Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña un...
- Autores:
-
Otero Meza, Daniel David
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2025
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/13944
- Acceso en línea:
- https://hdl.handle.net/11323/13944
- Palabra clave:
- Residuos sólidos municipales
Valorización energética
Análisis de decisión multicriterio
Sostenibilidad
Municipal solid waste
Waste-to-energy
Multi-criteria decision-making
Sustainability
- Rights
- closedAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id |
RCUC2_a531eec7fc22feac8b8e5141c44717dc |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/13944 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.none.fl_str_mv |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
title |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
spellingShingle |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo Residuos sólidos municipales Valorización energética Análisis de decisión multicriterio Sostenibilidad Municipal solid waste Waste-to-energy Multi-criteria decision-making Sustainability |
title_short |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
title_full |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
title_fullStr |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
title_full_unstemmed |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
title_sort |
Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo |
dc.creator.fl_str_mv |
Otero Meza, Daniel David |
dc.contributor.advisor.none.fl_str_mv |
Cabello Eras, Juan José Salcedo Mendoza, Jairo Guadalupe |
dc.contributor.author.none.fl_str_mv |
Otero Meza, Daniel David |
dc.contributor.jury.none.fl_str_mv |
Contreras Lozano, Karen Balbis Morejón, Milen Bermejo Altamar, Fabio |
dc.subject.proposal.spa.fl_str_mv |
Residuos sólidos municipales Valorización energética Análisis de decisión multicriterio Sostenibilidad |
topic |
Residuos sólidos municipales Valorización energética Análisis de decisión multicriterio Sostenibilidad Municipal solid waste Waste-to-energy Multi-criteria decision-making Sustainability |
dc.subject.proposal.eng.fl_str_mv |
Municipal solid waste Waste-to-energy Multi-criteria decision-making Sustainability |
description |
La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña una herramienta metodológica para la evaluación integral y selección de alternativas de aprovechamiento de los RSM, integrando el potencial de diversas tecnologías, la proyección de tasas de disposición y un enfoque multicriterio objetivo. La metodología combina análisis de series de tiempo, específicamente SARIMAX, para proyectar la disposición futura de RSM con rigor estadístico (pruebas de Ljung-Box, KPSS, cointegración de Johansen, Causalidad de Granger), contemplando variables exógenas clave. Asimismo, se aplica un método de decisión multicriterio basado en ENTROPY y TOPSIS, que pondera equitativamente factores técnicos, energéticos, ambientales y económicos. La aplicación de la herramienta en Sincelejo, Colombia, muestra su efectividad al identificar el relleno sanitario con captura de biogás como la opción más sólida, alineada con la aprobación de proyectos análogos por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC). Los resultados confirman que esta solución es la más equilibrada para la ciudad, teniendo en cuenta la disponibilidad de recursos, el potencial de generación de energía, la mitigación de emisiones y la viabilidad económica. Además, la herramienta desarrollada demuestra su adaptabilidad a distintos escenarios y su utilidad para la toma de decisiones informadas, facilitando la transición hacia prácticas de economía circular y contribuyendo a la reducción del cambio climático. En suma, esta investigación aporta una solución práctica para la planificación de la gestión de RSM, fomentando un uso más eficiente de los recursos y promoviendo la sostenibilidad local y regional. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-01-21T22:01:51Z |
dc.date.available.none.fl_str_mv |
2025 2025-01-21T22:01:51Z |
dc.date.issued.none.fl_str_mv |
2025 |
dc.type.none.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
dc.type.version.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/13944 |
url |
https://hdl.handle.net/11323/13944 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Abdella Ahmed, A. K., Ibraheem, A. M., & Abd-Ellah, M. K. (2022). Forecasting of municipal solid waste multi-classification by using time-series deep learning depending on the living standard. Results in Engineering, 16. https://doi.org/10.1016/j.rineng.2022.100655 Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/s10098-021-02099-8 Adenuga, O. T., Mpofu, K., & Modise, K. R. (2020). An approach for enhancing optimal resource recovery from different classes of waste in South Africa: Selection of appropriate waste to energy technology. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100033 Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google trends. Journal of Electrical Systems and Information Technology, 10(1), 12. https://doi.org/10.1186/s43067-023-00078-1 Afrane, S., Ampah, J. D., Jin, C., Liu, H., & Aboagye, E. M. (2021). Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach. Journal of Cleaner Production, 318. https://doi.org/10.1016/j.jclepro.2021.128515 Ahmad, S. I., Ho, W. S., Hassim, M. H., Elagroudy, S., Abdul Kohar, R. A., Bong, C. P. C., Hashim, H., & Rashid, R. (2020). Development of quantitative SHE index for waste to energy technology selection. Energy, 191. https://doi.org/10.1016/j.energy.2019.116534 Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201. https://doi.org/10.1016/j.energy.2020.117675 Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031 Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343. https://doi.org/10.1016/j.jclepro.2022.130824 Alcaldía de Sincelejo. (2017). REVISIÓN Y ACTUALIZACIÓN PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS –PGIRS–DEL MUNICIPIO DE SINCELEJO. Alcaldía de Sincelejo. (2022). Anexo 3. Caracterización de residuos. In PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS DEL MUNICIPIO DE SINCELEJO, Sucre 2022–2033. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/Forms/AllItems.aspx Alfonso-Cardero, A., Pagés-Díaz, J., Kalogirou, E., Psomopoulos, C. S., & Lorenzo-Llanes, J. (2021). To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Environmental Science and Pollution Research, 30(4), 8601–8616. https://doi.org/10.1007/s11356-021-17360-2 AlNouss, A., Alherbawi, M., Parthasarathy, P., Al-Thani, N., McKay, G., & Al-Ansari, T. (2024). Waste-to-energy technology selection: A multi-criteria optimisation approach. Computers and Chemical Engineering, 183. https://doi.org/10.1016/j.compchemeng.2024.108595 AlQattan, N., Acheampong, M., Jaward, F. M., Ertem, F. C., Vijayakumar, N., & Bello, T. (2018). Reviewing the potential of Waste-to-Energy (WTE) technologies for Sustainable Development Goal (SDG) numbers seven and eleven. Renewable Energy Focus, 27, 97–110. https://doi.org/10.1016/j.ref.2018.09.005 Al-Shihabi, S., Aydin, R., & Al Nahlawi, M. (2023). Forecasting the effects of municipal solid plastic waste generation and streaming using system dynamics: A case study in Dubai. Science of The Total Environment, 165204. https://doi.org/10.1016/j.scitotenv.2023.165204 Alves, O., Calado, L., Panizio, R. M., Gonçalves, M., Monteiro, E., & Brito, P. (2021). Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Management, 131, 148–162. https://doi.org/10.1016/j.wasman.2021.05.026 Andreas, C., Faricha, A., Ulyah, S. M., Susanti, R., Mardhiana, H., Nanda, M. A., & R., F. A. (2022). Comparison study using ARIMAX and VARX in cash flow forecasting. 030023. https://doi.org/10.1063/5.0118519 Antonopoulos, I.-S., Perkoulidis, G., Logothetis, D., & Karkanias, C. (2014). Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resources, Conservation and Recycling, 86, 149–159. https://doi.org/10.1016/j.resconrec.2014.03.002 Aracil, C., Haro, P., Fuentes-Cano, D., & Gómez-Barea, A. (2018). Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Management, 76, 443–456. https://doi.org/10.1016/j.wasman.2018.03.039 Arena, U., Ardolino, F., & Di Gregorio, F. (2015). A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management, 41, 60–74. https://doi.org/10.1016/j.wasman.2015.03.041 Arslan, M., & Yılmaz, C. (2022). Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery. Energy, 248, 123487. https://doi.org/10.1016/j.energy.2022.123487 Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125671 Baltussen, R., Marsh, K., Thokala, P., Diaby, V., Castro, H., Cleemput, I., Garau, M., Iskrov, G., Olyaeemanesh, A., Mirelman, A., Mobinizadeh, M., Morton, A., Tringali, M., van Til, J., Valentim, J., Wagner, M., Youngkong, S., Zah, V., Toll, A., … Broekhuizen, H. (2019). Multicriteria Decision Analysis to Support Health Technology Assessment Agencies: Benefits, Limitations, and the Way Forward. Value in Health, 22(11), 1283–1288. https://doi.org/10.1016/j.jval.2019.06.014 Banco de la república de Colombia. (2023). Inflación total y meta. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta Baoding Baonan Machinery And Equipment Manufacturing Co. Ltd. (2024). Municipal solid waste sorting plant/sorting machine. https://www.alibaba.com/product-detail/Municipal-solid-waste-sorting-plant-sorting_1600618514423.html?spm=a2700.7724857.0.0.1c395e2fO506RW Bashir, M. J. K., Ng, C. A., Sethupathi, S., & Lim, J. W. (2019). Assessment of the Environmental, Technical and Economic Issues Associated with Energy Recovery from Municipal Solid Waste in Malaysia. In H. B. S. L. Tong C.-W. Chin-Tsan W. (Ed.), IOP Conference Series: Earth and Environmental Science (Vol. 268, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/268/1/012044 Bertanza, G., Ziliani, E., & Menoni, L. (2018). Techno-economic performance indicators of municipal solid waste collection strategies. WASTE MANAGEMENT, 74, 86–97. https://doi.org/10.1016/j.wasman.2018.01.009 Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24, 1–11. https://doi.org/10.1016/j.ref.2017.11.001 Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A., & de Moraes, D. R. (2021). Waste-to-Energy Technologies Towards Circular Economy: a Systematic Literature Review and Bibliometric Analysis. Water, Air, & Soil Pollution, 232(7), 306. https://doi.org/10.1007/s11270-021-05224-x Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., Sahibed-dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2019). Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Management and Research, 37(6), 578–589. https://doi.org/10.1177/0734242X18816797 Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley. Briones-Hidrovo, A., Copa, J., Tarelho, L. A. C., Gonçalves, C., Pacheco da Costa, T., & Dias, A. C. (2021). Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. Journal of Cleaner Production, 289, 125680. https://doi.org/10.1016/j.jclepro.2020.125680 Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., & Svoboda, K. (2020). Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel, 281, 118637. https://doi.org/10.1016/j.fuel.2020.118637 Bui, T.-D., Tseng, J.-W., Tseng, M.-L., Wu, K.-J., & Lim, M. K. (2023). Municipal solid waste management technological barriers: A hierarchical structure approach in Taiwan. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106842 Chandel, M. K., Kwok, G., Jackson, R. B., & Pratson, L. F. (2012). The potential of waste-to-energy in reducing GHG emissions. Carbon Management, 3(2), 133–144. https://doi.org/10.4155/cmt.12.11 Chen, Y.-C. (2018a). Effects of urbanization on municipal solid waste composition. Waste Management, 79, 828–836. https://doi.org/10.1016/j.wasman.2018.04.017 Chen, Y.-C. (2018b). Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. Journal of Cleaner Production, 192, 262–269. https://doi.org/10.1016/j.jclepro.2018.04.260 Chhay, L., Reyad, M. A. H., Suy, R., Islam, M. R., & Mian, M. M. (2018). Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. Journal of Material Cycles and Waste Management, 20(3), 1761–1770. https://doi.org/10.1007/s10163-018-0743-4 Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73. http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130 Congreso de la República de Colombia. (2014). Ley 1715 de 2014. Diario Oficial 49.150. http://svrpubindc.imprenta.gov.co/diario Coral Medina, J. D., Alomia, F. B., Magalhaes, A. I., Cesar de Carvalho, J., Woiciechowsky, A. L., & Soccol, C. R. (2021). Simulation of different biorefinery configuration including environmental, technical and economic assay using sugarcane bagasse. Journal of Cleaner Production, 316, 128162. https://doi.org/10.1016/j.jclepro.2021.128162 Cubillos, M., Wulff, J. N., & Wøhlk, S. (2021). A multilevel Bayesian framework for predicting municipal waste generation rates. Waste Management, 127, 90–100. https://doi.org/10.1016/j.wasman.2021.04.011 Cucchiella, F., D’Adamo, I., & Rosa, P. (2016). Urban waste to energy (WTE) plants: A social analysis. JP Journal of Heat and Mass Transfer, 13(3), 421–444. https://doi.org/10.17654/MT013030421 Cudjoe, D., & Acquah, P. M. (2021). Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere, 265. https://doi.org/10.1016/j.chemosphere.2020.129186 Dalke, R., Demro, D., Khalid, Y., Wu, H., & Urgun-Demirtas, M. (2021). Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 151, 111554. https://doi.org/10.1016/j.rser.2021.111554 DANE. (2018). Proyecciones y retroproyecciones de población. Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion DANE. (2021). La información del DANE en la toma de decisiones regionales: Sincelejo - Sucre. https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/210115-InfoDane-Sincelejo-Sucre.pdf DANE. (2024a). Cuentas nacionales departamentales: PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales DANE. (2024b). Indicador de Seguimiento a la Economía (ISE). https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/indicador-de-seguimiento-a-la-economia-ise DANE. (2024c). PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales DNP. (2022). Resolución Número 1092 de 2022. In Diario Oficial 52.011 (Issue Diario Oficial 52.011). Diario Oficial 52.011. http://svrpubindc.imprenta.gov.co/diario Dodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022). Municipal Solid Waste Generation Forecast using an ARIMA Model: A Focus on Abuja City, Nigeria. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803108 Edmond Connolly. (2021). The Suitability of Sarimax Time Series and LSTM Neural Networks for Predicting Electricity Consumption in Ireland [Master Thesis, National College of Ireland]. https://norma.ncirl.ie/5143/1/edmondconnolly.pdf El Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., & Ammar, A. M. (2023). Pyrolysis Technology Choice to Produce Bio-oil, from Municipal Solid Waste, Using Multi-criteria Decision-making Methods. Waste and Biomass Valorization, 14(11), 3705–3722. https://doi.org/10.1007/s12649-023-02076-w Fan, L., Abbasi, M., Salehi, K., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: application of intrinsic time-scale decomposition algorithm. Engineering Applications of Computational Fluid Mechanics, 15(1), 1159–1175. https://doi.org/10.1080/19942060.2021.1945496 Fernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/j.wasman.2017.05 Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2020.144449 Gołębiewski, J., Takala, J., Juszczyk, O., & Drejerska, N. (2019). Local contribution to circular economy. A case study of a Polish rural municipality. Economia Agro-Alimentare, 21(3), 771–791. https://doi.org/10.3280/ECAG2019-003011 Gombojav, D., & Matsumoto, T. (2023). Multi criteria decision analysis to develop an optimized municipal solid waste management scenario: a case study in Ulaanbaatar, Mongolia. Journal of Material Cycles and Waste Management, 25(3), 1344–1358. https://doi.org/10.1007/s10163-023-01603-0 Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. https://doi.org/10.1016/j.renene.2009.07.027 Gonçalves, A. M., & Silva, V. H. (2021). Time Series Forecasting: A Study on Local Urban Waste Management in a Portuguese City (pp. 527–538). https://doi.org/10.1007/978-3-030-86973-1_37 Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791 Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. https://doi.org/10.1002/for.3980120104 Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378 Habibollahzade, A., & Houshfar, E. (2020). Improved performance and environmental indicators of a municipal solid waste fired plant through CO2 recycling: Exergoeconomic assessment and multi-criteria grey wolf optimisation. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113451 Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230 Huang, Y.-F., & Lo, S.-L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191, 116501. https://doi.org/10.1016/j.energy.2019.116501 Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed). https://otexts.com/fpp3/ Ibikunle, R. A., Lukman, A. F., Titiladunayo, I. F., Akeju, E. A., & Dahunsi, S. O. (2020). Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1841343 IEA. (2023). Electricity generation by source. Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel IEA. (2024). Energy Prices. https://www.iea.org/data-and-statistics/data-product/energy-prices#overview IEA Bioenergy. (2018). Gasification of waste for energy carriers - a review. https://www.ieabioenergy.com/blog/publications/gasification-of-waste-for-energy-carriers-a-review/#:~:text=The%20use%20of%20waste%20gasification%20technologies%20has%20the%20potential%20to,or%20chemicals%2C%20i.e.%20material%20recovery. Ilbahar, E., Kahraman, C., & Cebi, S. (2021). Location selection for waste-to-energy plants by using fuzzy linear programming. Energy, 234. https://doi.org/10.1016/j.energy.2021.121189 INTERASEO S.A. E.S.P., & CAEMA. (2012). INTERASEO landfill gas mitigation project. https://cdm.unfccc.int/Projects/DB/DNV-CUK1356525322.33/view Intergovernmental Panel on Climate Change (IPCC). (2019). Volume 5: Waste. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol5.html IRENA. (2021). Perspectivas de la transición energética mundial: camino de 1.5 ℃. https://www.irena.org/publications/2021/Jun/Perspectivas-de-la-transicion-energetica-mundial IRENA. (2022). Renewable power generation costs in 2021. https://www.irena.org/Publications/ Isigonis, P., Moustakas, K., & Vakalis, S. (2022). Multicriteria analysis as a supporting decision tool for expanding the use of the 3T method for waste-to-energy technologies and biorefineries. Sustainable Chemistry and Pharmacy, 28. https://doi.org/10.1016/j.scp.2022.100715 Islam, M. R., Kabir, G., Ng, K. T. W., & Ali, S. M. (2022). Yard waste prediction from estimated municipal solid waste using the grey theory to achieve a zero-waste strategy. Environmental Science and Pollution Research, 29(31), 46859–46874. https://doi.org/10.1007/s11356-022-19178-y Izquierdo-Horna, L., Kahhat, R., & Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809–819. https://doi.org/10.1016/J.SPC.2022.08.008 Johansen, S. (2011). Cointegration in the VAR Model (pp. 408–435). https://doi.org/10.1002/9781118032978.ch15 Juárez-Hernández, S. (2021). Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexico city. Waste Management, 136, 321–336. https://doi.org/10.1016/j.wasman.2021.10.026 Jung, J., & Gibson, J. D. (2006). The interpretation of spectral entropy based upon rate distortion functions. IEEE International Symposium on Information Theory - Proceedings, 277–281. https://doi.org/10.1109/ISIT.2006.261849 Kaneesamkandi, Z., Ur-Rehman, A., & Usmani, Y. S. (2023). Selection of Ideal MSW Incineration and Utilization Technology Routes Using MCDA for Different Waste Utilization Scenarios and Variable Conditions. Processes, 11(7). https://doi.org/10.3390/pr11071921 Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9 Kaur-Sidhu, M., Ravindra, K., Mor, S., & John, S. (2020). Emission factors and global warming potential of various solid biomass fuel-cook stove combinations. Atmospheric Pollution Research, 11(2), 252–260. https://doi.org/10.1016/j.apr.2019.10.009 Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0 Khan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/j.enconman.2022.115905 Kim, H., Park, S., & Kim, S. (2023). Time-series clustering and forecasting household electricity demand using smart meter data. Energy Reports, 9, 4111–4121. https://doi.org/10.1016/j.egyr.2023.03.042 Kocak, E., & Baglitas, H. H. (2022). The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter? Sustainable Development, 30(6), 1947–1962. https://doi.org/10.1002/sd.2361 Kurbatova, A., & Abu-Qdais, H. A. (2020). Using multi-criteria decision analysis to select waste to energy technology for a Mega city: The case of Moscow. Sustainability (Switzerland), 12(23), 1–18. https://doi.org/10.3390/su12239828 Kuznetsova, E., Cardin, M.-A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500. https://doi.org/10.1016/j.rser.2018.12.020 Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y Lassesson, H., Fedje, K. K., & Steenari, B.-M. (2014). Leaching for recovery of copper from municipal solid waste incineration fly ash: Influence of ash properties and metal speciation. WASTE MANAGEMENT \& RESEARCH, 32(8), 755–762. https://doi.org/10.1177/0734242X14542147 Lauber, J. D. (2007). Economic and technical viability of various MSW, WTE waste to energy thermal treatment processes. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, 7, 4969–4970. https://www.scopus.com/inward/record.uri?eid=2-s2.0-44649119828&partnerID=40&md5=e74a045cd2671c08dc8a117507d0abc7 Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and Its Applications, 450, 657–669. https://doi.org/10.1016/j.physa.2016.01.017 Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677 Li, Z., Luo, Z., Wang, Y., Fan, G., & Zhang, J. (2022). Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renewable Energy, 184, 564–576. https://doi.org/10.1016/j.renene.2021.11.112 Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128039 Lin, K., Zhao, Y., & Kuo, J. H. (2022). Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136119 Lin, K., Zhao, Y., Tian, L., Zhao, C., Zhang, M., & Zhou, T. (2021). Estimation of municipal solid waste amount based on one-dimension convolutional neural network and long short-term memory with attention mechanism model: A case study of Shanghai. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148088 Lin, X., Yan, M., Dai, A., Zhan, M., Fu, J., Li, X., Chen, T., Lu, S., Buekens, A., & Yan, J. (2015). Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration. Chemosphere, 126, 60–66. https://doi.org/10.1016/j.chemosphere.2015.02.005 Liu, Y., Liao, C., Tang, Y., Tang, J., Sun, Y., & Ma, X. (2022). Techno-environmental-economic evaluation of the small-scale municipal solid waste (MSW) gasification-based and incineration-based power generation plants. Journal of the Taiwan Institute of Chemical Engineers, 141. https://doi.org/10.1016/j.jtice.2022.104594 Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508 Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297. https://doi.org/10.2307/2335207 Lohani, S. P., & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Energy, Environment, and Sustainability. https://doi.org/10.1007/978-981-10-7413-4_18 Lu, Y.-T., Lee, Y.-M., & Hong, C.-Y. (2017). Inventory analysis and social life cycle assessment of greenhouse gas emissions from waste-to-energy incineration in Taiwan. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9111959 Lui, J., Paul, M. C., Sloan, W., & You, S. (2022). Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in glasgow. International Journal of Hydrogen Energy, 47(28), 13532–13551. https://doi.org/10.1016/j.ijhydene.2022.02.120 Luo, C., Ju, Y., Santibanez Gonzalez, E. D. R., Dong, P., & Wang, A. (2020). The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy, 211. https://doi.org/10.1016/j.energy.2020.118564 Mahmud, T. S., Ng, K. T. W., Hasan, M. M., An, C., & Wan, S. (2023). A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. Sustainable Cities and Society, 96. https://doi.org/10.1016/j.scs.2023.104685 Makarichi, L., Jutidamrongphan, W., & Techato, K.-A. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088 Mariano‐Hernández, D., Hernández‐Callejo, L., Solís, M., Zorita‐Lamadrid, A., Duque‐Pérez, O., Gonzalez‐Morales, L., Alonso‐Gómez, V., Jaramillo‐Duque, A., & Santos García, F. (2022). Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings. Energy Science & Engineering, 10(12), 4694–4707. https://doi.org/10.1002/ese3.1298 Martínez López, L., Ishizaka, A., Qin, J., & Álvarez Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods. Elsevier. https://doi.org/10.1016/C2020-0-02008-6 Ming, Z., Jinhui, D., Liang, W., & Shanshan, G. (2014). Effect of urbanization on generation in China. Power, 158(8). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940328024&partnerID=40&md5=34d9d87456002ceae349c8b58ed579c9 Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA-COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104155 Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. https://doi.org/10.1016/j.egypro.2017.09.618 Mujtaba, M. A., Munir, A., Imran, S., Nasir, M. K., Muhayyuddin, M. G., Javed, A., Mehmood, A., Habila, M. A., Fayaz, H., & Qazi, A. (2024). Evaluating sustainable municipal solid waste management scenarios: A multicriteria decision making approach. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25788 Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512 Munir, M. T., Mohaddespour, A., Nasr, A. T., & Carter, S. (2021). Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111080 Nguyen, X. C., Nguyen, T. T. H., La, D. D., Kumar, G., Rene, E. R., Nguyen, D. D., Chang, S. W., Chung, W. J., Nguyen, X. H., & Nguyen, V. K. (2021). Development of machine learning - based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167. https://doi.org/10.1016/j.resconrec.2020.105381 Niu, D., Wu, F., Dai, S., He, S., & Wu, B. (2021). Detection of long-term effect in forecasting municipal solid waste using a long short-term memory neural network. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125187 OCDE. (2022). Municipal waste (indicator). https://doi.org/10.1787/89d5679a-en Oguz-Ekim, P. (2021). Machine Learning Approaches for Municipal Solid Waste Generation Forecasting. Environmental Engineering Science, 38(6), 489–499. https://doi.org/10.1089/ees.2020.0232 Ossei-Bremang, R. N., & Kemausuor, F. (2021). A decision support system for the selection of sustainable biomass resources for bioenergy production. Environment Systems and Decisions, 41(3), 437–454. https://doi.org/10.1007/s10669-021-09810-6 Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/j.enconman.2023.117522 Ozcan, H. K., Guvenc, S. Y., Guvenc, L., & Demir, G. (2016). Municipal solid waste characterization according to different income levels: A case study. Sustainability (Switzerland), 8(10). https://doi.org/10.3390/su8101044 Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies. In Energy Recovery Processes from Wastes (pp. 151–163). Springer Singapore. https://doi.org/10.1007/978-981-32-9228-4_13 Paulauskaite-Taraseviciene, A., Raudonis, V., & Sutiene, K. (2022). Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 140, 31–39. https://doi.org/10.1016/j.wasman.2022.01.004 Perera, A. T. D., Madusanka, A. N., & De Alwis, A. A. P. (2013). Techno-economical optimization of a solid waste management system using evolutionary algorithms. International Conference on Advances in ICT for Emerging Regions, ICTer 2013 - Conference Proceedings, 92–97. https://doi.org/10.1109/ICTer.2013.6761161 Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers. McGraw-Hill Education. https://books.google.com.co/books?id=3uVFkBBHyP8C Pluskal, J., Šomplák, R., Nevrlý, V., Smejkalová, V., & Pavlas, M. (2021). Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123359 Prabowo, B., Simanjuntak, F. S. H., Saldi, Z. S., Samyudia, Y., & Widjojo, I. J. (2019). Assessment of waste to energy technology in Indonesia: A techno-economical perspective on a 1000 ton/day scenario. International Journal of Technology, 10(6), 1228–1234. https://doi.org/10.14716/ijtech.v10i6.3607 Presidencia de la República de Colombia. (1989). DECRETO LEY 624 DE 1989. In Estatuto Tributario. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=6533 Pudcha, T., Phongphiphat, A., & Towprayoon, S. (2023). Greenhouse Gas Mitigation and Energy Production Potentials from Municipal Solid Waste Management in Thailand Through 2050. Earth Systems and Environment, 7(1), 83–97. https://doi.org/10.1007/s41748-022-00323-z Qazi, W. A., Abushammala, M. F. M., & Azam, M.-H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management and Research, 36(7), 594–605. https://doi.org/10.1177/0734242x18777800 Rabbani, M., Mokarrari, K. R., & Akbarian-saravi, N. (2021). A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sustainable Cities and Society, 75. https://doi.org/10.1016/j.scs.2021.103319 Ramos, A., & Rouboa, A. (2020). Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, 85, 106469. https://doi.org/10.1016/j.eiar.2020.106469 Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109 Rodrigues, A. P., Fernandes, M. L., Rodrigues, M. F. F., Bortoluzzi, S. C., da Costa, S. E., & de Lima, E. (2018). Developing criteria for performance assessment in municipal solid waste management. Journal of Cleaner Production, 186, 748–757. https://doi.org/10.1016/j.jclepro.2018.03.067 Rodrigues, L. F., Santos, I. F. S. D., Santos, T. I. S. D., Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/j.renene.2022.02.083 Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/j.cesys.2021.100063 Schneider, D. R., & Ragossnig, A. M. (2015). Recycling and incineration, contradiction or coexistence? Waste Management and Research, 33(8), 693–695. https://doi.org/10.1177/0734242X15593421 Shah, S. A. A., & Longsheng, C. (2022). Evaluating renewable and sustainable energy impeding factors using an integrated fuzzy-grey decision approach. Sustainable Energy Technologies and Assessments, 51. https://doi.org/10.1016/j.seta.2021.101905 Shahnazari, A., Rafiee, M., Rohani, A., Bhushan Nagar, B., Ebrahiminik, M. A., & Aghkhani, M. H. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40. https://doi.org/10.1016/j.seta.2020.100737 Shahsavar, M. M., Akrami, M., Kian, Z., Gheibi, M., Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Behzadian, K. (2022). Bio-recovery of municipal plastic waste management based on an integrated decision-making framework. Journal of Industrial and Engineering Chemistry, 108, 215–234. https://doi.org/10.1016/j.jiec.2022.01.002 Shannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x Sheng, F., & Jia, L. (2020). Short-Term Load Forecasting Based on SARIMAX-LSTM. 2020 5th International Conference on Power and Renewable Energy, ICPRE 2020, 90–94. https://doi.org/10.1109/ICPRE51194.2020.9233117 S Shi, H., Mahinpey, N., Aqsha, A., & Silbermann, R. (2016). Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management, 48, 34–47. https://doi.org/10.1016/j.wasman.2015.09.036 Shi, Y., Li, Y., Yuan, X., Fu, J., Ma, Q., & Wang, Q. (2020). Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(11), 3779–3794. https://doi.org/10.1007/s10653-020-00639-7 Silva, L. J. de V. B. da, Santos, I. F. S. dos, Mensah, J. H. R., Gonçalves, A. T. T., & Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, 149, 1386–1394. https://doi.org/10.1016/j.renene.2019.10.134 Singh, P., & Kalamdhad, A. S. (2022). Assessment of agricultural residue-based electricity production from biogas in India: Resource-environment-economic analysis. Sustainable Energy Technologies and Assessments, 54, 102843. https://doi.org/10.1016/j.seta.2022.102843 Singh, T., & Uppaluri, R. V. S. (2022). Machine learning tool-based prediction and forecasting of municipal solid waste generation rate: a case study in Guwahati, Assam, India. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04644-4 Sohoo, I., Ritzkowski, M., Guo, J., Sohoo, K., & Kuchta, K. (2022). Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020773 Soltani, A., Hewage, K., Reza, B., & Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: A review. Waste Management, 35, 318–328. https://doi.org/10.1016/j.wasman.2014.09.010 SSPD. (2023a). Informe de vigilancia o inspección especial, detallada o concreta INTERASEO S.A.S. E.S.P. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-detallado-interaseo-fundacion-2023.pdf SSPD. (2023b). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/publicaciones SSPD. (2023c). Informe Sectorial de la Actividad de Aprovechamiento 2022. https://www.superservicios.gov.co/publicaciones SSPD. (2023d). Sistema Único de Información de Servicios Públicos Domiciliarios - SUI. https://sui.superservicios.gov.co/ SSPD. (2024). Publicaciones y boletines. https://www.superservicios.gov.co/publicaciones Sun, Y., Qin, Z., Tang, Y., Huang, T., Ding, S., & Ma, X. (2021). Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106108 Sunayana, Kumar, S., & Kumar, R. (2021). Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models. Waste Management, 121, 206–214. https://doi.org/10.1016/j.wasman.2020.12.011 Sununta, N., Sedpho, S., & Sampattagul, S. (2018). City carbon footprint evaluation and forecasting case study: Dan Sai municipality. Chemical Engineering Transactions, 63, 277–282. https://doi.org/10.3303/CET1863047 Tamasila, M., Prostean, G., Ivascu, L., Cioca, L.-I., Draghici, A., & Diaconescu, A. (2020). Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS. JOURNAL OF INTELLIGENT \& FUZZY SYSTEMS, 38(5), 6111–6127. https://doi.org/10.3233/JIFS-179695 Teshome, Y. M., Habtu, N. G., Molla, M. B., & Ulsido, M. D. (2023). Municipal solid wastes quantification and model forecasting. Global Journal of Environmental Science and Management, 9(2). https://doi.org/10.22034/GJESM.2023.02.04 Tonjes, D. J., & Greene, K. L. (2012). A review of national municipal solid waste generation assessments in the USA. WASTE MANAGEMENT \& RESEARCH, 30(8), 758–771. https://doi.org/10.1177/0734242X12451305 Tsui, T.-H., & Wong, J. W. C. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal and Sustainable Energy, 1(3), 151–167. https://doi.org/10.1007/s42768-019-00013-z Uhde, B., Andreas Hahn, W., Griess, V. C., & Knoke, T. (2015). Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management, 56(2), 373–388. https://doi.org/10.1007/s00267-015-0503-3 Ukpanyang, D., Terrados-Cepeda, J., & Hermoso-Orzaez, M. J. (2022). Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria. Energies, 15(10), 3481. https://doi.org/10.3390/en15103481 UKWIn. (2018). Evaluation of the climate change impacts of waste incineration in the United Kingdom. https://ukwin.org.uk/files/pdf/UKWIN-2018-Incineration-Climate-Change-Report.pdf UNEP. (2024). Global Waste Management Outlook 2024: Beyond an age of waste – Turning rubbish into a resource. https://www.unep.org/resources/global-waste-management-outlook-2024 Unidad de Planeación Minero Energética (UPME); INERCO Consultoría Colombia. (2018). Valorización energética de residuos: proyecto WtE Colombia. http://bdigital.upme.gov.co/handle/001/1339 United States Environmental Protection Agency (EPA). (2005a). EPA Software and Manuals. https://www.epa.gov/catc/clean-air-technology-center-products#software United States Environmental Protection Agency (EPA). (2005b). LandGEM V3.02. EPA Software and Manuals. https://www.epa.gov/ U.S. EPA. (2021a). LFGcost-Web — Landfill Gas Energy Cost Model. https://www.epa.gov/lmop/lfgcost-web-landfill-gas-energy-cost-model U.S. EPA. (2021b). Zero Waste Case Study: San Francisco. https://www.epa.gov/transforming-waste-tool/zero-waste-case-study-san-francisco U.S. EPA. (2023). IPCC AR4, AR5, and AR6 20-, 100-, and 500-year GWPs. https://catalog.data.gov/dataset/ipcc-ar4-ar5-and-ar6-20-100-and-500-year-gwps Uyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental Earth Sciences, 71(4), 1629–1639. https://doi.org/10.1007/s12665-013-2567-9 Vallejo, F., Díaz-Robles, L., Cubillos, F., Espinoza, A. P., Espinoza, L., Pinilla, F., & Pino-Cortes, E. (2020). Valorization of municipal solid waste using hydrothermal carbonization and gasification: A review. Chemical Engineering Transactions, 81, 1045–1050. https://doi.org/10.3303/CET2081175 Van Fan, Y., Klemeš, J. J., Lee, C. T., & Perry, S. (2019). GHG emissions of incineration and anaerobic digestion: Electricity mix. Chemical Engineering Transactions, 72, 145–150. https://doi.org/10.3303/CET1972025 Van Thanh, N. (2022). Optimal Waste-to-Energy Strategy Assisted by Fuzzy MCDM Model for Sustainable Solid Waste Management. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116565 Velis, C. A., Wilson, D. C., Gavish, Y., Grimes, S. M., & Whiteman, A. (2023). Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. Science of The Total Environment, 872, 161913. https://doi.org/10.1016/j.scitotenv.2023.161913 Vidal-Barrero, F., Baena-Moreno, F. M., Preciado-Cárdenas, C., Villanueva-Perales, ángel, & Reina, T. R. (2022). Hydrogen production from landfill biogas: Profitability analysis of a real case study. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124438 Villa-Loaiza, C., Taype-Huaman, I., Benavides-Franco, J., Buenaventura-Vera, G., & Carabalí-Mosquera, J. (2023). Does climate impact the relationship between the energy price and the stock market? The Colombian case. Applied Energy, 336, 120800. https://doi.org/10.1016/j.apenergy.2023.120800 Vlachokostas, C., Michailidou, A. V, & Achillas, C. (2021). Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review. Renewable and Sustainable Energy Reviews, 138. https://doi.org/10.1016/j.rser.2020.110563 Vlaskin, M. S. (2018). Municipal solid waste as an alternative energy source. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(8), 961–970. https://doi.org/10.1177/0957650918762023 Wang, D., Yuan, Y. an, Ben, Y., Luo, H., & Guo, H. (2022). Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China. Environmental Science and Pollution Research, 29(46), 69472–69490. https://doi.org/10.1007/s11356-022-20438-0 Wei, J., Li, H., & Liu, J. (2022). Curbing dioxin emissions from municipal solid waste incineration: China’s action and global share. Journal of Hazardous Materials, 435, 129076. https://doi.org/10.1016/j.jhazmat.2022.129076 Wen, C., Lin, X., Ying, Y., Ma, Y., Yu, H., Li, X., & Yan, J. (2023). Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. Waste Management, 170, 93–102. https://doi.org/10.1016/j.wasman.2023.08.004 Wilk, V., & Hofbauer, H. (2013). Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology, 115, 139–151. https://doi.org/10.1016/j.fuproc.2013.04.013 Wójtowicz-Wróbel, A. (2017). Social reception of thermal waste processing system structures. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(41), 209–216. https://doi.org/10.5593/sgem2017/41/S18.027 Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/j.biombioe.2013.02.036 World Bank. (2019a). City level dataset. What A Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597/What-a-Waste-Global-Database World Bank. (2019b). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management World Bank. (2019c). What a Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597 World Bank. (2022). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management World Bank. (2023). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/map_data XM. (2023). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez Xu, L., Gao, P., Cui, S., & Liu, C. (2013). A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Management, 33(6), 1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012 Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V, Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 309, 136627. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136627 Yang, Y., Liew, R. K., Tamothran, A. M., Foong, S. Y., Yek, P. N. Y., Chia, P. W., Van Tran, T., Peng, W., & Lam, S. S. (2021). Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01177-5 Yin, L.-J., Wang, C., Hu, Y.-Y., Chen, D.-Z., Xu, J.-F., & Liu, J. (2017). AHP-based approach for optimization of waste disposal method in urban functional zone. Environmental Technology (United Kingdom), 38(13–14), 1689–1695. https://doi.org/10.1080/09593330.2016.1244565 Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: a global analysis by countries’ income level. Environmental Science and Pollution Research, 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9 Zhang, G., Liu, K., Lv, L., Gao, W., Li, W., Ren, Z., Yan, W., Wang, P., Liu, X., & Sun, L. (2023). Enhanced landfill process based on leachate recirculation and micro-aeration: A comprehensive technical, environmental, and economic assessment. Science of The Total Environment, 857, 159535. https://doi.org/10.1016/j.scitotenv.2022.159535 Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107–122. https://doi.org/10.1016/j.rser.2014.04.024 Zhu, L., Tian, Z., & Du, J. (2023). Spatial–temporal redundancy evaluation of the municipal solid waste incineration treatment capacity: the case study of China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26989-0 Zhucheng Holy Shield Environmental Science & Technology Co. Ltd. (2024). Municipal Solid Waste Sorting Machines Automatic Waste Sorting Machine. https://www.alibaba.com/product-detail/Municipal-Solid-Waste-Sorting-Machines-Automatic_1600919537394.html?spm=a2700.7724857.0.0.1c395e2fO506RW Zia, A., Batool, S. A., Chauhdry, M. N., & Munir, S. (2017). Influence of Income Level and Seasons on Quantity and Composition of Municipal Solid Waste: A Case Study of the Capital City of Pakistan. SUSTAINABILITY, 9(9). https://doi.org/10.3390/su9091568 |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) |
dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.format.extent.none.fl_str_mv |
202 Páginas |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.coverage.city.none.fl_str_mv |
Sincelejo |
dc.publisher.none.fl_str_mv |
Corporación Universidad de la Costa |
dc.publisher.department.none.fl_str_mv |
Posgrados |
dc.publisher.faculty.none.fl_str_mv |
Ingenieria Electríca |
dc.publisher.place.none.fl_str_mv |
Barranquilla, Colombia |
dc.publisher.program.none.fl_str_mv |
Doctorado en Ingenieria Energética |
dc.publisher.branch.none.fl_str_mv |
Corporación Universidad de la Costa |
publisher.none.fl_str_mv |
Corporación Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/fe28330d-52f7-4766-8a62-18ec6870222d/download https://repositorio.cuc.edu.co/bitstreams/b1923b45-de84-4628-9e4c-aef63c5956ff/download https://repositorio.cuc.edu.co/bitstreams/58d09e74-ed77-4198-8872-305e049f82bb/download https://repositorio.cuc.edu.co/bitstreams/6f7b0d51-baf8-4d64-a36c-01ddf3ca3902/download |
bitstream.checksum.fl_str_mv |
eb0be8f03cf8869a95876b23fb32429e 73a5432e0b76442b22b026844140d683 ed9dc529a7a76f8f14d23ff55c61e05c c5cfe41509f26604c8d2e1acb8b3ad1d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166548641021952 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCabello Eras, Juan JoséSalcedo Mendoza, Jairo GuadalupeOtero Meza, Daniel DavidContreras Lozano, KarenBalbis Morejón, MilenBermejo Altamar, Fabio2025-01-21T22:01:51Z20252025-01-21T22:01:51Z2025https://hdl.handle.net/11323/13944La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña una herramienta metodológica para la evaluación integral y selección de alternativas de aprovechamiento de los RSM, integrando el potencial de diversas tecnologías, la proyección de tasas de disposición y un enfoque multicriterio objetivo. La metodología combina análisis de series de tiempo, específicamente SARIMAX, para proyectar la disposición futura de RSM con rigor estadístico (pruebas de Ljung-Box, KPSS, cointegración de Johansen, Causalidad de Granger), contemplando variables exógenas clave. Asimismo, se aplica un método de decisión multicriterio basado en ENTROPY y TOPSIS, que pondera equitativamente factores técnicos, energéticos, ambientales y económicos. La aplicación de la herramienta en Sincelejo, Colombia, muestra su efectividad al identificar el relleno sanitario con captura de biogás como la opción más sólida, alineada con la aprobación de proyectos análogos por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC). Los resultados confirman que esta solución es la más equilibrada para la ciudad, teniendo en cuenta la disponibilidad de recursos, el potencial de generación de energía, la mitigación de emisiones y la viabilidad económica. Además, la herramienta desarrollada demuestra su adaptabilidad a distintos escenarios y su utilidad para la toma de decisiones informadas, facilitando la transición hacia prácticas de economía circular y contribuyendo a la reducción del cambio climático. En suma, esta investigación aporta una solución práctica para la planificación de la gestión de RSM, fomentando un uso más eficiente de los recursos y promoviendo la sostenibilidad local y regional.The management of Municipal Solid Waste (MSW) presents a global challenge that requires sustainable and innovative solutions, particularly in rapidly growing cities. In order to optimize energy recovery and minimize environmental impact, this doctoral thesis develops a methodological tool for the comprehensive evaluation and selection of MSW utilization alternatives, integrating the potential of various technologies, projected disposal rates, and an objective multicriteria approach. The methodology combines time series analyses, specifically SARIMAX, to project future MSW disposal with statistical rigor (Ljung-Box, KPSS, Johansen cointegration, Granger causality), considering key exogenous variables. In addition, a multicriteria decision-making method based on ENTROPY and TOPSIS is applied, equally weighting technical, energy-related, environmental, and economic factors. The application of this tool in Sincelejo, Colombia, demonstrates its effectiveness by identifying a sanitary landfill with biogas capture as the most robust option, in line with the approval of similar projects by the United Nations Framework Convention on Climate Change (UNFCCC). The results confirm that this solution is the most balanced for the city, considering resource availability, energy generation potential, emissions mitigation, and economic feasibility. Moreover, the developed tool proves adaptable to diverse scenarios and valuable for informed decision-making, facilitating a shift toward circular economy practices and contributing to climate change mitigation. In sum, this research provides a practical solution for MSW management planning, promoting more efficient resource use and advancing local and regional sustainability.Lista de tablas y figuras 10-- tablas 10-- Figuras 11-- Introducción 13--Capítulo I. Métodos de Selección de Alternativas MSWtE: Estatus y Retos 24-- Introducción 24-- Vigilancia Científica 26-- Análisis de concurrencias de palabras claves 26-- Revisión sistemática 36-- Limitaciones de métodos de selección 47-- Conclusiones de capitulo 51--Capítulo II. Rutas Tecnológicas de Valorización Energética de Residuos Sólidos Municipales 54-- Introducción 54--Características categóricas de los residuos sólidos municipales 56-- Características fisicoquímicas de los residuos sólidos municipales 60--Tecnologías de valorización energética de residuos sólidos municipales 66-- Incineración 68-- Digestión anaerobia 71-- Gasificación 72-- Relleno Sanitario con captura de biogás 74--Potencial de valorización de las rutas 77-- Potencial Técnico 77--Potencial energético 80--Potencial económico 83-- Potencial ambiental 88-- Conclusiones del capítulo 91-- Capítulo III. Análisis de Series de Tiempo de Residuos Sólidos Municipales 93--Introducción93-- Datos de disposición de residuos sólidos municipales103--Características de las series de tiempo de disposición de residuos sólidos municipales105--Descomposición de series de tiempo 111--Características relevantes de las series de tiempo 115--Modelo de serie de tiempo estacional 119--Entrenamiento y validación de modelos 120--Conclusiones del capítulo121--Capítulo IV. Selección de Alternativas de Valorización Energética de Residuos Sólidos Municipales 122--Introducción 122--Criterios para la evaluación de alternativas 124--Criterios técnicos 124--Criterios energéticos 126-- Criterios económicos 130-- Criterios ambientales 133-- Selección de un método de análisis de decisión multicriterio 135-- Clasificación de alternativas 138--Estructura general de la herramienta de selección de alternativas 141--Conclusiones del capítulo 143--Capítulo V. Evaluación Integral y Selección de Alternativas de Valorización Energética de RSM: caso de Sincelejo 145--Introducción 145--Sistema de gestión de residuos sólidos municipales de Sincelejo 147--Tratamiento actual de los residuos sólidos municipales 147--Composición de los residuos sólidos municipales 150--Proyección de tasas de disposición de residuos sólidos municipales 152--Clasificación de alternativas 160--Conclusiones del capítulo 169--Limitaciones Principales y Recomendaciones 172--Conclusiones 174-- Referencias 176--Doctor(a) en Ingenieria EnergéticaDoctorado202 Páginasapplication/pdfspaCorporación Universidad de la CostaPosgradosIngenieria ElectrícaBarranquilla, ColombiaDoctorado en Ingenieria EnergéticaCorporación Universidad de la CostaRevalorización energética de los residuos sólidos municipales generados en la ciudad de SincelejoTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionSincelejoAbdella Ahmed, A. K., Ibraheem, A. M., & Abd-Ellah, M. K. (2022). Forecasting of municipal solid waste multi-classification by using time-series deep learning depending on the living standard. Results in Engineering, 16. https://doi.org/10.1016/j.rineng.2022.100655Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/s10098-021-02099-8Adenuga, O. T., Mpofu, K., & Modise, K. R. (2020). An approach for enhancing optimal resource recovery from different classes of waste in South Africa: Selection of appropriate waste to energy technology. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100033Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google trends. Journal of Electrical Systems and Information Technology, 10(1), 12. https://doi.org/10.1186/s43067-023-00078-1Afrane, S., Ampah, J. D., Jin, C., Liu, H., & Aboagye, E. M. (2021). Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach. Journal of Cleaner Production, 318. https://doi.org/10.1016/j.jclepro.2021.128515Ahmad, S. I., Ho, W. S., Hassim, M. H., Elagroudy, S., Abdul Kohar, R. A., Bong, C. P. C., Hashim, H., & Rashid, R. (2020). Development of quantitative SHE index for waste to energy technology selection. Energy, 191. https://doi.org/10.1016/j.energy.2019.116534Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201. https://doi.org/10.1016/j.energy.2020.117675Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343. https://doi.org/10.1016/j.jclepro.2022.130824Alcaldía de Sincelejo. (2017). REVISIÓN Y ACTUALIZACIÓN PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS –PGIRS–DEL MUNICIPIO DE SINCELEJO.Alcaldía de Sincelejo. (2022). Anexo 3. Caracterización de residuos. In PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS DEL MUNICIPIO DE SINCELEJO, Sucre 2022–2033. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/Forms/AllItems.aspxAlfonso-Cardero, A., Pagés-Díaz, J., Kalogirou, E., Psomopoulos, C. S., & Lorenzo-Llanes, J. (2021). To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Environmental Science and Pollution Research, 30(4), 8601–8616. https://doi.org/10.1007/s11356-021-17360-2AlNouss, A., Alherbawi, M., Parthasarathy, P., Al-Thani, N., McKay, G., & Al-Ansari, T. (2024). Waste-to-energy technology selection: A multi-criteria optimisation approach. Computers and Chemical Engineering, 183. https://doi.org/10.1016/j.compchemeng.2024.108595AlQattan, N., Acheampong, M., Jaward, F. M., Ertem, F. C., Vijayakumar, N., & Bello, T. (2018). Reviewing the potential of Waste-to-Energy (WTE) technologies for Sustainable Development Goal (SDG) numbers seven and eleven. Renewable Energy Focus, 27, 97–110. https://doi.org/10.1016/j.ref.2018.09.005Al-Shihabi, S., Aydin, R., & Al Nahlawi, M. (2023). Forecasting the effects of municipal solid plastic waste generation and streaming using system dynamics: A case study in Dubai. Science of The Total Environment, 165204. https://doi.org/10.1016/j.scitotenv.2023.165204Alves, O., Calado, L., Panizio, R. M., Gonçalves, M., Monteiro, E., & Brito, P. (2021). Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Management, 131, 148–162. https://doi.org/10.1016/j.wasman.2021.05.026Andreas, C., Faricha, A., Ulyah, S. M., Susanti, R., Mardhiana, H., Nanda, M. A., & R., F. A. (2022). Comparison study using ARIMAX and VARX in cash flow forecasting. 030023. https://doi.org/10.1063/5.0118519Antonopoulos, I.-S., Perkoulidis, G., Logothetis, D., & Karkanias, C. (2014). Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resources, Conservation and Recycling, 86, 149–159. https://doi.org/10.1016/j.resconrec.2014.03.002Aracil, C., Haro, P., Fuentes-Cano, D., & Gómez-Barea, A. (2018). Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Management, 76, 443–456. https://doi.org/10.1016/j.wasman.2018.03.039Arena, U., Ardolino, F., & Di Gregorio, F. (2015). A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management, 41, 60–74. https://doi.org/10.1016/j.wasman.2015.03.041Arslan, M., & Yılmaz, C. (2022). Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery. Energy, 248, 123487. https://doi.org/10.1016/j.energy.2022.123487Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125671Baltussen, R., Marsh, K., Thokala, P., Diaby, V., Castro, H., Cleemput, I., Garau, M., Iskrov, G., Olyaeemanesh, A., Mirelman, A., Mobinizadeh, M., Morton, A., Tringali, M., van Til, J., Valentim, J., Wagner, M., Youngkong, S., Zah, V., Toll, A., … Broekhuizen, H. (2019). Multicriteria Decision Analysis to Support Health Technology Assessment Agencies: Benefits, Limitations, and the Way Forward. Value in Health, 22(11), 1283–1288. https://doi.org/10.1016/j.jval.2019.06.014Banco de la república de Colombia. (2023). Inflación total y meta. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-metaBaoding Baonan Machinery And Equipment Manufacturing Co. Ltd. (2024). Municipal solid waste sorting plant/sorting machine. https://www.alibaba.com/product-detail/Municipal-solid-waste-sorting-plant-sorting_1600618514423.html?spm=a2700.7724857.0.0.1c395e2fO506RWBashir, M. J. K., Ng, C. A., Sethupathi, S., & Lim, J. W. (2019). Assessment of the Environmental, Technical and Economic Issues Associated with Energy Recovery from Municipal Solid Waste in Malaysia. In H. B. S. L. Tong C.-W. Chin-Tsan W. (Ed.), IOP Conference Series: Earth and Environmental Science (Vol. 268, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/268/1/012044Bertanza, G., Ziliani, E., & Menoni, L. (2018). Techno-economic performance indicators of municipal solid waste collection strategies. WASTE MANAGEMENT, 74, 86–97. https://doi.org/10.1016/j.wasman.2018.01.009Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24, 1–11. https://doi.org/10.1016/j.ref.2017.11.001Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A., & de Moraes, D. R. (2021). Waste-to-Energy Technologies Towards Circular Economy: a Systematic Literature Review and Bibliometric Analysis. Water, Air, & Soil Pollution, 232(7), 306. https://doi.org/10.1007/s11270-021-05224-xBoumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., Sahibed-dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2019). Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Management and Research, 37(6), 578–589. https://doi.org/10.1177/0734242X18816797Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.Briones-Hidrovo, A., Copa, J., Tarelho, L. A. C., Gonçalves, C., Pacheco da Costa, T., & Dias, A. C. (2021). Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. Journal of Cleaner Production, 289, 125680. https://doi.org/10.1016/j.jclepro.2020.125680Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., & Svoboda, K. (2020). Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel, 281, 118637. https://doi.org/10.1016/j.fuel.2020.118637Bui, T.-D., Tseng, J.-W., Tseng, M.-L., Wu, K.-J., & Lim, M. K. (2023). Municipal solid waste management technological barriers: A hierarchical structure approach in Taiwan. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106842Chandel, M. K., Kwok, G., Jackson, R. B., & Pratson, L. F. (2012). The potential of waste-to-energy in reducing GHG emissions. Carbon Management, 3(2), 133–144. https://doi.org/10.4155/cmt.12.11Chen, Y.-C. (2018a). Effects of urbanization on municipal solid waste composition. Waste Management, 79, 828–836. https://doi.org/10.1016/j.wasman.2018.04.017Chen, Y.-C. (2018b). Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. Journal of Cleaner Production, 192, 262–269. https://doi.org/10.1016/j.jclepro.2018.04.260Chhay, L., Reyad, M. A. H., Suy, R., Islam, M. R., & Mian, M. M. (2018). Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. Journal of Material Cycles and Waste Management, 20(3), 1761–1770. https://doi.org/10.1007/s10163-018-0743-4Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73. http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130Congreso de la República de Colombia. (2014). Ley 1715 de 2014. Diario Oficial 49.150. http://svrpubindc.imprenta.gov.co/diarioCoral Medina, J. D., Alomia, F. B., Magalhaes, A. I., Cesar de Carvalho, J., Woiciechowsky, A. L., & Soccol, C. R. (2021). Simulation of different biorefinery configuration including environmental, technical and economic assay using sugarcane bagasse. Journal of Cleaner Production, 316, 128162. https://doi.org/10.1016/j.jclepro.2021.128162Cubillos, M., Wulff, J. N., & Wøhlk, S. (2021). A multilevel Bayesian framework for predicting municipal waste generation rates. Waste Management, 127, 90–100. https://doi.org/10.1016/j.wasman.2021.04.011Cucchiella, F., D’Adamo, I., & Rosa, P. (2016). Urban waste to energy (WTE) plants: A social analysis. JP Journal of Heat and Mass Transfer, 13(3), 421–444. https://doi.org/10.17654/MT013030421Cudjoe, D., & Acquah, P. M. (2021). Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere, 265. https://doi.org/10.1016/j.chemosphere.2020.129186Dalke, R., Demro, D., Khalid, Y., Wu, H., & Urgun-Demirtas, M. (2021). Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 151, 111554. https://doi.org/10.1016/j.rser.2021.111554DANE. (2018). Proyecciones y retroproyecciones de población. Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionDANE. (2021). La información del DANE en la toma de decisiones regionales: Sincelejo - Sucre. https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/210115-InfoDane-Sincelejo-Sucre.pdfDANE. (2024a). Cuentas nacionales departamentales: PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentalesDANE. (2024b). Indicador de Seguimiento a la Economía (ISE). https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/indicador-de-seguimiento-a-la-economia-iseDANE. (2024c). PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentalesDNP. (2022). Resolución Número 1092 de 2022. In Diario Oficial 52.011 (Issue Diario Oficial 52.011). Diario Oficial 52.011. http://svrpubindc.imprenta.gov.co/diarioDodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022). Municipal Solid Waste Generation Forecast using an ARIMA Model: A Focus on Abuja City, Nigeria. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803108Edmond Connolly. (2021). The Suitability of Sarimax Time Series and LSTM Neural Networks for Predicting Electricity Consumption in Ireland [Master Thesis, National College of Ireland]. https://norma.ncirl.ie/5143/1/edmondconnolly.pdfEl Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., & Ammar, A. M. (2023). Pyrolysis Technology Choice to Produce Bio-oil, from Municipal Solid Waste, Using Multi-criteria Decision-making Methods. Waste and Biomass Valorization, 14(11), 3705–3722. https://doi.org/10.1007/s12649-023-02076-w Fan, L., Abbasi, M., Salehi, K., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: application of intrinsic time-scale decomposition algorithm. Engineering Applications of Computational Fluid Mechanics, 15(1), 1159–1175. https://doi.org/10.1080/19942060.2021.1945496Fernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/j.wasman.2017.05Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2020.144449Gołębiewski, J., Takala, J., Juszczyk, O., & Drejerska, N. (2019). Local contribution to circular economy. A case study of a Polish rural municipality. Economia Agro-Alimentare, 21(3), 771–791. https://doi.org/10.3280/ECAG2019-003011Gombojav, D., & Matsumoto, T. (2023). Multi criteria decision analysis to develop an optimized municipal solid waste management scenario: a case study in Ulaanbaatar, Mongolia. Journal of Material Cycles and Waste Management, 25(3), 1344–1358. https://doi.org/10.1007/s10163-023-01603-0Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. https://doi.org/10.1016/j.renene.2009.07.027Gonçalves, A. M., & Silva, V. H. (2021). Time Series Forecasting: A Study on Local Urban Waste Management in a Portuguese City (pp. 527–538). https://doi.org/10.1007/978-3-030-86973-1_37Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791 Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. https://doi.org/10.1002/for.3980120104Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378 Habibollahzade, A., & Houshfar, E. (2020). Improved performance and environmental indicators of a municipal solid waste fired plant through CO2 recycling: Exergoeconomic assessment and multi-criteria grey wolf optimisation. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113451Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230Huang, Y.-F., & Lo, S.-L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191, 116501. https://doi.org/10.1016/j.energy.2019.116501Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed). https://otexts.com/fpp3/ Ibikunle, R. A., Lukman, A. F., Titiladunayo, I. F., Akeju, E. A., & Dahunsi, S. O. (2020). Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1841343IEA. (2023). Electricity generation by source. Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel IEA. (2024). Energy Prices. https://www.iea.org/data-and-statistics/data-product/energy-prices#overview IEA Bioenergy. (2018). Gasification of waste for energy carriers - a review. https://www.ieabioenergy.com/blog/publications/gasification-of-waste-for-energy-carriers-a-review/#:~:text=The%20use%20of%20waste%20gasification%20technologies%20has%20the%20potential%20to,or%20chemicals%2C%20i.e.%20material%20recovery.Ilbahar, E., Kahraman, C., & Cebi, S. (2021). Location selection for waste-to-energy plants by using fuzzy linear programming. Energy, 234. https://doi.org/10.1016/j.energy.2021.121189 INTERASEO S.A. E.S.P., & CAEMA. (2012). INTERASEO landfill gas mitigation project. https://cdm.unfccc.int/Projects/DB/DNV-CUK1356525322.33/viewIntergovernmental Panel on Climate Change (IPCC). (2019). Volume 5: Waste. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol5.html IRENA. (2021). Perspectivas de la transición energética mundial: camino de 1.5 ℃. https://www.irena.org/publications/2021/Jun/Perspectivas-de-la-transicion-energetica-mundialIRENA. (2022). Renewable power generation costs in 2021. https://www.irena.org/Publications/ Isigonis, P., Moustakas, K., & Vakalis, S. (2022). Multicriteria analysis as a supporting decision tool for expanding the use of the 3T method for waste-to-energy technologies and biorefineries. Sustainable Chemistry and Pharmacy, 28. https://doi.org/10.1016/j.scp.2022.100715 Islam, M. R., Kabir, G., Ng, K. T. W., & Ali, S. M. (2022). Yard waste prediction from estimated municipal solid waste using the grey theory to achieve a zero-waste strategy. Environmental Science and Pollution Research, 29(31), 46859–46874. https://doi.org/10.1007/s11356-022-19178-yIzquierdo-Horna, L., Kahhat, R., & Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809–819. https://doi.org/10.1016/J.SPC.2022.08.008 Johansen, S. (2011). Cointegration in the VAR Model (pp. 408–435). https://doi.org/10.1002/9781118032978.ch15 Juárez-Hernández, S. (2021). Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexico city. Waste Management, 136, 321–336. https://doi.org/10.1016/j.wasman.2021.10.026Jung, J., & Gibson, J. D. (2006). The interpretation of spectral entropy based upon rate distortion functions. IEEE International Symposium on Information Theory - Proceedings, 277–281. https://doi.org/10.1109/ISIT.2006.261849Kaneesamkandi, Z., Ur-Rehman, A., & Usmani, Y. S. (2023). Selection of Ideal MSW Incineration and Utilization Technology Routes Using MCDA for Different Waste Utilization Scenarios and Variable Conditions. Processes, 11(7). https://doi.org/10.3390/pr11071921Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9Kaur-Sidhu, M., Ravindra, K., Mor, S., & John, S. (2020). Emission factors and global warming potential of various solid biomass fuel-cook stove combinations. Atmospheric Pollution Research, 11(2), 252–260. https://doi.org/10.1016/j.apr.2019.10.009Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0Khan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/j.enconman.2022.115905Kim, H., Park, S., & Kim, S. (2023). Time-series clustering and forecasting household electricity demand using smart meter data. Energy Reports, 9, 4111–4121. https://doi.org/10.1016/j.egyr.2023.03.042Kocak, E., & Baglitas, H. H. (2022). The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter? Sustainable Development, 30(6), 1947–1962. https://doi.org/10.1002/sd.2361Kurbatova, A., & Abu-Qdais, H. A. (2020). Using multi-criteria decision analysis to select waste to energy technology for a Mega city: The case of Moscow. Sustainability (Switzerland), 12(23), 1–18. https://doi.org/10.3390/su12239828Kuznetsova, E., Cardin, M.-A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500. https://doi.org/10.1016/j.rser.2018.12.020Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-YLassesson, H., Fedje, K. K., & Steenari, B.-M. (2014). Leaching for recovery of copper from municipal solid waste incineration fly ash: Influence of ash properties and metal speciation. WASTE MANAGEMENT \& RESEARCH, 32(8), 755–762. https://doi.org/10.1177/0734242X14542147 Lauber, J. D. (2007). Economic and technical viability of various MSW, WTE waste to energy thermal treatment processes. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, 7, 4969–4970. https://www.scopus.com/inward/record.uri?eid=2-s2.0-44649119828&partnerID=40&md5=e74a045cd2671c08dc8a117507d0abc7 Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and Its Applications, 450, 657–669. https://doi.org/10.1016/j.physa.2016.01.017Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677Li, Z., Luo, Z., Wang, Y., Fan, G., & Zhang, J. (2022). Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renewable Energy, 184, 564–576. https://doi.org/10.1016/j.renene.2021.11.112Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128039Lin, K., Zhao, Y., & Kuo, J. H. (2022). Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136119Lin, K., Zhao, Y., Tian, L., Zhao, C., Zhang, M., & Zhou, T. (2021). Estimation of municipal solid waste amount based on one-dimension convolutional neural network and long short-term memory with attention mechanism model: A case study of Shanghai. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148088Lin, X., Yan, M., Dai, A., Zhan, M., Fu, J., Li, X., Chen, T., Lu, S., Buekens, A., & Yan, J. (2015). Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration. Chemosphere, 126, 60–66. https://doi.org/10.1016/j.chemosphere.2015.02.005Liu, Y., Liao, C., Tang, Y., Tang, J., Sun, Y., & Ma, X. (2022). Techno-environmental-economic evaluation of the small-scale municipal solid waste (MSW) gasification-based and incineration-based power generation plants. Journal of the Taiwan Institute of Chemical Engineers, 141. https://doi.org/10.1016/j.jtice.2022.104594Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297. https://doi.org/10.2307/2335207Lohani, S. P., & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Energy, Environment, and Sustainability. https://doi.org/10.1007/978-981-10-7413-4_18Lu, Y.-T., Lee, Y.-M., & Hong, C.-Y. (2017). Inventory analysis and social life cycle assessment of greenhouse gas emissions from waste-to-energy incineration in Taiwan. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9111959Lui, J., Paul, M. C., Sloan, W., & You, S. (2022). Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in glasgow. International Journal of Hydrogen Energy, 47(28), 13532–13551. https://doi.org/10.1016/j.ijhydene.2022.02.120Luo, C., Ju, Y., Santibanez Gonzalez, E. D. R., Dong, P., & Wang, A. (2020). The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy, 211. https://doi.org/10.1016/j.energy.2020.118564Mahmud, T. S., Ng, K. T. W., Hasan, M. M., An, C., & Wan, S. (2023). A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. Sustainable Cities and Society, 96. https://doi.org/10.1016/j.scs.2023.104685Makarichi, L., Jutidamrongphan, W., & Techato, K.-A. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088Mariano‐Hernández, D., Hernández‐Callejo, L., Solís, M., Zorita‐Lamadrid, A., Duque‐Pérez, O., Gonzalez‐Morales, L., Alonso‐Gómez, V., Jaramillo‐Duque, A., & Santos García, F. (2022). Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings. Energy Science & Engineering, 10(12), 4694–4707. https://doi.org/10.1002/ese3.1298Martínez López, L., Ishizaka, A., Qin, J., & Álvarez Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods. Elsevier. https://doi.org/10.1016/C2020-0-02008-6Ming, Z., Jinhui, D., Liang, W., & Shanshan, G. (2014). Effect of urbanization on generation in China. Power, 158(8). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940328024&partnerID=40&md5=34d9d87456002ceae349c8b58ed579c9Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA-COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104155Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. https://doi.org/10.1016/j.egypro.2017.09.618Mujtaba, M. A., Munir, A., Imran, S., Nasir, M. K., Muhayyuddin, M. G., Javed, A., Mehmood, A., Habila, M. A., Fayaz, H., & Qazi, A. (2024). Evaluating sustainable municipal solid waste management scenarios: A multicriteria decision making approach. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25788Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512Munir, M. T., Mohaddespour, A., Nasr, A. T., & Carter, S. (2021). Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111080Nguyen, X. C., Nguyen, T. T. H., La, D. D., Kumar, G., Rene, E. R., Nguyen, D. D., Chang, S. W., Chung, W. J., Nguyen, X. H., & Nguyen, V. K. (2021). Development of machine learning - based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167. https://doi.org/10.1016/j.resconrec.2020.105381Niu, D., Wu, F., Dai, S., He, S., & Wu, B. (2021). Detection of long-term effect in forecasting municipal solid waste using a long short-term memory neural network. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125187OCDE. (2022). Municipal waste (indicator). https://doi.org/10.1787/89d5679a-en Oguz-Ekim, P. (2021). Machine Learning Approaches for Municipal Solid Waste Generation Forecasting. Environmental Engineering Science, 38(6), 489–499. https://doi.org/10.1089/ees.2020.0232Ossei-Bremang, R. N., & Kemausuor, F. (2021). A decision support system for the selection of sustainable biomass resources for bioenergy production. Environment Systems and Decisions, 41(3), 437–454. https://doi.org/10.1007/s10669-021-09810-6Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/j.enconman.2023.117522Ozcan, H. K., Guvenc, S. Y., Guvenc, L., & Demir, G. (2016). Municipal solid waste characterization according to different income levels: A case study. Sustainability (Switzerland), 8(10). https://doi.org/10.3390/su8101044Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies. In Energy Recovery Processes from Wastes (pp. 151–163). Springer Singapore. https://doi.org/10.1007/978-981-32-9228-4_13Paulauskaite-Taraseviciene, A., Raudonis, V., & Sutiene, K. (2022). Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 140, 31–39. https://doi.org/10.1016/j.wasman.2022.01.004Perera, A. T. D., Madusanka, A. N., & De Alwis, A. A. P. (2013). Techno-economical optimization of a solid waste management system using evolutionary algorithms. International Conference on Advances in ICT for Emerging Regions, ICTer 2013 - Conference Proceedings, 92–97. https://doi.org/10.1109/ICTer.2013.6761161Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers. McGraw-Hill Education. https://books.google.com.co/books?id=3uVFkBBHyP8CPluskal, J., Šomplák, R., Nevrlý, V., Smejkalová, V., & Pavlas, M. (2021). Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123359Prabowo, B., Simanjuntak, F. S. H., Saldi, Z. S., Samyudia, Y., & Widjojo, I. J. (2019). Assessment of waste to energy technology in Indonesia: A techno-economical perspective on a 1000 ton/day scenario. International Journal of Technology, 10(6), 1228–1234. https://doi.org/10.14716/ijtech.v10i6.3607 Presidencia de la República de Colombia. (1989). DECRETO LEY 624 DE 1989. In Estatuto Tributario. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=6533Pudcha, T., Phongphiphat, A., & Towprayoon, S. (2023). Greenhouse Gas Mitigation and Energy Production Potentials from Municipal Solid Waste Management in Thailand Through 2050. Earth Systems and Environment, 7(1), 83–97. https://doi.org/10.1007/s41748-022-00323-zQazi, W. A., Abushammala, M. F. M., & Azam, M.-H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management and Research, 36(7), 594–605. https://doi.org/10.1177/0734242x18777800Rabbani, M., Mokarrari, K. R., & Akbarian-saravi, N. (2021). A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sustainable Cities and Society, 75. https://doi.org/10.1016/j.scs.2021.103319Ramos, A., & Rouboa, A. (2020). Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, 85, 106469. https://doi.org/10.1016/j.eiar.2020.106469Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109Rodrigues, A. P., Fernandes, M. L., Rodrigues, M. F. F., Bortoluzzi, S. C., da Costa, S. E., & de Lima, E. (2018). Developing criteria for performance assessment in municipal solid waste management. Journal of Cleaner Production, 186, 748–757. https://doi.org/10.1016/j.jclepro.2018.03.067Rodrigues, L. F., Santos, I. F. S. D., Santos, T. I. S. D., Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/j.renene.2022.02.083Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/j.cesys.2021.100063Schneider, D. R., & Ragossnig, A. M. (2015). Recycling and incineration, contradiction or coexistence? Waste Management and Research, 33(8), 693–695. https://doi.org/10.1177/0734242X15593421Shah, S. A. A., & Longsheng, C. (2022). Evaluating renewable and sustainable energy impeding factors using an integrated fuzzy-grey decision approach. Sustainable Energy Technologies and Assessments, 51. https://doi.org/10.1016/j.seta.2021.101905Shahnazari, A., Rafiee, M., Rohani, A., Bhushan Nagar, B., Ebrahiminik, M. A., & Aghkhani, M. H. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40. https://doi.org/10.1016/j.seta.2020.100737Shahsavar, M. M., Akrami, M., Kian, Z., Gheibi, M., Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Behzadian, K. (2022). Bio-recovery of municipal plastic waste management based on an integrated decision-making framework. Journal of Industrial and Engineering Chemistry, 108, 215–234. https://doi.org/10.1016/j.jiec.2022.01.002Shannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.xSheng, F., & Jia, L. (2020). Short-Term Load Forecasting Based on SARIMAX-LSTM. 2020 5th International Conference on Power and Renewable Energy, ICPRE 2020, 90–94. https://doi.org/10.1109/ICPRE51194.2020.9233117 SShi, H., Mahinpey, N., Aqsha, A., & Silbermann, R. (2016). Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management, 48, 34–47. https://doi.org/10.1016/j.wasman.2015.09.036Shi, Y., Li, Y., Yuan, X., Fu, J., Ma, Q., & Wang, Q. (2020). Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(11), 3779–3794. https://doi.org/10.1007/s10653-020-00639-7Silva, L. J. de V. B. da, Santos, I. F. S. dos, Mensah, J. H. R., Gonçalves, A. T. T., & Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, 149, 1386–1394. https://doi.org/10.1016/j.renene.2019.10.134Singh, P., & Kalamdhad, A. S. (2022). Assessment of agricultural residue-based electricity production from biogas in India: Resource-environment-economic analysis. Sustainable Energy Technologies and Assessments, 54, 102843. https://doi.org/10.1016/j.seta.2022.102843Singh, T., & Uppaluri, R. V. S. (2022). Machine learning tool-based prediction and forecasting of municipal solid waste generation rate: a case study in Guwahati, Assam, India. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04644-4Sohoo, I., Ritzkowski, M., Guo, J., Sohoo, K., & Kuchta, K. (2022). Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020773Soltani, A., Hewage, K., Reza, B., & Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: A review. Waste Management, 35, 318–328. https://doi.org/10.1016/j.wasman.2014.09.010SSPD. (2023a). Informe de vigilancia o inspección especial, detallada o concreta INTERASEO S.A.S. E.S.P. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-detallado-interaseo-fundacion-2023.pdfSSPD. (2023b). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/publicacionesSSPD. (2023c). Informe Sectorial de la Actividad de Aprovechamiento 2022. https://www.superservicios.gov.co/publicacionesSSPD. (2023d). Sistema Único de Información de Servicios Públicos Domiciliarios - SUI. https://sui.superservicios.gov.co/SSPD. (2024). Publicaciones y boletines. https://www.superservicios.gov.co/publicacionesSun, Y., Qin, Z., Tang, Y., Huang, T., Ding, S., & Ma, X. (2021). Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106108Sunayana, Kumar, S., & Kumar, R. (2021). Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models. Waste Management, 121, 206–214. https://doi.org/10.1016/j.wasman.2020.12.011Sununta, N., Sedpho, S., & Sampattagul, S. (2018). City carbon footprint evaluation and forecasting case study: Dan Sai municipality. Chemical Engineering Transactions, 63, 277–282. https://doi.org/10.3303/CET1863047Tamasila, M., Prostean, G., Ivascu, L., Cioca, L.-I., Draghici, A., & Diaconescu, A. (2020). Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS. JOURNAL OF INTELLIGENT \& FUZZY SYSTEMS, 38(5), 6111–6127. https://doi.org/10.3233/JIFS-179695Teshome, Y. M., Habtu, N. G., Molla, M. B., & Ulsido, M. D. (2023). Municipal solid wastes quantification and model forecasting. Global Journal of Environmental Science and Management, 9(2). https://doi.org/10.22034/GJESM.2023.02.04Tonjes, D. J., & Greene, K. L. (2012). A review of national municipal solid waste generation assessments in the USA. WASTE MANAGEMENT \& RESEARCH, 30(8), 758–771. https://doi.org/10.1177/0734242X12451305Tsui, T.-H., & Wong, J. W. C. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal and Sustainable Energy, 1(3), 151–167. https://doi.org/10.1007/s42768-019-00013-zUhde, B., Andreas Hahn, W., Griess, V. C., & Knoke, T. (2015). Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management, 56(2), 373–388. https://doi.org/10.1007/s00267-015-0503-3Ukpanyang, D., Terrados-Cepeda, J., & Hermoso-Orzaez, M. J. (2022). Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria. Energies, 15(10), 3481. https://doi.org/10.3390/en15103481UKWIn. (2018). Evaluation of the climate change impacts of waste incineration in the United Kingdom. https://ukwin.org.uk/files/pdf/UKWIN-2018-Incineration-Climate-Change-Report.pdfUNEP. (2024). Global Waste Management Outlook 2024: Beyond an age of waste – Turning rubbish into a resource. https://www.unep.org/resources/global-waste-management-outlook-2024Unidad de Planeación Minero Energética (UPME); INERCO Consultoría Colombia. (2018). Valorización energética de residuos: proyecto WtE Colombia. http://bdigital.upme.gov.co/handle/001/1339United States Environmental Protection Agency (EPA). (2005a). EPA Software and Manuals. https://www.epa.gov/catc/clean-air-technology-center-products#software United States Environmental Protection Agency (EPA). (2005b). LandGEM V3.02. EPA Software and Manuals. https://www.epa.gov/U.S. EPA. (2021a). LFGcost-Web — Landfill Gas Energy Cost Model. https://www.epa.gov/lmop/lfgcost-web-landfill-gas-energy-cost-modelU.S. EPA. (2021b). Zero Waste Case Study: San Francisco. https://www.epa.gov/transforming-waste-tool/zero-waste-case-study-san-franciscoU.S. EPA. (2023). IPCC AR4, AR5, and AR6 20-, 100-, and 500-year GWPs. https://catalog.data.gov/dataset/ipcc-ar4-ar5-and-ar6-20-100-and-500-year-gwpsUyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental Earth Sciences, 71(4), 1629–1639. https://doi.org/10.1007/s12665-013-2567-9Vallejo, F., Díaz-Robles, L., Cubillos, F., Espinoza, A. P., Espinoza, L., Pinilla, F., & Pino-Cortes, E. (2020). Valorization of municipal solid waste using hydrothermal carbonization and gasification: A review. Chemical Engineering Transactions, 81, 1045–1050. https://doi.org/10.3303/CET2081175Van Fan, Y., Klemeš, J. J., Lee, C. T., & Perry, S. (2019). GHG emissions of incineration and anaerobic digestion: Electricity mix. Chemical Engineering Transactions, 72, 145–150. https://doi.org/10.3303/CET1972025Van Thanh, N. (2022). Optimal Waste-to-Energy Strategy Assisted by Fuzzy MCDM Model for Sustainable Solid Waste Management. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116565Velis, C. A., Wilson, D. C., Gavish, Y., Grimes, S. M., & Whiteman, A. (2023). Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. Science of The Total Environment, 872, 161913. https://doi.org/10.1016/j.scitotenv.2023.161913Vidal-Barrero, F., Baena-Moreno, F. M., Preciado-Cárdenas, C., Villanueva-Perales, ángel, & Reina, T. R. (2022). Hydrogen production from landfill biogas: Profitability analysis of a real case study. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124438Villa-Loaiza, C., Taype-Huaman, I., Benavides-Franco, J., Buenaventura-Vera, G., & Carabalí-Mosquera, J. (2023). Does climate impact the relationship between the energy price and the stock market? The Colombian case. Applied Energy, 336, 120800. https://doi.org/10.1016/j.apenergy.2023.120800Vlachokostas, C., Michailidou, A. V, & Achillas, C. (2021). Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review. Renewable and Sustainable Energy Reviews, 138. https://doi.org/10.1016/j.rser.2020.110563Vlaskin, M. S. (2018). Municipal solid waste as an alternative energy source. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(8), 961–970. https://doi.org/10.1177/0957650918762023Wang, D., Yuan, Y. an, Ben, Y., Luo, H., & Guo, H. (2022). Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China. Environmental Science and Pollution Research, 29(46), 69472–69490. https://doi.org/10.1007/s11356-022-20438-0Wei, J., Li, H., & Liu, J. (2022). Curbing dioxin emissions from municipal solid waste incineration: China’s action and global share. Journal of Hazardous Materials, 435, 129076. https://doi.org/10.1016/j.jhazmat.2022.129076Wen, C., Lin, X., Ying, Y., Ma, Y., Yu, H., Li, X., & Yan, J. (2023). Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. Waste Management, 170, 93–102. https://doi.org/10.1016/j.wasman.2023.08.004Wilk, V., & Hofbauer, H. (2013). Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology, 115, 139–151. https://doi.org/10.1016/j.fuproc.2013.04.013Wójtowicz-Wróbel, A. (2017). Social reception of thermal waste processing system structures. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(41), 209–216. https://doi.org/10.5593/sgem2017/41/S18.027Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/j.biombioe.2013.02.036World Bank. (2019a). City level dataset. What A Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597/What-a-Waste-Global-DatabaseWorld Bank. (2019b). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-managementWorld Bank. (2019c). What a Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597World Bank. (2022). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-managementWorld Bank. (2023). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/map_dataXM. (2023). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasezXu, L., Gao, P., Cui, S., & Liu, C. (2013). A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Management, 33(6), 1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V, Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 309, 136627. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136627Yang, Y., Liew, R. K., Tamothran, A. M., Foong, S. Y., Yek, P. N. Y., Chia, P. W., Van Tran, T., Peng, W., & Lam, S. S. (2021). Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01177-5Yin, L.-J., Wang, C., Hu, Y.-Y., Chen, D.-Z., Xu, J.-F., & Liu, J. (2017). AHP-based approach for optimization of waste disposal method in urban functional zone. Environmental Technology (United Kingdom), 38(13–14), 1689–1695. https://doi.org/10.1080/09593330.2016.1244565Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: a global analysis by countries’ income level. Environmental Science and Pollution Research, 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9Zhang, G., Liu, K., Lv, L., Gao, W., Li, W., Ren, Z., Yan, W., Wang, P., Liu, X., & Sun, L. (2023). Enhanced landfill process based on leachate recirculation and micro-aeration: A comprehensive technical, environmental, and economic assessment. Science of The Total Environment, 857, 159535. https://doi.org/10.1016/j.scitotenv.2022.159535Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107–122. https://doi.org/10.1016/j.rser.2014.04.024Zhu, L., Tian, Z., & Du, J. (2023). Spatial–temporal redundancy evaluation of the municipal solid waste incineration treatment capacity: the case study of China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26989-0Zhucheng Holy Shield Environmental Science & Technology Co. Ltd. (2024). Municipal Solid Waste Sorting Machines Automatic Waste Sorting Machine. https://www.alibaba.com/product-detail/Municipal-Solid-Waste-Sorting-Machines-Automatic_1600919537394.html?spm=a2700.7724857.0.0.1c395e2fO506RWZia, A., Batool, S. A., Chauhdry, M. N., & Munir, S. (2017). Influence of Income Level and Seasons on Quantity and Composition of Municipal Solid Waste: A Case Study of the Capital City of Pakistan. SUSTAINABILITY, 9(9). https://doi.org/10.3390/su9091568Residuos sólidos municipalesValorización energéticaAnálisis de decisión multicriterioSostenibilidadMunicipal solid wasteWaste-to-energyMulti-criteria decision-makingSustainabilityPublicationORIGINAL1102833229 (1).pdf1102833229 (1).pdfapplication/pdf5243492https://repositorio.cuc.edu.co/bitstreams/fe28330d-52f7-4766-8a62-18ec6870222d/downloadeb0be8f03cf8869a95876b23fb32429eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/b1923b45-de84-4628-9e4c-aef63c5956ff/download73a5432e0b76442b22b026844140d683MD52TEXT1102833229 (1).pdf.txt1102833229 (1).pdf.txtExtracted texttext/plain102098https://repositorio.cuc.edu.co/bitstreams/58d09e74-ed77-4198-8872-305e049f82bb/downloaded9dc529a7a76f8f14d23ff55c61e05cMD53THUMBNAIL1102833229 (1).pdf.jpg1102833229 (1).pdf.jpgGenerated Thumbnailimage/jpeg6814https://repositorio.cuc.edu.co/bitstreams/6f7b0d51-baf8-4d64-a36c-01ddf3ca3902/downloadc5cfe41509f26604c8d2e1acb8b3ad1dMD5411323/13944oai:repositorio.cuc.edu.co:11323/139442025-01-24 10:43:15.824https://creativecommons.org/licenses/by-nc-sa/4.0/restrictedhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K |