Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater

This work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6...

Full description

Autores:
Satizabal-Gómez, Valentina
Collazos-Botero, Manuel Alejandro
Serna-Galvis, Efraím A.
Torres-Palma, Ricardo A.
Bravo-Suárez, Juan J.
Machuca-Martínez, Fiderman
Castilla-Acevedo, Samir Fernando
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8636
Acceso en línea:
https://hdl.handle.net/11323/8636
https://doi.org/10.1016/j.mineng.2021.107031
https://repositorio.cuc.edu.co/
Palabra clave:
Mining wastewater
Persulfate
Advanced oxidation process
Free cyanide degradation
Dissolved oxygen
Inorganic ions
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_a5707130145c05644012b63bbce86481
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8636
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
title Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
spellingShingle Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
Mining wastewater
Persulfate
Advanced oxidation process
Free cyanide degradation
Dissolved oxygen
Inorganic ions
title_short Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
title_full Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
title_fullStr Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
title_full_unstemmed Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
title_sort Effect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater
dc.creator.fl_str_mv Satizabal-Gómez, Valentina
Collazos-Botero, Manuel Alejandro
Serna-Galvis, Efraím A.
Torres-Palma, Ricardo A.
Bravo-Suárez, Juan J.
Machuca-Martínez, Fiderman
Castilla-Acevedo, Samir Fernando
dc.contributor.author.spa.fl_str_mv Satizabal-Gómez, Valentina
Collazos-Botero, Manuel Alejandro
Serna-Galvis, Efraím A.
Torres-Palma, Ricardo A.
Bravo-Suárez, Juan J.
Machuca-Martínez, Fiderman
Castilla-Acevedo, Samir Fernando
dc.subject.spa.fl_str_mv Mining wastewater
Persulfate
Advanced oxidation process
Free cyanide degradation
Dissolved oxygen
Inorganic ions
topic Mining wastewater
Persulfate
Advanced oxidation process
Free cyanide degradation
Dissolved oxygen
Inorganic ions
description This work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6 g L−1) and dissolved oxygen in solution (absence/presence) were studied. Lastly, the influence of phosphate, carbonate, and nitrate presence at different concentrations (50, 150, 350, and 500 mg L−1) on CN− elimination was tested. Additionally, the electric energy per order (EEO), a measure of the energy consumption in the process was determined, and a mechanistic view of CN− degradation was proposed. The results show that photolysis and alkaline activation of PS degraded 8 and 11% of CN−, respectively, whereas their combination presented a synergistic effect on CN− pollutant elimination. While oxygen had a vital role in photolysis due to the formation of 1O2 to oxidize CN− to CNO−, HO• and SO4•− were primarily responsible for CN− degradation by UVC/PS. It was also found that cyanide removal followed a pseudo-first-order kinetics whose apparent reaction rate constant (k) increased from 0.0104 to 0.0297 min−1 as the initial concentration of PS increased from 0.2 to 0.6 g L−1, indicating a strong dependency of the removal efficiency on the PS amount. Remarkably, cyanide degradation by the combined UVC/PS showed a high CN− conversion and selectivity even in the presence of high concentrations of phosphate, carbonate, and nitrate ions (500 mg L−1), which resulted in CN− removals higher than 80% after 60 min of degradation treatment. Furthermore, the EEO values were similar in the presence and absence of phosphate or carbonate; however, they decreased slightly with nitrate presence. All these results suggest the feasibility of the combined UVC/PS process for the elimination of cyanide such as that found in mining wastewater.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-06T17:03:08Z
dc.date.available.none.fl_str_mv 2021-09-06T17:03:08Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8636
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.mineng.2021.107031
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/8636
https://doi.org/10.1016/j.mineng.2021.107031
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv M. Abdullah Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide J. Phys. Chem., 94 (1990), pp. 6820-6825, 10.1021/j100380a051
G.P. Anipsitakis, D.D. Dionysiou Transition metal/UV-based advanced oxidation technologies for water decontamination Appl. Catal. B Environ., 54 (2004), pp. 155-163, 10.1016/j.apcatb.2004.05.025
APHA, 1998. APHA: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Water Work. Assoc. Environ. Fed. 552.
D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman Standard electrode potentials involving radicals in aqueous solution: inorganic radicals Bioinorg. React. Mech., 9 (2013), pp. 59-61, 10.1515/irm-2013-0005
D. Behar, G. Czapski, I. Duchovny Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions J. Phys. Chem., 74 (1970), pp. 2206-2210, 10.1021/j100909a029
D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Photocatalytic degradation for environmental applications – a review J. Chem. Technol. Biotechnol., 77 (2001), pp. 102-116, 10.1002/jctb.532
Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. In: Gavaskar, A.R., Chen, A.S.C. (Eds.), Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterrey, pp. 2A–05.
J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report) Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627
R.P. Buck, S. Singhadeja, L.B. Rogers Ultraviolet absorption spectra of some inorganic ions in aqueous solutions Anal. Chem., 26 (1954), pp. 1240-1242, 10.1021/ac60091a051
G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution At. Energy, 17 (1988), pp. 513-886, 10.1063/1.555805
J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization Water Res., 98 (2016), pp. 39-46, 10.1016/j.watres.2016.04.004
Center for Human Rights and Environment, 2011. Efectos del cianuro en la salud humana [WWW Document]. Cent. Hum. Rights Enviroment.
J. Chen, Y. Qian, H. Liu, T. Huang Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO Environ. Sci. Pollut. Res., 23 (2016), pp. 3824-3833, 10.1007/s11356-015-5630-0
L. Chen, T. Cai, C. Cheng, Z. Xiong, D. Ding Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: a comparative study Chem. Eng. J., 351 (2018), pp. 1137-1146, 10.1016/j.cej.2018.06.107
Y. Deng, R. Zhao Advanced oxidation processes (AOPs) in wastewater treatment Curr. Pollut. Reports, 1 (2015), pp. 167-176, 10.1007/s40726-015-0015-z
L. Dogliotti, E. Hayon Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions J. Phys. Chem., 71 (1967), pp. 2511-2516, 10.1021/j100867a019
D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong Cyanide in Water and Soil: Chemistry, Risk, and Management (first ed.), Taylor & Francis, Boca Raton (2006)
M. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6
R.M. Felix-Navarro, S.W. Lin, V. Violante-Delgadillo, A. Zizumbo-Lopez, S. Perez-Sicairos Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte Aqueous solutions J. Mex. Chem. Soc., 55 (2011), pp. 51-56
O.S. Furman, A.L. Teel, R.J. Watts Mechanism of base activation of persulfate Environ. Sci. Technol., 44 (2010), pp. 6423-6428, 10.1021/es1013714
F. Ghanbari, M. Moradi, F. Gohari Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals J. Water Process Eng., 9 (2016), pp. 22-28, 10.1016/j.jwpe.2015.11.011
N. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment J. Environ. Chem. Eng., 8 (2020), p. 104336, 10.1016/j.jece:2020.104336
M. Gonzalez, E. Oliveros, M. Worner, A. Braun Vacuum-ultraviolet photolysis of aqueous reaction systems J. Photochem. Photobiol. C Photochem. Rev., 5 (2004), pp. 225-246, 10.1016/j.jphotochemrev.2004.10.002
J.J. Guerrero Cianuro: toxicidad y destrucción biológica El Ing. minas, 10 (2005), pp. 22-25
M. Guilloton, F. Karst A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid Anal. Biochem., 149 (1985), pp. 291-295, 10.1016/0003-2697(85)90572-X
W. Huang, A. Bianco, M. Brigante, G. Mailhot UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: efficiency, mechanism and effect of various water constituents J. Hazard. Mater., 347 (2018), pp. 279-287, 10.1016/j.jhazmat.2018.01.006
I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke Critical review of the science and sustainability of persulphate advanced oxidation processes Chem. Eng. J., 338 (2018), pp. 651-669, 10.1016/j.cej.2018.01.034
C.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023
C.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334n
S.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: a new perspective for mining wastewater treatment Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972
S.H. Kim, S.W. Lee, G.M. Lee, B.T. Lee, S.T. Yun, S.O. Kim Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate Chemosphere, 143 (2016), pp. 106-114, 10.1016/j.chemosphere.2015.07.006
U.K. Klaning, K. Sehested, E.H. Appelman Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F Inorg. Chem., 30 (1991), pp. 3582-3584, 10.1021/ic00018a040
J. Kochany, E. Lipczynska-Kochany Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2 Chemosphere, 25 (1992), pp. 1769-1782, 10.1016/0045-6535(92)90018-M
I. Kraljić Photolytic determination of SO4 rate constants Int. J. Radiat. Phys. Chem., 2 (1970), pp. 59-68, 10.1016/0020-7055(70)90017-3
Krumova, K., Cosa, G., 2016. Singlet Oxygen, Comprehensive Series in Photochemistry and Photobiology – Volume 13, Comprehensive Series in Photochemical & Photobiological Sciences. Royal Society of Chemistry, Cambridge. doi: 10.1039/9781782622208.
N. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027
Liang, C., Lei, J.-H., 2015. Identification of active radical species in alkaline persulfate oxidation. Water Environ. Res. doi: 10.2175/106143015x14338845154986.
C. Liang, H.-W. Su Identification of sulfate and hydroxyl radicals in thermally activated persulfate Ind. Eng. Chem. Res., 48 (2009), pp. 5558-5562, 10.1021/ie9002848
Logsdon, M.J., Hagelstein, K., Mudder, T.I., 1999. The Management of Cyanide in Gold Extraction. Ottawa.
J. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water Chemosphere, 190 (2018), pp. 296-306, 10.1016/j.chemosphere.2017.09.148
MADS, M.D.A.Y.D.S., 2015. Resolución 631 de 2015. D. Of. No. 49.486 18 abril 2015 2015, 73.
P. Maruthamuthu, P. Neta Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds J. Phys. Chem., 82 (1978), pp. 710-713, 10.1021/j100495a019
L.W. Matzek, K.E. Carter Activated persulfate for organic chemical degradation: a review Chemosphere, 151 (2016), pp. 178-188, 10.1016/j.chemosphere.2016.02.055
S.R. Mousavi, M. Balali-Mood, B. Riahi-Zanjani, M. Sadeghi Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters J. Res. Med. Sci., 18 (2013), pp. 65-69
G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohiyan Comparing the efficacy of VUV and UVC/S2O82 advanced oxidation processes for degradation and mineralization of cyanide in wastewater Chem. Eng. J., 294 (2016), pp. 273-280, 10.1016/j.cej.2016.02.113
S.L. Murov, I. Carmichael, G.L. Hug Handbook of Photochemistry Second Edition (second. ed.), Marcel Dekker, Inc., New York (1993)
W.A. Noyes Oxygen effects in photochemical systems Radiat. Res. Suppl., 1 (1959), p. 164, 10.2307/3583637
K. Osathaphan, W. Kittisarn, P. Chatchaitanawat, R.A. Yngard, H. Kim, V.K. Sharma Oxidation of Ni (II) – cyano and Co (III) – cyano complexes by Ferrate (VI): effect of pH J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst Environ. Eng., 49 (2014), pp. 1380-1384, 10.1080/10934529.2014.928250
K. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma Photocatalytic degradation of Ni (II) – Cyano and Co (III) – cyano complexes Water. Air. Soil Pollut., 224 (2013), 10.1007/s11270-013-1647-5
M.A. Oturan, J.-J. Aaron Advanced oxidation processes in water/wastewater treatment: principles and applications. A review Crit. Rev. Environ. Sci. Technol., 44 (2014), pp. 2577-2641, 10.1080/10643389.2013.829765
J.A. Pedraza-Avella, P. Acevedo-Peña, J.E. Pedraza-Rosas Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach Catal. Today, 133–135 (2008), pp. 611-618, 10.1016/j.cattod.2007.12.063
C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants Chemosphere, 151 (2016), pp. 280-288, 10.1016/j.chemosphere.2016.02.089
R.D. Rajesh, G. Abhinav, B. Chandrajit Cyanide in industrial wastewaters and its removal: a review on biotreatment J. Hazard. Mater., 163 (2009), pp. 1-11, 10.1016/j.jhazmat.2008.06.051
A.V. Ram Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre Rev. Med. del Perú, 71 (2010), pp. 54-61, 10.1016/S0166-445X(96)00815-6
G.M. Ritcey Tailings management in gold plants Hydrometallurgy, 78 (2005), pp. 3-20, 10.1016/j.hydromet.2005.01.001
A.B. Ross, P. Neta Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution (first ed.), National Standard Reference Data System, Notre Dame (1979)
J.A. Rosso Caracterización y reactividad de los radicales fosfato y polifosfato en solución acuosa Universidad Nacional de La Plata (2002)
Samir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, 2020. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes. J. Hazard. Mater. 392, NA. doi: 10.1016/j.jhazmat.2020.122389.
M. Sarla, M. Pandit, D.K. Tyagi, J.C. Kapoor Oxidation of cyanide in aqueous solution by chemical and photochemical process J. Hazard. Mater., 116 (2004), pp. 49-56, 10.1016/j.jhazmat.2004.06.035
C. Tan, N. Gao, Y. Deng, N. An, J. Deng Heat-activated persulfate oxidation of diuron in water Chem. Eng. J., 203 (2012), pp. 294-300, 10.1016/j.cej.2012.07.005
L.A.C. Teixeira, M.T.C. Arellano, C. Marquez Sarmiento, L. Yokoyama, F.V.D.F. Araujo Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite Miner. Eng., 50–51 (2013), pp. 57-63, 10.1016/j.mineng.2013.06.007
S. Tian, Y. Li, H. Zeng, W. Guan, Y. Wang, X. Zhao Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation J. Colloid Interface Sci., 482 (2016), pp. 205-211, 10.1016/j.jcis.2016.07.024
S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou Chemistry of persulfates in water and wastewater treatment: a review Chem. Eng. J., 330 (2017), pp. 44-62, 10.1016/j.cej.2017.07.132
J. Wang, S. Wang Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants Chem. Eng. J., 334 (2018), pp. 1502-1517, 10.1016/j.cej.2017.11.059
K. Winkelmann, V.K. Sharma, Y. Lin, K.A. Shreve, C. Winkelmann, L.J. Hoisington, R.A. Yngard Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system Chemosphere, 72 (2008), pp. 1694-1699, 10.1016/j.chemosphere.2008.05.008
Y.i. Yang, J.J. Pignatello, J. Ma, W.A. Mitch Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) Environ. Sci. Technol., 48 (2014), pp. 2344-2351, 10.1021/es404118q
A.A. Yawalkar, D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Solar-assisted photochemical and photocatalytic degradation of phenol J. Chem. Technol. Biotechnol., 76 (2001), pp. 363-370, 10.1002/jctb.390
Young, C.A., Jordan, T.S., Tech, M., 1995. Cyanide remediation: current and past technologies. Proc. 10th Annu. Conf. Hazard. Waste Res. 104–129.
R.G. Zepp, J. Hoigne, H. Bader Nitrate-induced photooxidation of trace organic chemicals in water Environ. Sci. Technol., 21 (1987), pp. 443-450, 10.1021/es00159a004
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.source.spa.fl_str_mv Minerals Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/abs/pii/S0892687521002600
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/ddac4d48-d113-456e-a2ff-f943b4d78221/download
https://repositorio.cuc.edu.co/bitstreams/0b5b3a0f-14f3-49cb-8496-e037df0d5705/download
https://repositorio.cuc.edu.co/bitstreams/7ecd5e27-2967-4ccd-bcec-46d400f61e1d/download
https://repositorio.cuc.edu.co/bitstreams/c4e700f8-38a3-42e6-8734-de75d4a2869d/download
https://repositorio.cuc.edu.co/bitstreams/d3fbbcc6-7db4-4c8a-8e9e-f950551481c7/download
bitstream.checksum.fl_str_mv 10c08a16b2f6a83ec8a0be5c1f1ffdf3
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
4a7b7519f58b4459830803eb55a626ae
8eeded7fd2d47fc08a9046d24bc777bb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760703655116800
spelling Satizabal-Gómez, ValentinaCollazos-Botero, Manuel AlejandroSerna-Galvis, Efraím A.Torres-Palma, Ricardo A.Bravo-Suárez, Juan J.Machuca-Martínez, FidermanCastilla-Acevedo, Samir Fernando2021-09-06T17:03:08Z2021-09-06T17:03:08Z2021https://hdl.handle.net/11323/8636https://doi.org/10.1016/j.mineng.2021.107031Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This work studied the influence of several parameters on free cyanide (CN−) degradation (50 mg L−1) by the UVC-activated persulfate (PS) at alkaline conditions (UVC/PS). Firstly, photolysis and alkaline activation of PS were evaluated. Then, the effect of initial PS concentration (0.2, 0.4, and 0.6 g L−1) and dissolved oxygen in solution (absence/presence) were studied. Lastly, the influence of phosphate, carbonate, and nitrate presence at different concentrations (50, 150, 350, and 500 mg L−1) on CN− elimination was tested. Additionally, the electric energy per order (EEO), a measure of the energy consumption in the process was determined, and a mechanistic view of CN− degradation was proposed. The results show that photolysis and alkaline activation of PS degraded 8 and 11% of CN−, respectively, whereas their combination presented a synergistic effect on CN− pollutant elimination. While oxygen had a vital role in photolysis due to the formation of 1O2 to oxidize CN− to CNO−, HO• and SO4•− were primarily responsible for CN− degradation by UVC/PS. It was also found that cyanide removal followed a pseudo-first-order kinetics whose apparent reaction rate constant (k) increased from 0.0104 to 0.0297 min−1 as the initial concentration of PS increased from 0.2 to 0.6 g L−1, indicating a strong dependency of the removal efficiency on the PS amount. Remarkably, cyanide degradation by the combined UVC/PS showed a high CN− conversion and selectivity even in the presence of high concentrations of phosphate, carbonate, and nitrate ions (500 mg L−1), which resulted in CN− removals higher than 80% after 60 min of degradation treatment. Furthermore, the EEO values were similar in the presence and absence of phosphate or carbonate; however, they decreased slightly with nitrate presence. All these results suggest the feasibility of the combined UVC/PS process for the elimination of cyanide such as that found in mining wastewater.Satizabal-Gómez, ValentinaCollazos-Botero, Manuel AlejandroSerna-Galvis, Efraím A.Torres-Palma, Ricardo A.Bravo-Suárez, Juan J.Machuca-Martínez, FidermanCastilla-Acevedo, Samir Fernandoapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Minerals Engineeringhttps://www.sciencedirect.com/science/article/abs/pii/S0892687521002600Mining wastewaterPersulfateAdvanced oxidation processFree cyanide degradationDissolved oxygenInorganic ionsEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewaterArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionM. Abdullah Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide J. Phys. Chem., 94 (1990), pp. 6820-6825, 10.1021/j100380a051G.P. Anipsitakis, D.D. Dionysiou Transition metal/UV-based advanced oxidation technologies for water decontamination Appl. Catal. B Environ., 54 (2004), pp. 155-163, 10.1016/j.apcatb.2004.05.025APHA, 1998. APHA: Standard Methods for the Examination of Water and Wastewater. Am. Public Heal. Assoc. Water Work. Assoc. Environ. Fed. 552.D.A. Armstrong, R.E. Huie, S. Lymar, W.H. Koppenol, G. Merényi, P. Neta, D.M. Stanbury, S. Steenken, P. Wardman Standard electrode potentials involving radicals in aqueous solution: inorganic radicals Bioinorg. React. Mech., 9 (2013), pp. 59-61, 10.1515/irm-2013-0005D. Behar, G. Czapski, I. Duchovny Carbonate radical in flash photolysis and pulse radiolysis of aqueous carbonate solutions J. Phys. Chem., 74 (1970), pp. 2206-2210, 10.1021/j100909a029D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Photocatalytic degradation for environmental applications – a review J. Chem. Technol. Biotechnol., 77 (2001), pp. 102-116, 10.1002/jctb.532Block, P.A., Brown, R.A., Robinson, D., 2004. Novel activation technologies for sodium persulfate in situ chemical oxidation. In: Gavaskar, A.R., Chen, A.S.C. (Eds.), Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds. Monterrey, pp. 2A–05.J.R. Bolton, K.G. Bircher, W. Tumas, C.A. Tolman Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report) Pure Appl. Chem., 73 (2001), pp. 627-637, 10.1351/pac200173040627R.P. Buck, S. Singhadeja, L.B. Rogers Ultraviolet absorption spectra of some inorganic ions in aqueous solutions Anal. Chem., 26 (1954), pp. 1240-1242, 10.1021/ac60091a051G.V. Buxton, C.L. Greenstock, W.P. Helman, A.B. Ross Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/O•−) in aqueous solution At. Energy, 17 (1988), pp. 513-886, 10.1063/1.555805J.C. Cardoso, G.G. Bessegato, M.V. Boldrin Zanoni Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization Water Res., 98 (2016), pp. 39-46, 10.1016/j.watres.2016.04.004Center for Human Rights and Environment, 2011. Efectos del cianuro en la salud humana [WWW Document]. Cent. Hum. Rights Enviroment.J. Chen, Y. Qian, H. Liu, T. Huang Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO Environ. Sci. Pollut. Res., 23 (2016), pp. 3824-3833, 10.1007/s11356-015-5630-0L. Chen, T. Cai, C. Cheng, Z. Xiong, D. Ding Degradation of acetamiprid in UV/H2O2 and UV/persulfate systems: a comparative study Chem. Eng. J., 351 (2018), pp. 1137-1146, 10.1016/j.cej.2018.06.107Y. Deng, R. Zhao Advanced oxidation processes (AOPs) in wastewater treatment Curr. Pollut. Reports, 1 (2015), pp. 167-176, 10.1007/s40726-015-0015-zL. Dogliotti, E. Hayon Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions J. Phys. Chem., 71 (1967), pp. 2511-2516, 10.1021/j100867a019D.A. Dzombak, R.S. Ghosh, G.M. Wong-Chong Cyanide in Water and Soil: Chemistry, Risk, and Management (first ed.), Taylor & Francis, Boca Raton (2006)M. Ericsson, O. Löf Mining’s contribution to national economies between 1996 and 2016 Miner. Econ. (2019), pp. 223-250, 10.1007/s13563-019-00191-6R.M. Felix-Navarro, S.W. Lin, V. Violante-Delgadillo, A. Zizumbo-Lopez, S. Perez-Sicairos Cyanide degradation by direct and indirect electrochemical oxidation in electro-active support electrolyte Aqueous solutions J. Mex. Chem. Soc., 55 (2011), pp. 51-56O.S. Furman, A.L. Teel, R.J. Watts Mechanism of base activation of persulfate Environ. Sci. Technol., 44 (2010), pp. 6423-6428, 10.1021/es1013714F. Ghanbari, M. Moradi, F. Gohari Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals J. Water Process Eng., 9 (2016), pp. 22-28, 10.1016/j.jwpe.2015.11.011N. González-Ipia, K.C. Bolaños-Chamorro, J.D. Acuña-Bedoya, F. Machuca-Martínez, S.F. Castilla-Acevedo Enhancement of the adsorption of hexacyanoferrate (III) ion on granular activated carbon by the addition of cations: a promissory application to mining wastewater treatment J. Environ. Chem. Eng., 8 (2020), p. 104336, 10.1016/j.jece:2020.104336M. Gonzalez, E. Oliveros, M. Worner, A. Braun Vacuum-ultraviolet photolysis of aqueous reaction systems J. Photochem. Photobiol. C Photochem. Rev., 5 (2004), pp. 225-246, 10.1016/j.jphotochemrev.2004.10.002J.J. Guerrero Cianuro: toxicidad y destrucción biológica El Ing. minas, 10 (2005), pp. 22-25M. Guilloton, F. Karst A spectrophotometric determination of cyanate using reaction with 2-aminobenzoic acid Anal. Biochem., 149 (1985), pp. 291-295, 10.1016/0003-2697(85)90572-XW. Huang, A. Bianco, M. Brigante, G. Mailhot UVA-UVB activation of hydrogen peroxide and persulfate for advanced oxidation processes: efficiency, mechanism and effect of various water constituents J. Hazard. Mater., 347 (2018), pp. 279-287, 10.1016/j.jhazmat.2018.01.006I.A. Ike, K.G. Linden, J.D. Orbell, M. Duke Critical review of the science and sustainability of persulphate advanced oxidation processes Chem. Eng. J., 338 (2018), pp. 651-669, 10.1016/j.cej.2018.01.034C.A. Johnson The fate of cyanide in leach wastes at gold mines: an environmental perspective Appl. Geochem., 57 (2015), pp. 194-205, 10.1016/j.apgeochem.2014.05.023C.A. Johnson, D.J. Grimes, R.W. Leinz, R.O. Rye Cyanide speciation at four gold leach operations undergoing remediation Environ. Sci. Technol., 42 (2008), pp. 1038-1044, 10.1021/es702334nS.A. Joven-Quintero, S.F. Castilla-Acevedo, L.A. Betancourt-Buitrago, R. Acosta-Herazo, F. Machuca-Martinez Photocatalytic degradation of cobalt cyanocomplexes in a novel LED photoreactor using TiO2 supported on borosilicate sheets: a new perspective for mining wastewater treatment Mater. Sci. Semicond. Process., 110 (2020), 10.1016/j.mssp.2020.104972S.H. Kim, S.W. Lee, G.M. Lee, B.T. Lee, S.T. Yun, S.O. Kim Monitoring of TiO2-catalytic UV-LED photo-oxidation of cyanide contained in mine wastewater and leachate Chemosphere, 143 (2016), pp. 106-114, 10.1016/j.chemosphere.2015.07.006U.K. Klaning, K. Sehested, E.H. Appelman Laser flash photolysis and pulse radiolysis of aqueous solutions of the fluoroxysulfate ion, SO4F Inorg. Chem., 30 (1991), pp. 3582-3584, 10.1021/ic00018a040J. Kochany, E. Lipczynska-Kochany Application of the EPR spin-trapping technique for the investigation of the reactions of carbonate, bicarbonate, and phosphate anions with hydroxyl radicals generated by the photolysis of H2O2 Chemosphere, 25 (1992), pp. 1769-1782, 10.1016/0045-6535(92)90018-MI. Kraljić Photolytic determination of SO4 rate constants Int. J. Radiat. Phys. Chem., 2 (1970), pp. 59-68, 10.1016/0020-7055(70)90017-3Krumova, K., Cosa, G., 2016. Singlet Oxygen, Comprehensive Series in Photochemistry and Photobiology – Volume 13, Comprehensive Series in Photochemical & Photobiological Sciences. Royal Society of Chemistry, Cambridge. doi: 10.1039/9781782622208.N. Kuyucak, A. Akcil Cyanide and removal options from effluents in gold mining and metallurgical processes Miner. Eng., 50–51 (2013), pp. 13-29, 10.1016/j.mineng.2013.05.027Liang, C., Lei, J.-H., 2015. Identification of active radical species in alkaline persulfate oxidation. Water Environ. Res. doi: 10.2175/106143015x14338845154986.C. Liang, H.-W. Su Identification of sulfate and hydroxyl radicals in thermally activated persulfate Ind. Eng. Chem. Res., 48 (2009), pp. 5558-5562, 10.1021/ie9002848Logsdon, M.J., Hagelstein, K., Mudder, T.I., 1999. The Management of Cyanide in Gold Extraction. Ottawa.J. Ma, Y. Yang, X. Jiang, Z. Xie, X. Li, C. Chen, H. Chen Impacts of inorganic anions and natural organic matter on thermally activated persulfate oxidation of BTEX in water Chemosphere, 190 (2018), pp. 296-306, 10.1016/j.chemosphere.2017.09.148MADS, M.D.A.Y.D.S., 2015. Resolución 631 de 2015. D. Of. No. 49.486 18 abril 2015 2015, 73.P. Maruthamuthu, P. Neta Phosphate radicals. Spectra, acid-base equilibriums, and reactions with inorganic compounds J. Phys. Chem., 82 (1978), pp. 710-713, 10.1021/j100495a019L.W. Matzek, K.E. Carter Activated persulfate for organic chemical degradation: a review Chemosphere, 151 (2016), pp. 178-188, 10.1016/j.chemosphere.2016.02.055S.R. Mousavi, M. Balali-Mood, B. Riahi-Zanjani, M. Sadeghi Determination of cyanide and nitrate concentrations in drinking, irrigation, and wastewaters J. Res. Med. Sci., 18 (2013), pp. 65-69G. Moussavi, M. Pourakbar, E. Aghayani, M. Mahdavianpour, S. Shekoohiyan Comparing the efficacy of VUV and UVC/S2O82 advanced oxidation processes for degradation and mineralization of cyanide in wastewater Chem. Eng. J., 294 (2016), pp. 273-280, 10.1016/j.cej.2016.02.113S.L. Murov, I. Carmichael, G.L. Hug Handbook of Photochemistry Second Edition (second. ed.), Marcel Dekker, Inc., New York (1993)W.A. Noyes Oxygen effects in photochemical systems Radiat. Res. Suppl., 1 (1959), p. 164, 10.2307/3583637K. Osathaphan, W. Kittisarn, P. Chatchaitanawat, R.A. Yngard, H. Kim, V.K. Sharma Oxidation of Ni (II) – cyano and Co (III) – cyano complexes by Ferrate (VI): effect of pH J. Environ. Sci. Heal. – Part A Toxic/Hazardous Subst Environ. Eng., 49 (2014), pp. 1380-1384, 10.1080/10934529.2014.928250K. Osathaphan, K. Ruengruehan, R.A. Yngard, V.K. Sharma Photocatalytic degradation of Ni (II) – Cyano and Co (III) – cyano complexes Water. Air. Soil Pollut., 224 (2013), 10.1007/s11270-013-1647-5M.A. Oturan, J.-J. Aaron Advanced oxidation processes in water/wastewater treatment: principles and applications. A review Crit. Rev. Environ. Sci. Technol., 44 (2014), pp. 2577-2641, 10.1080/10643389.2013.829765J.A. Pedraza-Avella, P. Acevedo-Peña, J.E. Pedraza-Rosas Photocatalytic oxidation of cyanide on TiO2: an electrochemical approach Catal. Today, 133–135 (2008), pp. 611-618, 10.1016/j.cattod.2007.12.063C. Qi, X. Liu, J. Ma, C. Lin, X. Li, H. Zhang Activation of peroxymonosulfate by base: implications for the degradation of organic pollutants Chemosphere, 151 (2016), pp. 280-288, 10.1016/j.chemosphere.2016.02.089R.D. Rajesh, G. Abhinav, B. Chandrajit Cyanide in industrial wastewaters and its removal: a review on biotreatment J. Hazard. Mater., 163 (2009), pp. 1-11, 10.1016/j.jhazmat.2008.06.051A.V. Ram Toxicidad del cianuro. Investigación bibliográfica de sus efectos en animales y en el hombre Rev. Med. del Perú, 71 (2010), pp. 54-61, 10.1016/S0166-445X(96)00815-6G.M. Ritcey Tailings management in gold plants Hydrometallurgy, 78 (2005), pp. 3-20, 10.1016/j.hydromet.2005.01.001A.B. Ross, P. Neta Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution (first ed.), National Standard Reference Data System, Notre Dame (1979)J.A. Rosso Caracterización y reactividad de los radicales fosfato y polifosfato en solución acuosa Universidad Nacional de La Plata (2002)Samir Fernando Castilla-Acevedo, Luis Andrés Betancourt-Buitrago, Dionysios D. Dionysiou, Fiderman Machuca-Martínez, 2020. Ultraviolet light-mediated activation of persulfate for the degradation of cobalt cyanocomplexes. J. Hazard. Mater. 392, NA. doi: 10.1016/j.jhazmat.2020.122389.M. Sarla, M. Pandit, D.K. Tyagi, J.C. Kapoor Oxidation of cyanide in aqueous solution by chemical and photochemical process J. Hazard. Mater., 116 (2004), pp. 49-56, 10.1016/j.jhazmat.2004.06.035C. Tan, N. Gao, Y. Deng, N. An, J. Deng Heat-activated persulfate oxidation of diuron in water Chem. Eng. J., 203 (2012), pp. 294-300, 10.1016/j.cej.2012.07.005L.A.C. Teixeira, M.T.C. Arellano, C. Marquez Sarmiento, L. Yokoyama, F.V.D.F. Araujo Oxidation of cyanide in water by singlet oxygen generated by the reaction between hydrogen peroxide and hypochlorite Miner. Eng., 50–51 (2013), pp. 57-63, 10.1016/j.mineng.2013.06.007S. Tian, Y. Li, H. Zeng, W. Guan, Y. Wang, X. Zhao Cyanide oxidation by singlet oxygen generated via reaction between H2O2 from cathodic reduction and OCl− from anodic oxidation J. Colloid Interface Sci., 482 (2016), pp. 205-211, 10.1016/j.jcis.2016.07.024S. Wacławek, H.V. Lutze, K. Grübel, V.V.T. Padil, M. Černík, D.D. Dionysiou Chemistry of persulfates in water and wastewater treatment: a review Chem. Eng. J., 330 (2017), pp. 44-62, 10.1016/j.cej.2017.07.132J. Wang, S. Wang Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants Chem. Eng. J., 334 (2018), pp. 1502-1517, 10.1016/j.cej.2017.11.059K. Winkelmann, V.K. Sharma, Y. Lin, K.A. Shreve, C. Winkelmann, L.J. Hoisington, R.A. Yngard Reduction of ferrate(VI) and oxidation of cyanate in a Fe(VI)-TiO2-UV-NCO- system Chemosphere, 72 (2008), pp. 1694-1699, 10.1016/j.chemosphere.2008.05.008Y.i. Yang, J.J. Pignatello, J. Ma, W.A. Mitch Comparison of halide impacts on the efficiency of contaminant degradation by sulfate and hydroxyl radical-based advanced oxidation processes (AOPs) Environ. Sci. Technol., 48 (2014), pp. 2344-2351, 10.1021/es404118qA.A. Yawalkar, D.S. Bhatkhande, V.G. Pangarkar, A.A.C.M. Beenackers Solar-assisted photochemical and photocatalytic degradation of phenol J. Chem. Technol. Biotechnol., 76 (2001), pp. 363-370, 10.1002/jctb.390Young, C.A., Jordan, T.S., Tech, M., 1995. Cyanide remediation: current and past technologies. Proc. 10th Annu. Conf. Hazard. Waste Res. 104–129.R.G. Zepp, J. Hoigne, H. Bader Nitrate-induced photooxidation of trace organic chemicals in water Environ. Sci. Technol., 21 (1987), pp. 443-450, 10.1021/es00159a004PublicationORIGINALEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdfEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdfapplication/pdf115063https://repositorio.cuc.edu.co/bitstreams/ddac4d48-d113-456e-a2ff-f943b4d78221/download10c08a16b2f6a83ec8a0be5c1f1ffdf3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/0b5b3a0f-14f3-49cb-8496-e037df0d5705/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7ecd5e27-2967-4ccd-bcec-46d400f61e1d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdf.jpgEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdf.jpgimage/jpeg62231https://repositorio.cuc.edu.co/bitstreams/c4e700f8-38a3-42e6-8734-de75d4a2869d/download4a7b7519f58b4459830803eb55a626aeMD54TEXTEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdf.txtEffect of the presence of inorganic ions and operational parameters on free cyanide degradation by ultraviolet C activation of persulfate in synthetic mining wastewater.pdf.txttext/plain2657https://repositorio.cuc.edu.co/bitstreams/d3fbbcc6-7db4-4c8a-8e9e-f950551481c7/download8eeded7fd2d47fc08a9046d24bc777bbMD5511323/8636oai:repositorio.cuc.edu.co:11323/86362024-09-17 10:18:41.951http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==