5-a069fbcdb6fb/download4b9f0e53869b15debc7d0d8720b50f7cMD5411323/13512oai:repositorio.cuc.edu.co:11323/135122024-10-25 03:01:05.408https://creativecommons.org/licenses/by/4.0/© 2024open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |