Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo

La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña un...

Full description

Autores:
Otero Meza, Daniel David
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2025
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13944
Acceso en línea:
https://hdl.handle.net/11323/13944
Palabra clave:
Residuos sólidos municipales
Valorización energética
Análisis de decisión multicriterio
Sostenibilidad
Municipal solid waste
Waste-to-energy
Multi-criteria decision-making
Sustainability
Rights
closedAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
id RCUC2_a531eec7fc22feac8b8e5141c44717dc
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13944
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.none.fl_str_mv Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
title Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
spellingShingle Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
Residuos sólidos municipales
Valorización energética
Análisis de decisión multicriterio
Sostenibilidad
Municipal solid waste
Waste-to-energy
Multi-criteria decision-making
Sustainability
title_short Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
title_full Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
title_fullStr Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
title_full_unstemmed Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
title_sort Revalorización energética de los residuos sólidos municipales generados en la ciudad de Sincelejo
dc.creator.fl_str_mv Otero Meza, Daniel David
dc.contributor.advisor.none.fl_str_mv Cabello Eras, Juan José
Salcedo Mendoza, Jairo Guadalupe
dc.contributor.author.none.fl_str_mv Otero Meza, Daniel David
dc.contributor.jury.none.fl_str_mv Contreras Lozano, Karen
Balbis Morejón, Milen
Bermejo Altamar, Fabio
dc.subject.proposal.spa.fl_str_mv Residuos sólidos municipales
Valorización energética
Análisis de decisión multicriterio
Sostenibilidad
topic Residuos sólidos municipales
Valorización energética
Análisis de decisión multicriterio
Sostenibilidad
Municipal solid waste
Waste-to-energy
Multi-criteria decision-making
Sustainability
dc.subject.proposal.eng.fl_str_mv Municipal solid waste
Waste-to-energy
Multi-criteria decision-making
Sustainability
description La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña una herramienta metodológica para la evaluación integral y selección de alternativas de aprovechamiento de los RSM, integrando el potencial de diversas tecnologías, la proyección de tasas de disposición y un enfoque multicriterio objetivo. La metodología combina análisis de series de tiempo, específicamente SARIMAX, para proyectar la disposición futura de RSM con rigor estadístico (pruebas de Ljung-Box, KPSS, cointegración de Johansen, Causalidad de Granger), contemplando variables exógenas clave. Asimismo, se aplica un método de decisión multicriterio basado en ENTROPY y TOPSIS, que pondera equitativamente factores técnicos, energéticos, ambientales y económicos. La aplicación de la herramienta en Sincelejo, Colombia, muestra su efectividad al identificar el relleno sanitario con captura de biogás como la opción más sólida, alineada con la aprobación de proyectos análogos por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC). Los resultados confirman que esta solución es la más equilibrada para la ciudad, teniendo en cuenta la disponibilidad de recursos, el potencial de generación de energía, la mitigación de emisiones y la viabilidad económica. Además, la herramienta desarrollada demuestra su adaptabilidad a distintos escenarios y su utilidad para la toma de decisiones informadas, facilitando la transición hacia prácticas de economía circular y contribuyendo a la reducción del cambio climático. En suma, esta investigación aporta una solución práctica para la planificación de la gestión de RSM, fomentando un uso más eficiente de los recursos y promoviendo la sostenibilidad local y regional.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-01-21T22:01:51Z
dc.date.available.none.fl_str_mv 2025
2025-01-21T22:01:51Z
dc.date.issued.none.fl_str_mv 2025
dc.type.none.fl_str_mv Trabajo de grado - Doctorado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TD
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13944
url https://hdl.handle.net/11323/13944
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abdella Ahmed, A. K., Ibraheem, A. M., & Abd-Ellah, M. K. (2022). Forecasting of municipal solid waste multi-classification by using time-series deep learning depending on the living standard. Results in Engineering, 16. https://doi.org/10.1016/j.rineng.2022.100655
Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/s10098-021-02099-8
Adenuga, O. T., Mpofu, K., & Modise, K. R. (2020). An approach for enhancing optimal resource recovery from different classes of waste in South Africa: Selection of appropriate waste to energy technology. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100033
Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google trends. Journal of Electrical Systems and Information Technology, 10(1), 12. https://doi.org/10.1186/s43067-023-00078-1
Afrane, S., Ampah, J. D., Jin, C., Liu, H., & Aboagye, E. M. (2021). Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach. Journal of Cleaner Production, 318. https://doi.org/10.1016/j.jclepro.2021.128515
Ahmad, S. I., Ho, W. S., Hassim, M. H., Elagroudy, S., Abdul Kohar, R. A., Bong, C. P. C., Hashim, H., & Rashid, R. (2020). Development of quantitative SHE index for waste to energy technology selection. Energy, 191. https://doi.org/10.1016/j.energy.2019.116534
Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201. https://doi.org/10.1016/j.energy.2020.117675
Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031
Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343. https://doi.org/10.1016/j.jclepro.2022.130824
Alcaldía de Sincelejo. (2017). REVISIÓN Y ACTUALIZACIÓN PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS –PGIRS–DEL MUNICIPIO DE SINCELEJO.
Alcaldía de Sincelejo. (2022). Anexo 3. Caracterización de residuos. In PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS DEL MUNICIPIO DE SINCELEJO, Sucre 2022–2033. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/Forms/AllItems.aspx
Alfonso-Cardero, A., Pagés-Díaz, J., Kalogirou, E., Psomopoulos, C. S., & Lorenzo-Llanes, J. (2021). To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Environmental Science and Pollution Research, 30(4), 8601–8616. https://doi.org/10.1007/s11356-021-17360-2
AlNouss, A., Alherbawi, M., Parthasarathy, P., Al-Thani, N., McKay, G., & Al-Ansari, T. (2024). Waste-to-energy technology selection: A multi-criteria optimisation approach. Computers and Chemical Engineering, 183. https://doi.org/10.1016/j.compchemeng.2024.108595
AlQattan, N., Acheampong, M., Jaward, F. M., Ertem, F. C., Vijayakumar, N., & Bello, T. (2018). Reviewing the potential of Waste-to-Energy (WTE) technologies for Sustainable Development Goal (SDG) numbers seven and eleven. Renewable Energy Focus, 27, 97–110. https://doi.org/10.1016/j.ref.2018.09.005
Al-Shihabi, S., Aydin, R., & Al Nahlawi, M. (2023). Forecasting the effects of municipal solid plastic waste generation and streaming using system dynamics: A case study in Dubai. Science of The Total Environment, 165204. https://doi.org/10.1016/j.scitotenv.2023.165204
Alves, O., Calado, L., Panizio, R. M., Gonçalves, M., Monteiro, E., & Brito, P. (2021). Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Management, 131, 148–162. https://doi.org/10.1016/j.wasman.2021.05.026
Andreas, C., Faricha, A., Ulyah, S. M., Susanti, R., Mardhiana, H., Nanda, M. A., & R., F. A. (2022). Comparison study using ARIMAX and VARX in cash flow forecasting. 030023. https://doi.org/10.1063/5.0118519
Antonopoulos, I.-S., Perkoulidis, G., Logothetis, D., & Karkanias, C. (2014). Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resources, Conservation and Recycling, 86, 149–159. https://doi.org/10.1016/j.resconrec.2014.03.002
Aracil, C., Haro, P., Fuentes-Cano, D., & Gómez-Barea, A. (2018). Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Management, 76, 443–456. https://doi.org/10.1016/j.wasman.2018.03.039
Arena, U., Ardolino, F., & Di Gregorio, F. (2015). A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management, 41, 60–74. https://doi.org/10.1016/j.wasman.2015.03.041
Arslan, M., & Yılmaz, C. (2022). Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery. Energy, 248, 123487. https://doi.org/10.1016/j.energy.2022.123487
Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125671
Baltussen, R., Marsh, K., Thokala, P., Diaby, V., Castro, H., Cleemput, I., Garau, M., Iskrov, G., Olyaeemanesh, A., Mirelman, A., Mobinizadeh, M., Morton, A., Tringali, M., van Til, J., Valentim, J., Wagner, M., Youngkong, S., Zah, V., Toll, A., … Broekhuizen, H. (2019). Multicriteria Decision Analysis to Support Health Technology Assessment Agencies: Benefits, Limitations, and the Way Forward. Value in Health, 22(11), 1283–1288. https://doi.org/10.1016/j.jval.2019.06.014
Banco de la república de Colombia. (2023). Inflación total y meta. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-meta
Baoding Baonan Machinery And Equipment Manufacturing Co. Ltd. (2024). Municipal solid waste sorting plant/sorting machine. https://www.alibaba.com/product-detail/Municipal-solid-waste-sorting-plant-sorting_1600618514423.html?spm=a2700.7724857.0.0.1c395e2fO506RW
Bashir, M. J. K., Ng, C. A., Sethupathi, S., & Lim, J. W. (2019). Assessment of the Environmental, Technical and Economic Issues Associated with Energy Recovery from Municipal Solid Waste in Malaysia. In H. B. S. L. Tong C.-W. Chin-Tsan W. (Ed.), IOP Conference Series: Earth and Environmental Science (Vol. 268, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/268/1/012044
Bertanza, G., Ziliani, E., & Menoni, L. (2018). Techno-economic performance indicators of municipal solid waste collection strategies. WASTE MANAGEMENT, 74, 86–97. https://doi.org/10.1016/j.wasman.2018.01.009
Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24, 1–11. https://doi.org/10.1016/j.ref.2017.11.001
Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A., & de Moraes, D. R. (2021). Waste-to-Energy Technologies Towards Circular Economy: a Systematic Literature Review and Bibliometric Analysis. Water, Air, & Soil Pollution, 232(7), 306. https://doi.org/10.1007/s11270-021-05224-x
Boumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., Sahibed-dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2019). Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Management and Research, 37(6), 578–589. https://doi.org/10.1177/0734242X18816797
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.
Briones-Hidrovo, A., Copa, J., Tarelho, L. A. C., Gonçalves, C., Pacheco da Costa, T., & Dias, A. C. (2021). Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. Journal of Cleaner Production, 289, 125680. https://doi.org/10.1016/j.jclepro.2020.125680
Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., & Svoboda, K. (2020). Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel, 281, 118637. https://doi.org/10.1016/j.fuel.2020.118637
Bui, T.-D., Tseng, J.-W., Tseng, M.-L., Wu, K.-J., & Lim, M. K. (2023). Municipal solid waste management technological barriers: A hierarchical structure approach in Taiwan. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106842
Chandel, M. K., Kwok, G., Jackson, R. B., & Pratson, L. F. (2012). The potential of waste-to-energy in reducing GHG emissions. Carbon Management, 3(2), 133–144. https://doi.org/10.4155/cmt.12.11
Chen, Y.-C. (2018a). Effects of urbanization on municipal solid waste composition. Waste Management, 79, 828–836. https://doi.org/10.1016/j.wasman.2018.04.017
Chen, Y.-C. (2018b). Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. Journal of Cleaner Production, 192, 262–269. https://doi.org/10.1016/j.jclepro.2018.04.260
Chhay, L., Reyad, M. A. H., Suy, R., Islam, M. R., & Mian, M. M. (2018). Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. Journal of Material Cycles and Waste Management, 20(3), 1761–1770. https://doi.org/10.1007/s10163-018-0743-4
Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73. http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130
Congreso de la República de Colombia. (2014). Ley 1715 de 2014. Diario Oficial 49.150. http://svrpubindc.imprenta.gov.co/diario
Coral Medina, J. D., Alomia, F. B., Magalhaes, A. I., Cesar de Carvalho, J., Woiciechowsky, A. L., & Soccol, C. R. (2021). Simulation of different biorefinery configuration including environmental, technical and economic assay using sugarcane bagasse. Journal of Cleaner Production, 316, 128162. https://doi.org/10.1016/j.jclepro.2021.128162
Cubillos, M., Wulff, J. N., & Wøhlk, S. (2021). A multilevel Bayesian framework for predicting municipal waste generation rates. Waste Management, 127, 90–100. https://doi.org/10.1016/j.wasman.2021.04.011
Cucchiella, F., D’Adamo, I., & Rosa, P. (2016). Urban waste to energy (WTE) plants: A social analysis. JP Journal of Heat and Mass Transfer, 13(3), 421–444. https://doi.org/10.17654/MT013030421
Cudjoe, D., & Acquah, P. M. (2021). Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere, 265. https://doi.org/10.1016/j.chemosphere.2020.129186
Dalke, R., Demro, D., Khalid, Y., Wu, H., & Urgun-Demirtas, M. (2021). Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 151, 111554. https://doi.org/10.1016/j.rser.2021.111554
DANE. (2018). Proyecciones y retroproyecciones de población. Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacion
DANE. (2021). La información del DANE en la toma de decisiones regionales: Sincelejo - Sucre. https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/210115-InfoDane-Sincelejo-Sucre.pdf
DANE. (2024a). Cuentas nacionales departamentales: PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales
DANE. (2024b). Indicador de Seguimiento a la Economía (ISE). https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/indicador-de-seguimiento-a-la-economia-ise
DANE. (2024c). PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales
DNP. (2022). Resolución Número 1092 de 2022. In Diario Oficial 52.011 (Issue Diario Oficial 52.011). Diario Oficial 52.011. http://svrpubindc.imprenta.gov.co/diario
Dodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022). Municipal Solid Waste Generation Forecast using an ARIMA Model: A Focus on Abuja City, Nigeria. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803108
Edmond Connolly. (2021). The Suitability of Sarimax Time Series and LSTM Neural Networks for Predicting Electricity Consumption in Ireland [Master Thesis, National College of Ireland]. https://norma.ncirl.ie/5143/1/edmondconnolly.pdf
El Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., & Ammar, A. M. (2023). Pyrolysis Technology Choice to Produce Bio-oil, from Municipal Solid Waste, Using Multi-criteria Decision-making Methods. Waste and Biomass Valorization, 14(11), 3705–3722. https://doi.org/10.1007/s12649-023-02076-w Fan, L., Abbasi, M., Salehi, K., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: application of intrinsic time-scale decomposition algorithm. Engineering Applications of Computational Fluid Mechanics, 15(1), 1159–1175. https://doi.org/10.1080/19942060.2021.1945496
Fernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/j.wasman.2017.05
Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2020.144449
Gołębiewski, J., Takala, J., Juszczyk, O., & Drejerska, N. (2019). Local contribution to circular economy. A case study of a Polish rural municipality. Economia Agro-Alimentare, 21(3), 771–791. https://doi.org/10.3280/ECAG2019-003011
Gombojav, D., & Matsumoto, T. (2023). Multi criteria decision analysis to develop an optimized municipal solid waste management scenario: a case study in Ulaanbaatar, Mongolia. Journal of Material Cycles and Waste Management, 25(3), 1344–1358. https://doi.org/10.1007/s10163-023-01603-0
Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. https://doi.org/10.1016/j.renene.2009.07.027
Gonçalves, A. M., & Silva, V. H. (2021). Time Series Forecasting: A Study on Local Urban Waste Management in a Portuguese City (pp. 527–538). https://doi.org/10.1007/978-3-030-86973-1_37
Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791 Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. https://doi.org/10.1002/for.3980120104
Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378 Habibollahzade, A., & Houshfar, E. (2020). Improved performance and environmental indicators of a municipal solid waste fired plant through CO2 recycling: Exergoeconomic assessment and multi-criteria grey wolf optimisation. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113451
Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230
Huang, Y.-F., & Lo, S.-L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191, 116501. https://doi.org/10.1016/j.energy.2019.116501
Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed). https://otexts.com/fpp3/ Ibikunle, R. A., Lukman, A. F., Titiladunayo, I. F., Akeju, E. A., & Dahunsi, S. O. (2020). Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1841343
IEA. (2023). Electricity generation by source. Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel IEA. (2024). Energy Prices. https://www.iea.org/data-and-statistics/data-product/energy-prices#overview IEA Bioenergy. (2018). Gasification of waste for energy carriers - a review. https://www.ieabioenergy.com/blog/publications/gasification-of-waste-for-energy-carriers-a-review/#:~:text=The%20use%20of%20waste%20gasification%20technologies%20has%20the%20potential%20to,or%20chemicals%2C%20i.e.%20material%20recovery.
Ilbahar, E., Kahraman, C., & Cebi, S. (2021). Location selection for waste-to-energy plants by using fuzzy linear programming. Energy, 234. https://doi.org/10.1016/j.energy.2021.121189 INTERASEO S.A. E.S.P., & CAEMA. (2012). INTERASEO landfill gas mitigation project. https://cdm.unfccc.int/Projects/DB/DNV-CUK1356525322.33/view
Intergovernmental Panel on Climate Change (IPCC). (2019). Volume 5: Waste. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol5.html IRENA. (2021). Perspectivas de la transición energética mundial: camino de 1.5 ℃. https://www.irena.org/publications/2021/Jun/Perspectivas-de-la-transicion-energetica-mundial
IRENA. (2022). Renewable power generation costs in 2021. https://www.irena.org/Publications/ Isigonis, P., Moustakas, K., & Vakalis, S. (2022). Multicriteria analysis as a supporting decision tool for expanding the use of the 3T method for waste-to-energy technologies and biorefineries. Sustainable Chemistry and Pharmacy, 28. https://doi.org/10.1016/j.scp.2022.100715 Islam, M. R., Kabir, G., Ng, K. T. W., & Ali, S. M. (2022). Yard waste prediction from estimated municipal solid waste using the grey theory to achieve a zero-waste strategy. Environmental Science and Pollution Research, 29(31), 46859–46874. https://doi.org/10.1007/s11356-022-19178-y
Izquierdo-Horna, L., Kahhat, R., & Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809–819. https://doi.org/10.1016/J.SPC.2022.08.008 Johansen, S. (2011). Cointegration in the VAR Model (pp. 408–435). https://doi.org/10.1002/9781118032978.ch15 Juárez-Hernández, S. (2021). Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexico city. Waste Management, 136, 321–336. https://doi.org/10.1016/j.wasman.2021.10.026
Jung, J., & Gibson, J. D. (2006). The interpretation of spectral entropy based upon rate distortion functions. IEEE International Symposium on Information Theory - Proceedings, 277–281. https://doi.org/10.1109/ISIT.2006.261849
Kaneesamkandi, Z., Ur-Rehman, A., & Usmani, Y. S. (2023). Selection of Ideal MSW Incineration and Utilization Technology Routes Using MCDA for Different Waste Utilization Scenarios and Variable Conditions. Processes, 11(7). https://doi.org/10.3390/pr11071921
Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9
Kaur-Sidhu, M., Ravindra, K., Mor, S., & John, S. (2020). Emission factors and global warming potential of various solid biomass fuel-cook stove combinations. Atmospheric Pollution Research, 11(2), 252–260. https://doi.org/10.1016/j.apr.2019.10.009
Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0
Khan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/j.enconman.2022.115905
Kim, H., Park, S., & Kim, S. (2023). Time-series clustering and forecasting household electricity demand using smart meter data. Energy Reports, 9, 4111–4121. https://doi.org/10.1016/j.egyr.2023.03.042
Kocak, E., & Baglitas, H. H. (2022). The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter? Sustainable Development, 30(6), 1947–1962. https://doi.org/10.1002/sd.2361
Kurbatova, A., & Abu-Qdais, H. A. (2020). Using multi-criteria decision analysis to select waste to energy technology for a Mega city: The case of Moscow. Sustainability (Switzerland), 12(23), 1–18. https://doi.org/10.3390/su12239828
Kuznetsova, E., Cardin, M.-A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500. https://doi.org/10.1016/j.rser.2018.12.020
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-Y
Lassesson, H., Fedje, K. K., & Steenari, B.-M. (2014). Leaching for recovery of copper from municipal solid waste incineration fly ash: Influence of ash properties and metal speciation. WASTE MANAGEMENT \& RESEARCH, 32(8), 755–762. https://doi.org/10.1177/0734242X14542147 Lauber, J. D. (2007). Economic and technical viability of various MSW, WTE waste to energy thermal treatment processes. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, 7, 4969–4970. https://www.scopus.com/inward/record.uri?eid=2-s2.0-44649119828&partnerID=40&md5=e74a045cd2671c08dc8a117507d0abc7 Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and Its Applications, 450, 657–669. https://doi.org/10.1016/j.physa.2016.01.017
Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677
Li, Z., Luo, Z., Wang, Y., Fan, G., & Zhang, J. (2022). Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renewable Energy, 184, 564–576. https://doi.org/10.1016/j.renene.2021.11.112
Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128039
Lin, K., Zhao, Y., & Kuo, J. H. (2022). Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136119
Lin, K., Zhao, Y., Tian, L., Zhao, C., Zhang, M., & Zhou, T. (2021). Estimation of municipal solid waste amount based on one-dimension convolutional neural network and long short-term memory with attention mechanism model: A case study of Shanghai. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148088
Lin, X., Yan, M., Dai, A., Zhan, M., Fu, J., Li, X., Chen, T., Lu, S., Buekens, A., & Yan, J. (2015). Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration. Chemosphere, 126, 60–66. https://doi.org/10.1016/j.chemosphere.2015.02.005
Liu, Y., Liao, C., Tang, Y., Tang, J., Sun, Y., & Ma, X. (2022). Techno-environmental-economic evaluation of the small-scale municipal solid waste (MSW) gasification-based and incineration-based power generation plants. Journal of the Taiwan Institute of Chemical Engineers, 141. https://doi.org/10.1016/j.jtice.2022.104594
Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508
Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297. https://doi.org/10.2307/2335207
Lohani, S. P., & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Energy, Environment, and Sustainability. https://doi.org/10.1007/978-981-10-7413-4_18
Lu, Y.-T., Lee, Y.-M., & Hong, C.-Y. (2017). Inventory analysis and social life cycle assessment of greenhouse gas emissions from waste-to-energy incineration in Taiwan. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9111959
Lui, J., Paul, M. C., Sloan, W., & You, S. (2022). Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in glasgow. International Journal of Hydrogen Energy, 47(28), 13532–13551. https://doi.org/10.1016/j.ijhydene.2022.02.120
Luo, C., Ju, Y., Santibanez Gonzalez, E. D. R., Dong, P., & Wang, A. (2020). The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy, 211. https://doi.org/10.1016/j.energy.2020.118564
Mahmud, T. S., Ng, K. T. W., Hasan, M. M., An, C., & Wan, S. (2023). A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. Sustainable Cities and Society, 96. https://doi.org/10.1016/j.scs.2023.104685
Makarichi, L., Jutidamrongphan, W., & Techato, K.-A. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088
Mariano‐Hernández, D., Hernández‐Callejo, L., Solís, M., Zorita‐Lamadrid, A., Duque‐Pérez, O., Gonzalez‐Morales, L., Alonso‐Gómez, V., Jaramillo‐Duque, A., & Santos García, F. (2022). Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings. Energy Science & Engineering, 10(12), 4694–4707. https://doi.org/10.1002/ese3.1298
Martínez López, L., Ishizaka, A., Qin, J., & Álvarez Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods. Elsevier. https://doi.org/10.1016/C2020-0-02008-6
Ming, Z., Jinhui, D., Liang, W., & Shanshan, G. (2014). Effect of urbanization on generation in China. Power, 158(8). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940328024&partnerID=40&md5=34d9d87456002ceae349c8b58ed579c9
Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA-COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104155
Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. https://doi.org/10.1016/j.egypro.2017.09.618
Mujtaba, M. A., Munir, A., Imran, S., Nasir, M. K., Muhayyuddin, M. G., Javed, A., Mehmood, A., Habila, M. A., Fayaz, H., & Qazi, A. (2024). Evaluating sustainable municipal solid waste management scenarios: A multicriteria decision making approach. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25788
Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512
Munir, M. T., Mohaddespour, A., Nasr, A. T., & Carter, S. (2021). Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111080
Nguyen, X. C., Nguyen, T. T. H., La, D. D., Kumar, G., Rene, E. R., Nguyen, D. D., Chang, S. W., Chung, W. J., Nguyen, X. H., & Nguyen, V. K. (2021). Development of machine learning - based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167. https://doi.org/10.1016/j.resconrec.2020.105381
Niu, D., Wu, F., Dai, S., He, S., & Wu, B. (2021). Detection of long-term effect in forecasting municipal solid waste using a long short-term memory neural network. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125187
OCDE. (2022). Municipal waste (indicator). https://doi.org/10.1787/89d5679a-en Oguz-Ekim, P. (2021). Machine Learning Approaches for Municipal Solid Waste Generation Forecasting. Environmental Engineering Science, 38(6), 489–499. https://doi.org/10.1089/ees.2020.0232
Ossei-Bremang, R. N., & Kemausuor, F. (2021). A decision support system for the selection of sustainable biomass resources for bioenergy production. Environment Systems and Decisions, 41(3), 437–454. https://doi.org/10.1007/s10669-021-09810-6
Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/j.enconman.2023.117522
Ozcan, H. K., Guvenc, S. Y., Guvenc, L., & Demir, G. (2016). Municipal solid waste characterization according to different income levels: A case study. Sustainability (Switzerland), 8(10). https://doi.org/10.3390/su8101044
Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies. In Energy Recovery Processes from Wastes (pp. 151–163). Springer Singapore. https://doi.org/10.1007/978-981-32-9228-4_13
Paulauskaite-Taraseviciene, A., Raudonis, V., & Sutiene, K. (2022). Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 140, 31–39. https://doi.org/10.1016/j.wasman.2022.01.004
Perera, A. T. D., Madusanka, A. N., & De Alwis, A. A. P. (2013). Techno-economical optimization of a solid waste management system using evolutionary algorithms. International Conference on Advances in ICT for Emerging Regions, ICTer 2013 - Conference Proceedings, 92–97. https://doi.org/10.1109/ICTer.2013.6761161
Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers. McGraw-Hill Education. https://books.google.com.co/books?id=3uVFkBBHyP8C
Pluskal, J., Šomplák, R., Nevrlý, V., Smejkalová, V., & Pavlas, M. (2021). Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123359
Prabowo, B., Simanjuntak, F. S. H., Saldi, Z. S., Samyudia, Y., & Widjojo, I. J. (2019). Assessment of waste to energy technology in Indonesia: A techno-economical perspective on a 1000 ton/day scenario. International Journal of Technology, 10(6), 1228–1234. https://doi.org/10.14716/ijtech.v10i6.3607 Presidencia de la República de Colombia. (1989). DECRETO LEY 624 DE 1989. In Estatuto Tributario. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=6533
Pudcha, T., Phongphiphat, A., & Towprayoon, S. (2023). Greenhouse Gas Mitigation and Energy Production Potentials from Municipal Solid Waste Management in Thailand Through 2050. Earth Systems and Environment, 7(1), 83–97. https://doi.org/10.1007/s41748-022-00323-z
Qazi, W. A., Abushammala, M. F. M., & Azam, M.-H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management and Research, 36(7), 594–605. https://doi.org/10.1177/0734242x18777800
Rabbani, M., Mokarrari, K. R., & Akbarian-saravi, N. (2021). A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sustainable Cities and Society, 75. https://doi.org/10.1016/j.scs.2021.103319
Ramos, A., & Rouboa, A. (2020). Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, 85, 106469. https://doi.org/10.1016/j.eiar.2020.106469
Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109
Rodrigues, A. P., Fernandes, M. L., Rodrigues, M. F. F., Bortoluzzi, S. C., da Costa, S. E., & de Lima, E. (2018). Developing criteria for performance assessment in municipal solid waste management. Journal of Cleaner Production, 186, 748–757. https://doi.org/10.1016/j.jclepro.2018.03.067
Rodrigues, L. F., Santos, I. F. S. D., Santos, T. I. S. D., Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/j.renene.2022.02.083
Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/j.cesys.2021.100063
Schneider, D. R., & Ragossnig, A. M. (2015). Recycling and incineration, contradiction or coexistence? Waste Management and Research, 33(8), 693–695. https://doi.org/10.1177/0734242X15593421
Shah, S. A. A., & Longsheng, C. (2022). Evaluating renewable and sustainable energy impeding factors using an integrated fuzzy-grey decision approach. Sustainable Energy Technologies and Assessments, 51. https://doi.org/10.1016/j.seta.2021.101905
Shahnazari, A., Rafiee, M., Rohani, A., Bhushan Nagar, B., Ebrahiminik, M. A., & Aghkhani, M. H. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40. https://doi.org/10.1016/j.seta.2020.100737
Shahsavar, M. M., Akrami, M., Kian, Z., Gheibi, M., Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Behzadian, K. (2022). Bio-recovery of municipal plastic waste management based on an integrated decision-making framework. Journal of Industrial and Engineering Chemistry, 108, 215–234. https://doi.org/10.1016/j.jiec.2022.01.002
Shannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
Sheng, F., & Jia, L. (2020). Short-Term Load Forecasting Based on SARIMAX-LSTM. 2020 5th International Conference on Power and Renewable Energy, ICPRE 2020, 90–94. https://doi.org/10.1109/ICPRE51194.2020.9233117 S
Shi, H., Mahinpey, N., Aqsha, A., & Silbermann, R. (2016). Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management, 48, 34–47. https://doi.org/10.1016/j.wasman.2015.09.036
Shi, Y., Li, Y., Yuan, X., Fu, J., Ma, Q., & Wang, Q. (2020). Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(11), 3779–3794. https://doi.org/10.1007/s10653-020-00639-7
Silva, L. J. de V. B. da, Santos, I. F. S. dos, Mensah, J. H. R., Gonçalves, A. T. T., & Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, 149, 1386–1394. https://doi.org/10.1016/j.renene.2019.10.134
Singh, P., & Kalamdhad, A. S. (2022). Assessment of agricultural residue-based electricity production from biogas in India: Resource-environment-economic analysis. Sustainable Energy Technologies and Assessments, 54, 102843. https://doi.org/10.1016/j.seta.2022.102843
Singh, T., & Uppaluri, R. V. S. (2022). Machine learning tool-based prediction and forecasting of municipal solid waste generation rate: a case study in Guwahati, Assam, India. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04644-4
Sohoo, I., Ritzkowski, M., Guo, J., Sohoo, K., & Kuchta, K. (2022). Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020773
Soltani, A., Hewage, K., Reza, B., & Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: A review. Waste Management, 35, 318–328. https://doi.org/10.1016/j.wasman.2014.09.010
SSPD. (2023a). Informe de vigilancia o inspección especial, detallada o concreta INTERASEO S.A.S. E.S.P. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-detallado-interaseo-fundacion-2023.pdf
SSPD. (2023b). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/publicaciones
SSPD. (2023c). Informe Sectorial de la Actividad de Aprovechamiento 2022. https://www.superservicios.gov.co/publicaciones
SSPD. (2023d). Sistema Único de Información de Servicios Públicos Domiciliarios - SUI. https://sui.superservicios.gov.co/
SSPD. (2024). Publicaciones y boletines. https://www.superservicios.gov.co/publicaciones
Sun, Y., Qin, Z., Tang, Y., Huang, T., Ding, S., & Ma, X. (2021). Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106108
Sunayana, Kumar, S., & Kumar, R. (2021). Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models. Waste Management, 121, 206–214. https://doi.org/10.1016/j.wasman.2020.12.011
Sununta, N., Sedpho, S., & Sampattagul, S. (2018). City carbon footprint evaluation and forecasting case study: Dan Sai municipality. Chemical Engineering Transactions, 63, 277–282. https://doi.org/10.3303/CET1863047
Tamasila, M., Prostean, G., Ivascu, L., Cioca, L.-I., Draghici, A., & Diaconescu, A. (2020). Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS. JOURNAL OF INTELLIGENT \& FUZZY SYSTEMS, 38(5), 6111–6127. https://doi.org/10.3233/JIFS-179695
Teshome, Y. M., Habtu, N. G., Molla, M. B., & Ulsido, M. D. (2023). Municipal solid wastes quantification and model forecasting. Global Journal of Environmental Science and Management, 9(2). https://doi.org/10.22034/GJESM.2023.02.04
Tonjes, D. J., & Greene, K. L. (2012). A review of national municipal solid waste generation assessments in the USA. WASTE MANAGEMENT \& RESEARCH, 30(8), 758–771. https://doi.org/10.1177/0734242X12451305
Tsui, T.-H., & Wong, J. W. C. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal and Sustainable Energy, 1(3), 151–167. https://doi.org/10.1007/s42768-019-00013-z
Uhde, B., Andreas Hahn, W., Griess, V. C., & Knoke, T. (2015). Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management, 56(2), 373–388. https://doi.org/10.1007/s00267-015-0503-3
Ukpanyang, D., Terrados-Cepeda, J., & Hermoso-Orzaez, M. J. (2022). Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria. Energies, 15(10), 3481. https://doi.org/10.3390/en15103481
UKWIn. (2018). Evaluation of the climate change impacts of waste incineration in the United Kingdom. https://ukwin.org.uk/files/pdf/UKWIN-2018-Incineration-Climate-Change-Report.pdf
UNEP. (2024). Global Waste Management Outlook 2024: Beyond an age of waste – Turning rubbish into a resource. https://www.unep.org/resources/global-waste-management-outlook-2024
Unidad de Planeación Minero Energética (UPME); INERCO Consultoría Colombia. (2018). Valorización energética de residuos: proyecto WtE Colombia. http://bdigital.upme.gov.co/handle/001/1339
United States Environmental Protection Agency (EPA). (2005a). EPA Software and Manuals. https://www.epa.gov/catc/clean-air-technology-center-products#software United States Environmental Protection Agency (EPA). (2005b). LandGEM V3.02. EPA Software and Manuals. https://www.epa.gov/
U.S. EPA. (2021a). LFGcost-Web — Landfill Gas Energy Cost Model. https://www.epa.gov/lmop/lfgcost-web-landfill-gas-energy-cost-model
U.S. EPA. (2021b). Zero Waste Case Study: San Francisco. https://www.epa.gov/transforming-waste-tool/zero-waste-case-study-san-francisco
U.S. EPA. (2023). IPCC AR4, AR5, and AR6 20-, 100-, and 500-year GWPs. https://catalog.data.gov/dataset/ipcc-ar4-ar5-and-ar6-20-100-and-500-year-gwps
Uyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental Earth Sciences, 71(4), 1629–1639. https://doi.org/10.1007/s12665-013-2567-9
Vallejo, F., Díaz-Robles, L., Cubillos, F., Espinoza, A. P., Espinoza, L., Pinilla, F., & Pino-Cortes, E. (2020). Valorization of municipal solid waste using hydrothermal carbonization and gasification: A review. Chemical Engineering Transactions, 81, 1045–1050. https://doi.org/10.3303/CET2081175
Van Fan, Y., Klemeš, J. J., Lee, C. T., & Perry, S. (2019). GHG emissions of incineration and anaerobic digestion: Electricity mix. Chemical Engineering Transactions, 72, 145–150. https://doi.org/10.3303/CET1972025
Van Thanh, N. (2022). Optimal Waste-to-Energy Strategy Assisted by Fuzzy MCDM Model for Sustainable Solid Waste Management. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116565
Velis, C. A., Wilson, D. C., Gavish, Y., Grimes, S. M., & Whiteman, A. (2023). Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. Science of The Total Environment, 872, 161913. https://doi.org/10.1016/j.scitotenv.2023.161913
Vidal-Barrero, F., Baena-Moreno, F. M., Preciado-Cárdenas, C., Villanueva-Perales, ángel, & Reina, T. R. (2022). Hydrogen production from landfill biogas: Profitability analysis of a real case study. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124438
Villa-Loaiza, C., Taype-Huaman, I., Benavides-Franco, J., Buenaventura-Vera, G., & Carabalí-Mosquera, J. (2023). Does climate impact the relationship between the energy price and the stock market? The Colombian case. Applied Energy, 336, 120800. https://doi.org/10.1016/j.apenergy.2023.120800
Vlachokostas, C., Michailidou, A. V, & Achillas, C. (2021). Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review. Renewable and Sustainable Energy Reviews, 138. https://doi.org/10.1016/j.rser.2020.110563
Vlaskin, M. S. (2018). Municipal solid waste as an alternative energy source. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(8), 961–970. https://doi.org/10.1177/0957650918762023
Wang, D., Yuan, Y. an, Ben, Y., Luo, H., & Guo, H. (2022). Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China. Environmental Science and Pollution Research, 29(46), 69472–69490. https://doi.org/10.1007/s11356-022-20438-0
Wei, J., Li, H., & Liu, J. (2022). Curbing dioxin emissions from municipal solid waste incineration: China’s action and global share. Journal of Hazardous Materials, 435, 129076. https://doi.org/10.1016/j.jhazmat.2022.129076
Wen, C., Lin, X., Ying, Y., Ma, Y., Yu, H., Li, X., & Yan, J. (2023). Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. Waste Management, 170, 93–102. https://doi.org/10.1016/j.wasman.2023.08.004
Wilk, V., & Hofbauer, H. (2013). Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology, 115, 139–151. https://doi.org/10.1016/j.fuproc.2013.04.013
Wójtowicz-Wróbel, A. (2017). Social reception of thermal waste processing system structures. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(41), 209–216. https://doi.org/10.5593/sgem2017/41/S18.027
Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/j.biombioe.2013.02.036
World Bank. (2019a). City level dataset. What A Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597/What-a-Waste-Global-Database
World Bank. (2019b). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
World Bank. (2019c). What a Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597
World Bank. (2022). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-management
World Bank. (2023). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/map_data
XM. (2023). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez
Xu, L., Gao, P., Cui, S., & Liu, C. (2013). A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Management, 33(6), 1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012
Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V, Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 309, 136627. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136627
Yang, Y., Liew, R. K., Tamothran, A. M., Foong, S. Y., Yek, P. N. Y., Chia, P. W., Van Tran, T., Peng, W., & Lam, S. S. (2021). Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01177-5
Yin, L.-J., Wang, C., Hu, Y.-Y., Chen, D.-Z., Xu, J.-F., & Liu, J. (2017). AHP-based approach for optimization of waste disposal method in urban functional zone. Environmental Technology (United Kingdom), 38(13–14), 1689–1695. https://doi.org/10.1080/09593330.2016.1244565
Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: a global analysis by countries’ income level. Environmental Science and Pollution Research, 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9
Zhang, G., Liu, K., Lv, L., Gao, W., Li, W., Ren, Z., Yan, W., Wang, P., Liu, X., & Sun, L. (2023). Enhanced landfill process based on leachate recirculation and micro-aeration: A comprehensive technical, environmental, and economic assessment. Science of The Total Environment, 857, 159535. https://doi.org/10.1016/j.scitotenv.2022.159535
Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107–122. https://doi.org/10.1016/j.rser.2014.04.024
Zhu, L., Tian, Z., & Du, J. (2023). Spatial–temporal redundancy evaluation of the municipal solid waste incineration treatment capacity: the case study of China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26989-0
Zhucheng Holy Shield Environmental Science & Technology Co. Ltd. (2024). Municipal Solid Waste Sorting Machines Automatic Waste Sorting Machine. https://www.alibaba.com/product-detail/Municipal-Solid-Waste-Sorting-Machines-Automatic_1600919537394.html?spm=a2700.7724857.0.0.1c395e2fO506RW
Zia, A., Batool, S. A., Chauhdry, M. N., & Munir, S. (2017). Influence of Income Level and Seasons on Quantity and Composition of Municipal Solid Waste: A Case Study of the Capital City of Pakistan. SUSTAINABILITY, 9(9). https://doi.org/10.3390/su9091568
dc.rights.license.none.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.format.extent.none.fl_str_mv 202 Páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Sincelejo
dc.publisher.none.fl_str_mv Corporación Universidad de la Costa
dc.publisher.department.none.fl_str_mv Posgrados
dc.publisher.faculty.none.fl_str_mv Ingenieria Electríca
dc.publisher.place.none.fl_str_mv Barranquilla, Colombia
dc.publisher.program.none.fl_str_mv Doctorado en Ingenieria Energética
dc.publisher.branch.none.fl_str_mv Corporación Universidad de la Costa
publisher.none.fl_str_mv Corporación Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/fe28330d-52f7-4766-8a62-18ec6870222d/download
https://repositorio.cuc.edu.co/bitstreams/b1923b45-de84-4628-9e4c-aef63c5956ff/download
https://repositorio.cuc.edu.co/bitstreams/58d09e74-ed77-4198-8872-305e049f82bb/download
https://repositorio.cuc.edu.co/bitstreams/6f7b0d51-baf8-4d64-a36c-01ddf3ca3902/download
bitstream.checksum.fl_str_mv eb0be8f03cf8869a95876b23fb32429e
73a5432e0b76442b22b026844140d683
ed9dc529a7a76f8f14d23ff55c61e05c
c5cfe41509f26604c8d2e1acb8b3ad1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166548641021952
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbCabello Eras, Juan JoséSalcedo Mendoza, Jairo GuadalupeOtero Meza, Daniel DavidContreras Lozano, KarenBalbis Morejón, MilenBermejo Altamar, Fabio2025-01-21T22:01:51Z20252025-01-21T22:01:51Z2025https://hdl.handle.net/11323/13944La gestión de Residuos Sólidos Municipales (RSM) representa un desafío mundial que requiere soluciones sostenibles e innovadoras, particularmente en las ciudades con rápido crecimiento. Con el fin de optimizar la valorización energética y minimizar el impacto ambiental, esta tesis doctoral diseña una herramienta metodológica para la evaluación integral y selección de alternativas de aprovechamiento de los RSM, integrando el potencial de diversas tecnologías, la proyección de tasas de disposición y un enfoque multicriterio objetivo. La metodología combina análisis de series de tiempo, específicamente SARIMAX, para proyectar la disposición futura de RSM con rigor estadístico (pruebas de Ljung-Box, KPSS, cointegración de Johansen, Causalidad de Granger), contemplando variables exógenas clave. Asimismo, se aplica un método de decisión multicriterio basado en ENTROPY y TOPSIS, que pondera equitativamente factores técnicos, energéticos, ambientales y económicos. La aplicación de la herramienta en Sincelejo, Colombia, muestra su efectividad al identificar el relleno sanitario con captura de biogás como la opción más sólida, alineada con la aprobación de proyectos análogos por la Convención Marco de las Naciones Unidas sobre el Cambio Climático (UNFCCC). Los resultados confirman que esta solución es la más equilibrada para la ciudad, teniendo en cuenta la disponibilidad de recursos, el potencial de generación de energía, la mitigación de emisiones y la viabilidad económica. Además, la herramienta desarrollada demuestra su adaptabilidad a distintos escenarios y su utilidad para la toma de decisiones informadas, facilitando la transición hacia prácticas de economía circular y contribuyendo a la reducción del cambio climático. En suma, esta investigación aporta una solución práctica para la planificación de la gestión de RSM, fomentando un uso más eficiente de los recursos y promoviendo la sostenibilidad local y regional.The management of Municipal Solid Waste (MSW) presents a global challenge that requires sustainable and innovative solutions, particularly in rapidly growing cities. In order to optimize energy recovery and minimize environmental impact, this doctoral thesis develops a methodological tool for the comprehensive evaluation and selection of MSW utilization alternatives, integrating the potential of various technologies, projected disposal rates, and an objective multicriteria approach. The methodology combines time series analyses, specifically SARIMAX, to project future MSW disposal with statistical rigor (Ljung-Box, KPSS, Johansen cointegration, Granger causality), considering key exogenous variables. In addition, a multicriteria decision-making method based on ENTROPY and TOPSIS is applied, equally weighting technical, energy-related, environmental, and economic factors. The application of this tool in Sincelejo, Colombia, demonstrates its effectiveness by identifying a sanitary landfill with biogas capture as the most robust option, in line with the approval of similar projects by the United Nations Framework Convention on Climate Change (UNFCCC). The results confirm that this solution is the most balanced for the city, considering resource availability, energy generation potential, emissions mitigation, and economic feasibility. Moreover, the developed tool proves adaptable to diverse scenarios and valuable for informed decision-making, facilitating a shift toward circular economy practices and contributing to climate change mitigation. In sum, this research provides a practical solution for MSW management planning, promoting more efficient resource use and advancing local and regional sustainability.Lista de tablas y figuras 10-- tablas 10-- Figuras 11-- Introducción 13--Capítulo I. Métodos de Selección de Alternativas MSWtE: Estatus y Retos 24-- Introducción 24-- Vigilancia Científica 26-- Análisis de concurrencias de palabras claves 26-- Revisión sistemática 36-- Limitaciones de métodos de selección 47-- Conclusiones de capitulo 51--Capítulo II. Rutas Tecnológicas de Valorización Energética de Residuos Sólidos Municipales 54-- Introducción 54--Características categóricas de los residuos sólidos municipales 56-- Características fisicoquímicas de los residuos sólidos municipales 60--Tecnologías de valorización energética de residuos sólidos municipales 66-- Incineración 68-- Digestión anaerobia 71-- Gasificación 72-- Relleno Sanitario con captura de biogás 74--Potencial de valorización de las rutas 77-- Potencial Técnico 77--Potencial energético 80--Potencial económico 83-- Potencial ambiental 88-- Conclusiones del capítulo 91-- Capítulo III. Análisis de Series de Tiempo de Residuos Sólidos Municipales 93--Introducción93-- Datos de disposición de residuos sólidos municipales103--Características de las series de tiempo de disposición de residuos sólidos municipales105--Descomposición de series de tiempo 111--Características relevantes de las series de tiempo 115--Modelo de serie de tiempo estacional 119--Entrenamiento y validación de modelos 120--Conclusiones del capítulo121--Capítulo IV. Selección de Alternativas de Valorización Energética de Residuos Sólidos Municipales 122--Introducción 122--Criterios para la evaluación de alternativas 124--Criterios técnicos 124--Criterios energéticos 126-- Criterios económicos 130-- Criterios ambientales 133-- Selección de un método de análisis de decisión multicriterio 135-- Clasificación de alternativas 138--Estructura general de la herramienta de selección de alternativas 141--Conclusiones del capítulo 143--Capítulo V. Evaluación Integral y Selección de Alternativas de Valorización Energética de RSM: caso de Sincelejo 145--Introducción 145--Sistema de gestión de residuos sólidos municipales de Sincelejo 147--Tratamiento actual de los residuos sólidos municipales 147--Composición de los residuos sólidos municipales 150--Proyección de tasas de disposición de residuos sólidos municipales 152--Clasificación de alternativas 160--Conclusiones del capítulo 169--Limitaciones Principales y Recomendaciones 172--Conclusiones 174-- Referencias 176--Doctor(a) en Ingenieria EnergéticaDoctorado202 Páginasapplication/pdfspaCorporación Universidad de la CostaPosgradosIngenieria ElectrícaBarranquilla, ColombiaDoctorado en Ingenieria EnergéticaCorporación Universidad de la CostaRevalorización energética de los residuos sólidos municipales generados en la ciudad de SincelejoTrabajo de grado - Doctoradohttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/doctoralThesishttp://purl.org/redcol/resource_type/TDinfo:eu-repo/semantics/acceptedVersionSincelejoAbdella Ahmed, A. K., Ibraheem, A. M., & Abd-Ellah, M. K. (2022). Forecasting of municipal solid waste multi-classification by using time-series deep learning depending on the living standard. Results in Engineering, 16. https://doi.org/10.1016/j.rineng.2022.100655Abushammala, M. F. M., & Qazi, W. A. (2021). Financial feasibility of waste-to-energy technologies for municipal solid waste management in Muscat, Sultanate of Oman. Clean Technologies and Environmental Policy, 23(7), 2011–2023. https://doi.org/10.1007/s10098-021-02099-8Adenuga, O. T., Mpofu, K., & Modise, K. R. (2020). An approach for enhancing optimal resource recovery from different classes of waste in South Africa: Selection of appropriate waste to energy technology. Sustainable Futures, 2. https://doi.org/10.1016/j.sftr.2020.100033Adu, W. K., Appiahene, P., & Afrifa, S. (2023). VAR, ARIMAX and ARIMA models for nowcasting unemployment rate in Ghana using Google trends. Journal of Electrical Systems and Information Technology, 10(1), 12. https://doi.org/10.1186/s43067-023-00078-1Afrane, S., Ampah, J. D., Jin, C., Liu, H., & Aboagye, E. M. (2021). Techno-economic feasibility of waste-to-energy technologies for investment in Ghana: A multicriteria assessment based on fuzzy TOPSIS approach. Journal of Cleaner Production, 318. https://doi.org/10.1016/j.jclepro.2021.128515Ahmad, S. I., Ho, W. S., Hassim, M. H., Elagroudy, S., Abdul Kohar, R. A., Bong, C. P. C., Hashim, H., & Rashid, R. (2020). Development of quantitative SHE index for waste to energy technology selection. Energy, 191. https://doi.org/10.1016/j.energy.2019.116534Alao, M. A., Ayodele, T. R., Ogunjuyigbe, A. S. O., & Popoola, O. M. (2020). Multi-criteria decision based waste to energy technology selection using entropy-weighted TOPSIS technique: The case study of Lagos, Nigeria. Energy, 201. https://doi.org/10.1016/j.energy.2020.117675Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2021). Selection of waste-to-energy technology for distributed generation using IDOCRIW-Weighted TOPSIS method: A case study of the City of Johannesburg, South Africa. Renewable Energy, 178, 162–183. https://doi.org/10.1016/j.renene.2021.06.031Alao, M. A., Popoola, O. M., & Ayodele, T. R. (2022). A novel fuzzy integrated MCDM model for optimal selection of waste-to-energy-based-distributed generation under uncertainty: A case of the City of Cape Town, South Africa. Journal of Cleaner Production, 343. https://doi.org/10.1016/j.jclepro.2022.130824Alcaldía de Sincelejo. (2017). REVISIÓN Y ACTUALIZACIÓN PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS –PGIRS–DEL MUNICIPIO DE SINCELEJO.Alcaldía de Sincelejo. (2022). Anexo 3. Caracterización de residuos. In PLAN DE GESTIÓN INTEGRAL DE RESIDUOS SOLIDOS DEL MUNICIPIO DE SINCELEJO, Sucre 2022–2033. https://alcaldiadesincelejo.gov.co/Transparencia/PlaneacionGestionyControl/Forms/AllItems.aspxAlfonso-Cardero, A., Pagés-Díaz, J., Kalogirou, E., Psomopoulos, C. S., & Lorenzo-Llanes, J. (2021). To dream or not to dream in Havana: multi-criteria decision-making for material and energy recovery from municipal solid wastes. Environmental Science and Pollution Research, 30(4), 8601–8616. https://doi.org/10.1007/s11356-021-17360-2AlNouss, A., Alherbawi, M., Parthasarathy, P., Al-Thani, N., McKay, G., & Al-Ansari, T. (2024). Waste-to-energy technology selection: A multi-criteria optimisation approach. Computers and Chemical Engineering, 183. https://doi.org/10.1016/j.compchemeng.2024.108595AlQattan, N., Acheampong, M., Jaward, F. M., Ertem, F. C., Vijayakumar, N., & Bello, T. (2018). Reviewing the potential of Waste-to-Energy (WTE) technologies for Sustainable Development Goal (SDG) numbers seven and eleven. Renewable Energy Focus, 27, 97–110. https://doi.org/10.1016/j.ref.2018.09.005Al-Shihabi, S., Aydin, R., & Al Nahlawi, M. (2023). Forecasting the effects of municipal solid plastic waste generation and streaming using system dynamics: A case study in Dubai. Science of The Total Environment, 165204. https://doi.org/10.1016/j.scitotenv.2023.165204Alves, O., Calado, L., Panizio, R. M., Gonçalves, M., Monteiro, E., & Brito, P. (2021). Techno-economic study for a gasification plant processing residues of sewage sludge and solid recovered fuels. Waste Management, 131, 148–162. https://doi.org/10.1016/j.wasman.2021.05.026Andreas, C., Faricha, A., Ulyah, S. M., Susanti, R., Mardhiana, H., Nanda, M. A., & R., F. A. (2022). Comparison study using ARIMAX and VARX in cash flow forecasting. 030023. https://doi.org/10.1063/5.0118519Antonopoulos, I.-S., Perkoulidis, G., Logothetis, D., & Karkanias, C. (2014). Ranking municipal solid waste treatment alternatives considering sustainability criteria using the analytical hierarchical process tool. Resources, Conservation and Recycling, 86, 149–159. https://doi.org/10.1016/j.resconrec.2014.03.002Aracil, C., Haro, P., Fuentes-Cano, D., & Gómez-Barea, A. (2018). Implementation of waste-to-energy options in landfill-dominated countries: Economic evaluation and GHG impact. Waste Management, 76, 443–456. https://doi.org/10.1016/j.wasman.2018.03.039Arena, U., Ardolino, F., & Di Gregorio, F. (2015). A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies. Waste Management, 41, 60–74. https://doi.org/10.1016/j.wasman.2015.03.041Arslan, M., & Yılmaz, C. (2022). Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery. Energy, 248, 123487. https://doi.org/10.1016/j.energy.2022.123487Ayeleru, O. O., Fajimi, L. I., Oboirien, B. O., & Olubambi, P. A. (2021). Forecasting municipal solid waste quantity using artificial neural network and supported vector machine techniques: A case study of Johannesburg, South Africa. Journal of Cleaner Production, 289. https://doi.org/10.1016/j.jclepro.2020.125671Baltussen, R., Marsh, K., Thokala, P., Diaby, V., Castro, H., Cleemput, I., Garau, M., Iskrov, G., Olyaeemanesh, A., Mirelman, A., Mobinizadeh, M., Morton, A., Tringali, M., van Til, J., Valentim, J., Wagner, M., Youngkong, S., Zah, V., Toll, A., … Broekhuizen, H. (2019). Multicriteria Decision Analysis to Support Health Technology Assessment Agencies: Benefits, Limitations, and the Way Forward. Value in Health, 22(11), 1283–1288. https://doi.org/10.1016/j.jval.2019.06.014Banco de la república de Colombia. (2023). Inflación total y meta. https://www.banrep.gov.co/es/estadisticas/inflacion-total-y-metaBaoding Baonan Machinery And Equipment Manufacturing Co. Ltd. (2024). Municipal solid waste sorting plant/sorting machine. https://www.alibaba.com/product-detail/Municipal-solid-waste-sorting-plant-sorting_1600618514423.html?spm=a2700.7724857.0.0.1c395e2fO506RWBashir, M. J. K., Ng, C. A., Sethupathi, S., & Lim, J. W. (2019). Assessment of the Environmental, Technical and Economic Issues Associated with Energy Recovery from Municipal Solid Waste in Malaysia. In H. B. S. L. Tong C.-W. Chin-Tsan W. (Ed.), IOP Conference Series: Earth and Environmental Science (Vol. 268, Issue 1). Institute of Physics Publishing. https://doi.org/10.1088/1755-1315/268/1/012044Bertanza, G., Ziliani, E., & Menoni, L. (2018). Techno-economic performance indicators of municipal solid waste collection strategies. WASTE MANAGEMENT, 74, 86–97. https://doi.org/10.1016/j.wasman.2018.01.009Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24, 1–11. https://doi.org/10.1016/j.ref.2017.11.001Boloy, R. A. M., da Cunha Reis, A., Rios, E. M., de Araújo Santos Martins, J., Soares, L. O., de Sá Machado, V. A., & de Moraes, D. R. (2021). Waste-to-Energy Technologies Towards Circular Economy: a Systematic Literature Review and Bibliometric Analysis. Water, Air, & Soil Pollution, 232(7), 306. https://doi.org/10.1007/s11270-021-05224-xBoumanchar, I., Chhiti, Y., M’hamdi Alaoui, F. E., Sahibed-dine, A., Bentiss, F., Jama, C., & Bensitel, M. (2019). Municipal solid waste higher heating value prediction from ultimate analysis using multiple regression and genetic programming techniques. Waste Management and Research, 37(6), 578–589. https://doi.org/10.1177/0734242X18816797Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.Briones-Hidrovo, A., Copa, J., Tarelho, L. A. C., Gonçalves, C., Pacheco da Costa, T., & Dias, A. C. (2021). Environmental and energy performance of residual forest biomass for electricity generation: Gasification vs. combustion. Journal of Cleaner Production, 289, 125680. https://doi.org/10.1016/j.jclepro.2020.125680Brynda, J., Skoblia, S., Pohořelý, M., Beňo, Z., Soukup, K., Jeremiáš, M., Moško, J., Zach, B., Trakal, L., Šyc, M., & Svoboda, K. (2020). Wood chips gasification in a fixed-bed multi-stage gasifier for decentralized high-efficiency CHP and biochar production: Long-term commercial operation. Fuel, 281, 118637. https://doi.org/10.1016/j.fuel.2020.118637Bui, T.-D., Tseng, J.-W., Tseng, M.-L., Wu, K.-J., & Lim, M. K. (2023). Municipal solid waste management technological barriers: A hierarchical structure approach in Taiwan. Resources, Conservation and Recycling, 190. https://doi.org/10.1016/j.resconrec.2022.106842Chandel, M. K., Kwok, G., Jackson, R. B., & Pratson, L. F. (2012). The potential of waste-to-energy in reducing GHG emissions. Carbon Management, 3(2), 133–144. https://doi.org/10.4155/cmt.12.11Chen, Y.-C. (2018a). Effects of urbanization on municipal solid waste composition. Waste Management, 79, 828–836. https://doi.org/10.1016/j.wasman.2018.04.017Chen, Y.-C. (2018b). Evaluating greenhouse gas emissions and energy recovery from municipal and industrial solid waste using waste-to-energy technology. Journal of Cleaner Production, 192, 262–269. https://doi.org/10.1016/j.jclepro.2018.04.260Chhay, L., Reyad, M. A. H., Suy, R., Islam, M. R., & Mian, M. M. (2018). Municipal solid waste generation in China: influencing factor analysis and multi-model forecasting. Journal of Material Cycles and Waste Management, 20(3), 1761–1770. https://doi.org/10.1007/s10163-018-0743-4Cleveland, R. B., Cleveland, W. S., McRae, J. E., & Terpenning, I. (1990). STL: A seasonal-trend decomposition. Journal of Official Statistics, 6(1), 3–73. http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf Coban, A., Ertis, I. F., & Cavdaroglu, N. A. (2018). Municipal solid waste management via multi-criteria decision making methods: A case study in Istanbul, Turkey. Journal of Cleaner Production, 180, 159–167. https://doi.org/10.1016/j.jclepro.2018.01.130Congreso de la República de Colombia. (2014). Ley 1715 de 2014. Diario Oficial 49.150. http://svrpubindc.imprenta.gov.co/diarioCoral Medina, J. D., Alomia, F. B., Magalhaes, A. I., Cesar de Carvalho, J., Woiciechowsky, A. L., & Soccol, C. R. (2021). Simulation of different biorefinery configuration including environmental, technical and economic assay using sugarcane bagasse. Journal of Cleaner Production, 316, 128162. https://doi.org/10.1016/j.jclepro.2021.128162Cubillos, M., Wulff, J. N., & Wøhlk, S. (2021). A multilevel Bayesian framework for predicting municipal waste generation rates. Waste Management, 127, 90–100. https://doi.org/10.1016/j.wasman.2021.04.011Cucchiella, F., D’Adamo, I., & Rosa, P. (2016). Urban waste to energy (WTE) plants: A social analysis. JP Journal of Heat and Mass Transfer, 13(3), 421–444. https://doi.org/10.17654/MT013030421Cudjoe, D., & Acquah, P. M. (2021). Environmental impact analysis of municipal solid waste incineration in African countries. Chemosphere, 265. https://doi.org/10.1016/j.chemosphere.2020.129186Dalke, R., Demro, D., Khalid, Y., Wu, H., & Urgun-Demirtas, M. (2021). Current status of anaerobic digestion of food waste in the United States. Renewable and Sustainable Energy Reviews, 151, 111554. https://doi.org/10.1016/j.rser.2021.111554DANE. (2018). Proyecciones y retroproyecciones de población. Censo Nacional de Población y Vivienda 2018. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/proyecciones-de-poblacionDANE. (2021). La información del DANE en la toma de decisiones regionales: Sincelejo - Sucre. https://www.dane.gov.co/files/investigaciones/planes-departamentos-ciudades/210115-InfoDane-Sincelejo-Sucre.pdfDANE. (2024a). Cuentas nacionales departamentales: PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentalesDANE. (2024b). Indicador de Seguimiento a la Economía (ISE). https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/indicador-de-seguimiento-a-la-economia-iseDANE. (2024c). PIB por departamento. https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentalesDNP. (2022). Resolución Número 1092 de 2022. In Diario Oficial 52.011 (Issue Diario Oficial 52.011). Diario Oficial 52.011. http://svrpubindc.imprenta.gov.co/diarioDodo, U. A., Ashigwuike, E. C., & Emechebe, J. N. (2022). Municipal Solid Waste Generation Forecast using an ARIMA Model: A Focus on Abuja City, Nigeria. 2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON), 1–5. https://doi.org/10.1109/NIGERCON54645.2022.9803108Edmond Connolly. (2021). The Suitability of Sarimax Time Series and LSTM Neural Networks for Predicting Electricity Consumption in Ireland [Master Thesis, National College of Ireland]. https://norma.ncirl.ie/5143/1/edmondconnolly.pdfEl Kourdi, S., Aboudaoud, S., Abderafi, S., Cheddadi, A., & Ammar, A. M. (2023). Pyrolysis Technology Choice to Produce Bio-oil, from Municipal Solid Waste, Using Multi-criteria Decision-making Methods. Waste and Biomass Valorization, 14(11), 3705–3722. https://doi.org/10.1007/s12649-023-02076-w Fan, L., Abbasi, M., Salehi, K., Band, S. S., Chau, K. W., & Mosavi, A. (2021). Introducing an evolutionary-decomposition model for prediction of municipal solid waste flow: application of intrinsic time-scale decomposition algorithm. Engineering Applications of Computational Fluid Mechanics, 15(1), 1159–1175. https://doi.org/10.1080/19942060.2021.1945496Fernández-González, J. M., Grindlay, A. L., Serrano-Bernardo, F., Rodríguez-Rojas, M. I., & Zamorano, M. (2017). Economic and environmental review of Waste-to-Energy systems for municipal solid waste management in medium and small municipalities. Waste Management, 67, 360–374. https://doi.org/10.1016/j.wasman.2017.05Firouzi, S., Allahyari, M. S., Isazadeh, M., Nikkhah, A., & Van Haute, S. (2021). Hybrid multi-criteria decision-making approach to select appropriate biomass resources for biofuel production. Science of the Total Environment, 770. https://doi.org/10.1016/j.scitotenv.2020.144449Gołębiewski, J., Takala, J., Juszczyk, O., & Drejerska, N. (2019). Local contribution to circular economy. A case study of a Polish rural municipality. Economia Agro-Alimentare, 21(3), 771–791. https://doi.org/10.3280/ECAG2019-003011Gombojav, D., & Matsumoto, T. (2023). Multi criteria decision analysis to develop an optimized municipal solid waste management scenario: a case study in Ulaanbaatar, Mongolia. Journal of Material Cycles and Waste Management, 25(3), 1344–1358. https://doi.org/10.1007/s10163-023-01603-0Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C., & Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35(2), 498–505. https://doi.org/10.1016/j.renene.2009.07.027Gonçalves, A. M., & Silva, V. H. (2021). Time Series Forecasting: A Study on Local Urban Waste Management in a Portuguese City (pp. 527–538). https://doi.org/10.1007/978-3-030-86973-1_37Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica, 37(3), 424. https://doi.org/10.2307/1912791 Guerrero, V. M. (1993). Time‐series analysis supported by power transformations. Journal of Forecasting, 12(1), 37–48. https://doi.org/10.1002/for.3980120104Gutiérrez, A. S., Mendoza Fandiño, J. M., & Cabello Eras, J. J. (2021). Alternatives of municipal solid wastes to energy for sustainable development. The case of Barranquilla (Colombia). International Journal of Sustainable Engineering, 14(6), 1809–1825. https://doi.org/10.1080/19397038.2021.1993378 Habibollahzade, A., & Houshfar, E. (2020). Improved performance and environmental indicators of a municipal solid waste fired plant through CO2 recycling: Exergoeconomic assessment and multi-criteria grey wolf optimisation. Energy Conversion and Management, 225. https://doi.org/10.1016/j.enconman.2020.113451Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). https://doi.org/10.1002/cl2.1230Huang, Y.-F., & Lo, S.-L. (2020). Predicting heating value of lignocellulosic biomass based on elemental analysis. Energy, 191, 116501. https://doi.org/10.1016/j.energy.2019.116501Hyndman, R. J., & Athanasopoulos, G. (2021). Forecasting: Principles and Practice (3rd ed). https://otexts.com/fpp3/ Ibikunle, R. A., Lukman, A. F., Titiladunayo, I. F., Akeju, E. A., & Dahunsi, S. O. (2020). Modeling and robust prediction of high heating values of municipal solid waste based on ultimate analysis. Energy Sources, Part A: Recovery, Utilization and Environmental Effects. https://doi.org/10.1080/15567036.2020.1841343IEA. (2023). Electricity generation by source. Energy Statistics Data Browser. https://www.iea.org/data-and-statistics/data-tools/energy-statistics-data-browser?country=WORLD&fuel=Energy%20supply&indicator=ElecGenByFuel IEA. (2024). Energy Prices. https://www.iea.org/data-and-statistics/data-product/energy-prices#overview IEA Bioenergy. (2018). Gasification of waste for energy carriers - a review. https://www.ieabioenergy.com/blog/publications/gasification-of-waste-for-energy-carriers-a-review/#:~:text=The%20use%20of%20waste%20gasification%20technologies%20has%20the%20potential%20to,or%20chemicals%2C%20i.e.%20material%20recovery.Ilbahar, E., Kahraman, C., & Cebi, S. (2021). Location selection for waste-to-energy plants by using fuzzy linear programming. Energy, 234. https://doi.org/10.1016/j.energy.2021.121189 INTERASEO S.A. E.S.P., & CAEMA. (2012). INTERASEO landfill gas mitigation project. https://cdm.unfccc.int/Projects/DB/DNV-CUK1356525322.33/viewIntergovernmental Panel on Climate Change (IPCC). (2019). Volume 5: Waste. In 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol5.html IRENA. (2021). Perspectivas de la transición energética mundial: camino de 1.5 ℃. https://www.irena.org/publications/2021/Jun/Perspectivas-de-la-transicion-energetica-mundialIRENA. (2022). Renewable power generation costs in 2021. https://www.irena.org/Publications/ Isigonis, P., Moustakas, K., & Vakalis, S. (2022). Multicriteria analysis as a supporting decision tool for expanding the use of the 3T method for waste-to-energy technologies and biorefineries. Sustainable Chemistry and Pharmacy, 28. https://doi.org/10.1016/j.scp.2022.100715 Islam, M. R., Kabir, G., Ng, K. T. W., & Ali, S. M. (2022). Yard waste prediction from estimated municipal solid waste using the grey theory to achieve a zero-waste strategy. Environmental Science and Pollution Research, 29(31), 46859–46874. https://doi.org/10.1007/s11356-022-19178-yIzquierdo-Horna, L., Kahhat, R., & Vázquez-Rowe, I. (2022). Reviewing the influence of sociocultural, environmental and economic variables to forecast municipal solid waste (MSW) generation. Sustainable Production and Consumption, 33, 809–819. https://doi.org/10.1016/J.SPC.2022.08.008 Johansen, S. (2011). Cointegration in the VAR Model (pp. 408–435). https://doi.org/10.1002/9781118032978.ch15 Juárez-Hernández, S. (2021). Energy, environmental, resource recovery, and economic dimensions of municipal solid waste management paths in Mexico city. Waste Management, 136, 321–336. https://doi.org/10.1016/j.wasman.2021.10.026Jung, J., & Gibson, J. D. (2006). The interpretation of spectral entropy based upon rate distortion functions. IEEE International Symposium on Information Theory - Proceedings, 277–281. https://doi.org/10.1109/ISIT.2006.261849Kaneesamkandi, Z., Ur-Rehman, A., & Usmani, Y. S. (2023). Selection of Ideal MSW Incineration and Utilization Technology Routes Using MCDA for Different Waste Utilization Scenarios and Variable Conditions. Processes, 11(7). https://doi.org/10.3390/pr11071921Kaur, J., Parmar, K. S., & Singh, S. (2023). Autoregressive models in environmental forecasting time series: a theoretical and application review. Environmental Science and Pollution Research, 30(8), 19617–19641. https://doi.org/10.1007/s11356-023-25148-9Kaur-Sidhu, M., Ravindra, K., Mor, S., & John, S. (2020). Emission factors and global warming potential of various solid biomass fuel-cook stove combinations. Atmospheric Pollution Research, 11(2), 252–260. https://doi.org/10.1016/j.apr.2019.10.009Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1329-0Khan, A. H., López-Maldonado, E. A., Alam, S. S., Khan, N. A., López, J. R. L., Herrera, P. F. M., Abutaleb, A., Ahmed, S., & Singh, L. (2022). Municipal solid waste generation and the current state of waste-to-energy potential: State of art review. Energy Conversion and Management, 267, 115905. https://doi.org/10.1016/j.enconman.2022.115905Kim, H., Park, S., & Kim, S. (2023). Time-series clustering and forecasting household electricity demand using smart meter data. Energy Reports, 9, 4111–4121. https://doi.org/10.1016/j.egyr.2023.03.042Kocak, E., & Baglitas, H. H. (2022). The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter? Sustainable Development, 30(6), 1947–1962. https://doi.org/10.1002/sd.2361Kurbatova, A., & Abu-Qdais, H. A. (2020). Using multi-criteria decision analysis to select waste to energy technology for a Mega city: The case of Moscow. Sustainability (Switzerland), 12(23), 1–18. https://doi.org/10.3390/su12239828Kuznetsova, E., Cardin, M.-A., Diao, M., & Zhang, S. (2019). Integrated decision-support methodology for combined centralized-decentralized waste-to-energy management systems design. Renewable and Sustainable Energy Reviews, 103, 477–500. https://doi.org/10.1016/j.rser.2018.12.020Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1–3), 159–178. https://doi.org/10.1016/0304-4076(92)90104-YLassesson, H., Fedje, K. K., & Steenari, B.-M. (2014). Leaching for recovery of copper from municipal solid waste incineration fly ash: Influence of ash properties and metal speciation. WASTE MANAGEMENT \& RESEARCH, 32(8), 755–762. https://doi.org/10.1177/0734242X14542147 Lauber, J. D. (2007). Economic and technical viability of various MSW, WTE waste to energy thermal treatment processes. Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA, 7, 4969–4970. https://www.scopus.com/inward/record.uri?eid=2-s2.0-44649119828&partnerID=40&md5=e74a045cd2671c08dc8a117507d0abc7 Li, H., An, H., Wang, Y., Huang, J., & Gao, X. (2016). Evolutionary features of academic articles co-keyword network and keywords co-occurrence network: Based on two-mode affiliation network. Physica A: Statistical Mechanics and Its Applications, 450, 657–669. https://doi.org/10.1016/j.physa.2016.01.017Li, Z., Han, J., & Song, Y. (2020). On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning. Journal of Forecasting, 39(7), 1081–1097. https://doi.org/10.1002/for.2677Li, Z., Luo, Z., Wang, Y., Fan, G., & Zhang, J. (2022). Suitability evaluation system for the shallow geothermal energy implementation in region by Entropy Weight Method and TOPSIS method. Renewable Energy, 184, 564–576. https://doi.org/10.1016/j.renene.2021.11.112Liang, G., Panahi, F., Ahmed, A. N., Ehteram, M., Band, S. S., & Elshafie, A. (2021). Predicting municipal solid waste using a coupled artificial neural network with archimedes optimisation algorithm and socioeconomic components. Journal of Cleaner Production, 315. https://doi.org/10.1016/j.jclepro.2021.128039Lin, K., Zhao, Y., & Kuo, J. H. (2022). Deep learning hybrid predictions for the amount of municipal solid waste: A case study in Shanghai. Chemosphere, 307. https://doi.org/10.1016/j.chemosphere.2022.136119Lin, K., Zhao, Y., Tian, L., Zhao, C., Zhang, M., & Zhou, T. (2021). Estimation of municipal solid waste amount based on one-dimension convolutional neural network and long short-term memory with attention mechanism model: A case study of Shanghai. Science of the Total Environment, 791. https://doi.org/10.1016/j.scitotenv.2021.148088Lin, X., Yan, M., Dai, A., Zhan, M., Fu, J., Li, X., Chen, T., Lu, S., Buekens, A., & Yan, J. (2015). Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration. Chemosphere, 126, 60–66. https://doi.org/10.1016/j.chemosphere.2015.02.005Liu, Y., Liao, C., Tang, Y., Tang, J., Sun, Y., & Ma, X. (2022). Techno-environmental-economic evaluation of the small-scale municipal solid waste (MSW) gasification-based and incineration-based power generation plants. Journal of the Taiwan Institute of Chemical Engineers, 141. https://doi.org/10.1016/j.jtice.2022.104594Liu, Z. (2019). Gasification of municipal solid wastes: a review on the tar yields. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 41(11), 1296–1304. https://doi.org/10.1080/15567036.2018.1548508Ljung, G. M., & Box, G. E. P. (1978). On a Measure of Lack of Fit in Time Series Models. Biometrika, 65(2), 297. https://doi.org/10.2307/2335207Lohani, S. P., & Havukainen, J. (2018). Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Energy, Environment, and Sustainability. https://doi.org/10.1007/978-981-10-7413-4_18Lu, Y.-T., Lee, Y.-M., & Hong, C.-Y. (2017). Inventory analysis and social life cycle assessment of greenhouse gas emissions from waste-to-energy incineration in Taiwan. Sustainability (Switzerland), 9(11). https://doi.org/10.3390/su9111959Lui, J., Paul, M. C., Sloan, W., & You, S. (2022). Techno-economic feasibility of distributed waste-to-hydrogen systems to support green transport in glasgow. International Journal of Hydrogen Energy, 47(28), 13532–13551. https://doi.org/10.1016/j.ijhydene.2022.02.120Luo, C., Ju, Y., Santibanez Gonzalez, E. D. R., Dong, P., & Wang, A. (2020). The waste-to-energy incineration plant site selection based on hesitant fuzzy linguistic Best-Worst method ANP and double parameters TOPSIS approach: A case study in China. Energy, 211. https://doi.org/10.1016/j.energy.2020.118564Mahmud, T. S., Ng, K. T. W., Hasan, M. M., An, C., & Wan, S. (2023). A cross-jurisdictional comparison on residential waste collection rates during earlier waves of COVID-19. Sustainable Cities and Society, 96. https://doi.org/10.1016/j.scs.2023.104685Makarichi, L., Jutidamrongphan, W., & Techato, K.-A. (2018). The evolution of waste-to-energy incineration: A review. Renewable and Sustainable Energy Reviews, 91, 812–821. https://doi.org/10.1016/j.rser.2018.04.088Mariano‐Hernández, D., Hernández‐Callejo, L., Solís, M., Zorita‐Lamadrid, A., Duque‐Pérez, O., Gonzalez‐Morales, L., Alonso‐Gómez, V., Jaramillo‐Duque, A., & Santos García, F. (2022). Comparative study of continuous hourly energy consumption forecasting strategies with small data sets to support demand management decisions in buildings. Energy Science & Engineering, 10(12), 4694–4707. https://doi.org/10.1002/ese3.1298Martínez López, L., Ishizaka, A., Qin, J., & Álvarez Carrillo, P. A. (2023). Multi-Criteria Decision-Making Sorting Methods. Elsevier. https://doi.org/10.1016/C2020-0-02008-6Ming, Z., Jinhui, D., Liang, W., & Shanshan, G. (2014). Effect of urbanization on generation in China. Power, 158(8). https://www.scopus.com/inward/record.uri?eid=2-s2.0-84940328024&partnerID=40&md5=34d9d87456002ceae349c8b58ed579c9Mishra, A. R., Rani, P., Pandey, K., Mardani, A., Streimikis, J., Streimikiene, D., & Alrasheedi, M. (2020). Novel multi-criteria intuitionistic fuzzy SWARA-COPRAS approach for sustainability evaluation of the bioenergy production process. Sustainability (Switzerland), 12(10). https://doi.org/10.3390/su12104155Moya, D., Aldás, C., López, G., & Kaparaju, P. (2017). Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Procedia, 134, 286–295. https://doi.org/10.1016/j.egypro.2017.09.618Mujtaba, M. A., Munir, A., Imran, S., Nasir, M. K., Muhayyuddin, M. G., Javed, A., Mehmood, A., Habila, M. A., Fayaz, H., & Qazi, A. (2024). Evaluating sustainable municipal solid waste management scenarios: A multicriteria decision making approach. Heliyon, 10(4). https://doi.org/10.1016/j.heliyon.2024.e25788Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119, 109512. https://doi.org/10.1016/j.rser.2019.109512Munir, M. T., Mohaddespour, A., Nasr, A. T., & Carter, S. (2021). Municipal solid waste-to-energy processing for a circular economy in New Zealand. Renewable and Sustainable Energy Reviews, 145. https://doi.org/10.1016/j.rser.2021.111080Nguyen, X. C., Nguyen, T. T. H., La, D. D., Kumar, G., Rene, E. R., Nguyen, D. D., Chang, S. W., Chung, W. J., Nguyen, X. H., & Nguyen, V. K. (2021). Development of machine learning - based models to forecast solid waste generation in residential areas: A case study from Vietnam. Resources, Conservation and Recycling, 167. https://doi.org/10.1016/j.resconrec.2020.105381Niu, D., Wu, F., Dai, S., He, S., & Wu, B. (2021). Detection of long-term effect in forecasting municipal solid waste using a long short-term memory neural network. Journal of Cleaner Production, 290. https://doi.org/10.1016/j.jclepro.2020.125187OCDE. (2022). Municipal waste (indicator). https://doi.org/10.1787/89d5679a-en Oguz-Ekim, P. (2021). Machine Learning Approaches for Municipal Solid Waste Generation Forecasting. Environmental Engineering Science, 38(6), 489–499. https://doi.org/10.1089/ees.2020.0232Ossei-Bremang, R. N., & Kemausuor, F. (2021). A decision support system for the selection of sustainable biomass resources for bioenergy production. Environment Systems and Decisions, 41(3), 437–454. https://doi.org/10.1007/s10669-021-09810-6Otero Meza, D. D., Sagastume Gutiérrez, A., Cabello Eras, J. J., Salcedo Mendoza, J., & Hernández Ruydíaz, J. (2023). Techno-economic and environmental assessment of the landfill gas to energy potential of major Colombian cities. Energy Conversion and Management, 293, 117522. https://doi.org/10.1016/j.enconman.2023.117522Ozcan, H. K., Guvenc, S. Y., Guvenc, L., & Demir, G. (2016). Municipal solid waste characterization according to different income levels: A case study. Sustainability (Switzerland), 8(10). https://doi.org/10.3390/su8101044Parashar, C. K., Das, P., Samanta, S., Ganguly, A., & Chatterjee, P. K. (2020). Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies. In Energy Recovery Processes from Wastes (pp. 151–163). Springer Singapore. https://doi.org/10.1007/978-981-32-9228-4_13Paulauskaite-Taraseviciene, A., Raudonis, V., & Sutiene, K. (2022). Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors. Waste Management, 140, 31–39. https://doi.org/10.1016/j.wasman.2022.01.004Perera, A. T. D., Madusanka, A. N., & De Alwis, A. A. P. (2013). Techno-economical optimization of a solid waste management system using evolutionary algorithms. International Conference on Advances in ICT for Emerging Regions, ICTer 2013 - Conference Proceedings, 92–97. https://doi.org/10.1109/ICTer.2013.6761161Peters, M. S., Timmerhaus, K. D., & West, R. E. (2003). Plant Design and Economics for Chemical Engineers. McGraw-Hill Education. https://books.google.com.co/books?id=3uVFkBBHyP8CPluskal, J., Šomplák, R., Nevrlý, V., Smejkalová, V., & Pavlas, M. (2021). Strategic decisions leading to sustainable waste management: Separation, sorting and recycling possibilities. Journal of Cleaner Production, 278. https://doi.org/10.1016/j.jclepro.2020.123359Prabowo, B., Simanjuntak, F. S. H., Saldi, Z. S., Samyudia, Y., & Widjojo, I. J. (2019). Assessment of waste to energy technology in Indonesia: A techno-economical perspective on a 1000 ton/day scenario. International Journal of Technology, 10(6), 1228–1234. https://doi.org/10.14716/ijtech.v10i6.3607 Presidencia de la República de Colombia. (1989). DECRETO LEY 624 DE 1989. In Estatuto Tributario. https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=6533Pudcha, T., Phongphiphat, A., & Towprayoon, S. (2023). Greenhouse Gas Mitigation and Energy Production Potentials from Municipal Solid Waste Management in Thailand Through 2050. Earth Systems and Environment, 7(1), 83–97. https://doi.org/10.1007/s41748-022-00323-zQazi, W. A., Abushammala, M. F. M., & Azam, M.-H. (2018). Multi-criteria decision analysis of waste-to-energy technologies for municipal solid waste management in Sultanate of Oman. Waste Management and Research, 36(7), 594–605. https://doi.org/10.1177/0734242x18777800Rabbani, M., Mokarrari, K. R., & Akbarian-saravi, N. (2021). A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sustainable Cities and Society, 75. https://doi.org/10.1016/j.scs.2021.103319Ramos, A., & Rouboa, A. (2020). Renewable energy from solid waste: life cycle analysis and social welfare. Environmental Impact Assessment Review, 85, 106469. https://doi.org/10.1016/j.eiar.2020.106469Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109Rodrigues, A. P., Fernandes, M. L., Rodrigues, M. F. F., Bortoluzzi, S. C., da Costa, S. E., & de Lima, E. (2018). Developing criteria for performance assessment in municipal solid waste management. Journal of Cleaner Production, 186, 748–757. https://doi.org/10.1016/j.jclepro.2018.03.067Rodrigues, L. F., Santos, I. F. S. D., Santos, T. I. S. D., Barros, R. M., & Tiago Filho, G. L. (2022). Energy and economic evaluation of MSW incineration and gasification in Brazil. Renewable Energy, 188, 933–944. https://doi.org/10.1016/j.renene.2022.02.083Satiada, M. A., & Calderon, A. (2021). Comparative analysis of existing waste-to-energy reference plants for municipal solid waste. Cleaner Environmental Systems, 3, 100063. https://doi.org/10.1016/j.cesys.2021.100063Schneider, D. R., & Ragossnig, A. M. (2015). Recycling and incineration, contradiction or coexistence? Waste Management and Research, 33(8), 693–695. https://doi.org/10.1177/0734242X15593421Shah, S. A. A., & Longsheng, C. (2022). Evaluating renewable and sustainable energy impeding factors using an integrated fuzzy-grey decision approach. Sustainable Energy Technologies and Assessments, 51. https://doi.org/10.1016/j.seta.2021.101905Shahnazari, A., Rafiee, M., Rohani, A., Bhushan Nagar, B., Ebrahiminik, M. A., & Aghkhani, M. H. (2020). Identification of effective factors to select energy recovery technologies from municipal solid waste using multi-criteria decision making (MCDM): A review of thermochemical technologies. Sustainable Energy Technologies and Assessments, 40. https://doi.org/10.1016/j.seta.2020.100737Shahsavar, M. M., Akrami, M., Kian, Z., Gheibi, M., Fathollahi-Fard, A. M., Hajiaghaei-Keshteli, M., & Behzadian, K. (2022). Bio-recovery of municipal plastic waste management based on an integrated decision-making framework. Journal of Industrial and Engineering Chemistry, 108, 215–234. https://doi.org/10.1016/j.jiec.2022.01.002Shannon, C. E. (1948a). A Mathematical Theory of Communication. Bell System Technical Journal, 27(4), 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb00917.xSheng, F., & Jia, L. (2020). Short-Term Load Forecasting Based on SARIMAX-LSTM. 2020 5th International Conference on Power and Renewable Energy, ICPRE 2020, 90–94. https://doi.org/10.1109/ICPRE51194.2020.9233117 SShi, H., Mahinpey, N., Aqsha, A., & Silbermann, R. (2016). Characterization, thermochemical conversion studies, and heating value modeling of municipal solid waste. Waste Management, 48, 34–47. https://doi.org/10.1016/j.wasman.2015.09.036Shi, Y., Li, Y., Yuan, X., Fu, J., Ma, Q., & Wang, Q. (2020). Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 42(11), 3779–3794. https://doi.org/10.1007/s10653-020-00639-7Silva, L. J. de V. B. da, Santos, I. F. S. dos, Mensah, J. H. R., Gonçalves, A. T. T., & Barros, R. M. (2020). Incineration of municipal solid waste in Brazil: An analysis of the economically viable energy potential. Renewable Energy, 149, 1386–1394. https://doi.org/10.1016/j.renene.2019.10.134Singh, P., & Kalamdhad, A. S. (2022). Assessment of agricultural residue-based electricity production from biogas in India: Resource-environment-economic analysis. Sustainable Energy Technologies and Assessments, 54, 102843. https://doi.org/10.1016/j.seta.2022.102843Singh, T., & Uppaluri, R. V. S. (2022). Machine learning tool-based prediction and forecasting of municipal solid waste generation rate: a case study in Guwahati, Assam, India. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-022-04644-4Sohoo, I., Ritzkowski, M., Guo, J., Sohoo, K., & Kuchta, K. (2022). Municipal Solid Waste Management through Sustainable Landfilling: In View of the Situation in Karachi, Pakistan. International Journal of Environmental Research and Public Health, 19(2). https://doi.org/10.3390/ijerph19020773Soltani, A., Hewage, K., Reza, B., & Sadiq, R. (2015). Multiple stakeholders in multi-criteria decision-making in the context of municipal solid waste management: A review. Waste Management, 35, 318–328. https://doi.org/10.1016/j.wasman.2014.09.010SSPD. (2023a). Informe de vigilancia o inspección especial, detallada o concreta INTERASEO S.A.S. E.S.P. https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-detallado-interaseo-fundacion-2023.pdfSSPD. (2023b). Informe Nacional de Disposición Final de Residuos Sólidos 2022. https://www.superservicios.gov.co/publicacionesSSPD. (2023c). Informe Sectorial de la Actividad de Aprovechamiento 2022. https://www.superservicios.gov.co/publicacionesSSPD. (2023d). Sistema Único de Información de Servicios Públicos Domiciliarios - SUI. https://sui.superservicios.gov.co/SSPD. (2024). Publicaciones y boletines. https://www.superservicios.gov.co/publicacionesSun, Y., Qin, Z., Tang, Y., Huang, T., Ding, S., & Ma, X. (2021). Techno-environmental-economic evaluation on municipal solid waste (MSW) to power/fuel by gasification-based and incineration-based routes. Journal of Environmental Chemical Engineering, 9(5). https://doi.org/10.1016/j.jece.2021.106108Sunayana, Kumar, S., & Kumar, R. (2021). Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models. Waste Management, 121, 206–214. https://doi.org/10.1016/j.wasman.2020.12.011Sununta, N., Sedpho, S., & Sampattagul, S. (2018). City carbon footprint evaluation and forecasting case study: Dan Sai municipality. Chemical Engineering Transactions, 63, 277–282. https://doi.org/10.3303/CET1863047Tamasila, M., Prostean, G., Ivascu, L., Cioca, L.-I., Draghici, A., & Diaconescu, A. (2020). Evaluating and prioritizing municipal solid waste management-related factors in Romania using fuzzy AHP and TOPSIS. JOURNAL OF INTELLIGENT \& FUZZY SYSTEMS, 38(5), 6111–6127. https://doi.org/10.3233/JIFS-179695Teshome, Y. M., Habtu, N. G., Molla, M. B., & Ulsido, M. D. (2023). Municipal solid wastes quantification and model forecasting. Global Journal of Environmental Science and Management, 9(2). https://doi.org/10.22034/GJESM.2023.02.04Tonjes, D. J., & Greene, K. L. (2012). A review of national municipal solid waste generation assessments in the USA. WASTE MANAGEMENT \& RESEARCH, 30(8), 758–771. https://doi.org/10.1177/0734242X12451305Tsui, T.-H., & Wong, J. W. C. (2019). A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal and Sustainable Energy, 1(3), 151–167. https://doi.org/10.1007/s42768-019-00013-zUhde, B., Andreas Hahn, W., Griess, V. C., & Knoke, T. (2015). Hybrid MCDA Methods to Integrate Multiple Ecosystem Services in Forest Management Planning: A Critical Review. Environmental Management, 56(2), 373–388. https://doi.org/10.1007/s00267-015-0503-3Ukpanyang, D., Terrados-Cepeda, J., & Hermoso-Orzaez, M. J. (2022). Multi-Criteria Selection of Waste-to-Energy Technologies for Slum/Informal Settlements Using the PROMETHEE Technique: A Case Study of the Greater Karu Urban Area in Nigeria. Energies, 15(10), 3481. https://doi.org/10.3390/en15103481UKWIn. (2018). Evaluation of the climate change impacts of waste incineration in the United Kingdom. https://ukwin.org.uk/files/pdf/UKWIN-2018-Incineration-Climate-Change-Report.pdfUNEP. (2024). Global Waste Management Outlook 2024: Beyond an age of waste – Turning rubbish into a resource. https://www.unep.org/resources/global-waste-management-outlook-2024Unidad de Planeación Minero Energética (UPME); INERCO Consultoría Colombia. (2018). Valorización energética de residuos: proyecto WtE Colombia. http://bdigital.upme.gov.co/handle/001/1339United States Environmental Protection Agency (EPA). (2005a). EPA Software and Manuals. https://www.epa.gov/catc/clean-air-technology-center-products#software United States Environmental Protection Agency (EPA). (2005b). LandGEM V3.02. EPA Software and Manuals. https://www.epa.gov/U.S. EPA. (2021a). LFGcost-Web — Landfill Gas Energy Cost Model. https://www.epa.gov/lmop/lfgcost-web-landfill-gas-energy-cost-modelU.S. EPA. (2021b). Zero Waste Case Study: San Francisco. https://www.epa.gov/transforming-waste-tool/zero-waste-case-study-san-franciscoU.S. EPA. (2023). IPCC AR4, AR5, and AR6 20-, 100-, and 500-year GWPs. https://catalog.data.gov/dataset/ipcc-ar4-ar5-and-ar6-20-100-and-500-year-gwpsUyan, M. (2014). MSW landfill site selection by combining AHP with GIS for Konya, Turkey. Environmental Earth Sciences, 71(4), 1629–1639. https://doi.org/10.1007/s12665-013-2567-9Vallejo, F., Díaz-Robles, L., Cubillos, F., Espinoza, A. P., Espinoza, L., Pinilla, F., & Pino-Cortes, E. (2020). Valorization of municipal solid waste using hydrothermal carbonization and gasification: A review. Chemical Engineering Transactions, 81, 1045–1050. https://doi.org/10.3303/CET2081175Van Fan, Y., Klemeš, J. J., Lee, C. T., & Perry, S. (2019). GHG emissions of incineration and anaerobic digestion: Electricity mix. Chemical Engineering Transactions, 72, 145–150. https://doi.org/10.3303/CET1972025Van Thanh, N. (2022). Optimal Waste-to-Energy Strategy Assisted by Fuzzy MCDM Model for Sustainable Solid Waste Management. Sustainability (Switzerland), 14(11). https://doi.org/10.3390/su14116565Velis, C. A., Wilson, D. C., Gavish, Y., Grimes, S. M., & Whiteman, A. (2023). Socio-economic development drives solid waste management performance in cities: A global analysis using machine learning. Science of The Total Environment, 872, 161913. https://doi.org/10.1016/j.scitotenv.2023.161913Vidal-Barrero, F., Baena-Moreno, F. M., Preciado-Cárdenas, C., Villanueva-Perales, ángel, & Reina, T. R. (2022). Hydrogen production from landfill biogas: Profitability analysis of a real case study. Fuel, 324. https://doi.org/10.1016/j.fuel.2022.124438Villa-Loaiza, C., Taype-Huaman, I., Benavides-Franco, J., Buenaventura-Vera, G., & Carabalí-Mosquera, J. (2023). Does climate impact the relationship between the energy price and the stock market? The Colombian case. Applied Energy, 336, 120800. https://doi.org/10.1016/j.apenergy.2023.120800Vlachokostas, C., Michailidou, A. V, & Achillas, C. (2021). Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review. Renewable and Sustainable Energy Reviews, 138. https://doi.org/10.1016/j.rser.2020.110563Vlaskin, M. S. (2018). Municipal solid waste as an alternative energy source. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(8), 961–970. https://doi.org/10.1177/0957650918762023Wang, D., Yuan, Y. an, Ben, Y., Luo, H., & Guo, H. (2022). Long short-term memory neural network and improved particle swarm optimization–based modeling and scenario analysis for municipal solid waste generation in Shanghai, China. Environmental Science and Pollution Research, 29(46), 69472–69490. https://doi.org/10.1007/s11356-022-20438-0Wei, J., Li, H., & Liu, J. (2022). Curbing dioxin emissions from municipal solid waste incineration: China’s action and global share. Journal of Hazardous Materials, 435, 129076. https://doi.org/10.1016/j.jhazmat.2022.129076Wen, C., Lin, X., Ying, Y., Ma, Y., Yu, H., Li, X., & Yan, J. (2023). Dioxin emission prediction from a full-scale municipal solid waste incinerator: Deep learning model in time-series input. Waste Management, 170, 93–102. https://doi.org/10.1016/j.wasman.2023.08.004Wilk, V., & Hofbauer, H. (2013). Influence of fuel particle size on gasification in a dual fluidized bed steam gasifier. Fuel Processing Technology, 115, 139–151. https://doi.org/10.1016/j.fuproc.2013.04.013Wójtowicz-Wróbel, A. (2017). Social reception of thermal waste processing system structures. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 17(41), 209–216. https://doi.org/10.5593/sgem2017/41/S18.027Woolcock, P. J., & Brown, R. C. (2013). A review of cleaning technologies for biomass-derived syngas. Biomass and Bioenergy, 52, 54–84. https://doi.org/10.1016/j.biombioe.2013.02.036World Bank. (2019a). City level dataset. What A Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597/What-a-Waste-Global-DatabaseWorld Bank. (2019b). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-managementWorld Bank. (2019c). What a Waste Global Database. https://datacatalog.worldbank.org/search/dataset/0039597World Bank. (2022). Solid Waste Management. https://www.worldbank.org/en/topic/urbandevelopment/brief/solid-waste-managementWorld Bank. (2023). Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/map_dataXM. (2023). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasezXu, L., Gao, P., Cui, S., & Liu, C. (2013). A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China. Waste Management, 33(6), 1324–1331. https://doi.org/10.1016/j.wasman.2013.02.012Yaashikaa, P. R., Kumar, P. S., Nhung, T. C., Hemavathy, R. V, Jawahar, M. J., Neshaanthini, J. P., & Rangasamy, G. (2022). A review on landfill system for municipal solid wastes: Insight into leachate, gas emissions, environmental and economic analysis. Chemosphere, 309, 136627. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136627Yang, Y., Liew, R. K., Tamothran, A. M., Foong, S. Y., Yek, P. N. Y., Chia, P. W., Van Tran, T., Peng, W., & Lam, S. S. (2021). Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environmental Chemistry Letters. https://doi.org/10.1007/s10311-020-01177-5Yin, L.-J., Wang, C., Hu, Y.-Y., Chen, D.-Z., Xu, J.-F., & Liu, J. (2017). AHP-based approach for optimization of waste disposal method in urban functional zone. Environmental Technology (United Kingdom), 38(13–14), 1689–1695. https://doi.org/10.1080/09593330.2016.1244565Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: a global analysis by countries’ income level. Environmental Science and Pollution Research, 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9Zhang, G., Liu, K., Lv, L., Gao, W., Li, W., Ren, Z., Yan, W., Wang, P., Liu, X., & Sun, L. (2023). Enhanced landfill process based on leachate recirculation and micro-aeration: A comprehensive technical, environmental, and economic assessment. Science of The Total Environment, 857, 159535. https://doi.org/10.1016/j.scitotenv.2022.159535Zhou, H., Meng, A., Long, Y., Li, Q., & Zhang, Y. (2014). An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107–122. https://doi.org/10.1016/j.rser.2014.04.024Zhu, L., Tian, Z., & Du, J. (2023). Spatial–temporal redundancy evaluation of the municipal solid waste incineration treatment capacity: the case study of China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-26989-0Zhucheng Holy Shield Environmental Science & Technology Co. Ltd. (2024). Municipal Solid Waste Sorting Machines Automatic Waste Sorting Machine. https://www.alibaba.com/product-detail/Municipal-Solid-Waste-Sorting-Machines-Automatic_1600919537394.html?spm=a2700.7724857.0.0.1c395e2fO506RWZia, A., Batool, S. A., Chauhdry, M. N., & Munir, S. (2017). Influence of Income Level and Seasons on Quantity and Composition of Municipal Solid Waste: A Case Study of the Capital City of Pakistan. SUSTAINABILITY, 9(9). https://doi.org/10.3390/su9091568Residuos sólidos municipalesValorización energéticaAnálisis de decisión multicriterioSostenibilidadMunicipal solid wasteWaste-to-energyMulti-criteria decision-makingSustainabilityPublicationORIGINAL1102833229 (1).pdf1102833229 (1).pdfapplication/pdf5243492https://repositorio.cuc.edu.co/bitstreams/fe28330d-52f7-4766-8a62-18ec6870222d/downloadeb0be8f03cf8869a95876b23fb32429eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/b1923b45-de84-4628-9e4c-aef63c5956ff/download73a5432e0b76442b22b026844140d683MD52TEXT1102833229 (1).pdf.txt1102833229 (1).pdf.txtExtracted texttext/plain102098https://repositorio.cuc.edu.co/bitstreams/58d09e74-ed77-4198-8872-305e049f82bb/downloaded9dc529a7a76f8f14d23ff55c61e05cMD53THUMBNAIL1102833229 (1).pdf.jpg1102833229 (1).pdf.jpgGenerated Thumbnailimage/jpeg6814https://repositorio.cuc.edu.co/bitstreams/6f7b0d51-baf8-4d64-a36c-01ddf3ca3902/downloadc5cfe41509f26604c8d2e1acb8b3ad1dMD5411323/13944oai:repositorio.cuc.edu.co:11323/139442025-01-24 10:43:15.824https://creativecommons.org/licenses/by-nc-sa/4.0/restrictedhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K