Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol

The present work consisted of preparing and characterizing composite carbon materials (WRCC) from raw winery residues (WR) activated with zinc chloride to produce a carbon adsorbent. The WRCC was used for the adsorption of emerging contaminants in aqueous media. The WRCC presented a morphology with...

Full description

Autores:
Silva, Nathália F.
Netto, Matias S.
Silva Oliveira, Luis Felipe
Mallmann, Evandro S.
Lima, Eder Claudio
Ferrari, Valdecir
Dotto, Guilherme Luiz
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8294
Acceso en línea:
https://hdl.handle.net/11323/8294
https://doi.org/10.1016/j.jece.2021.105421
https://repositorio.cuc.edu.co/
Palabra clave:
Adsorption
Emerging contaminants
2-nitrophenol
Ketoprofen
Composite carbon
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a52b00f465d0b66e219d16d25a0f7348
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8294
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
title Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
spellingShingle Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
Adsorption
Emerging contaminants
2-nitrophenol
Ketoprofen
Composite carbon
title_short Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
title_full Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
title_fullStr Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
title_full_unstemmed Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
title_sort Composite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol
dc.creator.fl_str_mv Silva, Nathália F.
Netto, Matias S.
Silva Oliveira, Luis Felipe
Mallmann, Evandro S.
Lima, Eder Claudio
Ferrari, Valdecir
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Silva, Nathália F.
Netto, Matias S.
Silva Oliveira, Luis Felipe
Mallmann, Evandro S.
Lima, Eder Claudio
Ferrari, Valdecir
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv Adsorption
Emerging contaminants
2-nitrophenol
Ketoprofen
Composite carbon
topic Adsorption
Emerging contaminants
2-nitrophenol
Ketoprofen
Composite carbon
description The present work consisted of preparing and characterizing composite carbon materials (WRCC) from raw winery residues (WR) activated with zinc chloride to produce a carbon adsorbent. The WRCC was used for the adsorption of emerging contaminants in aqueous media. The WRCC presented a morphology with favorable characteristics for the adsorption process, giving an abundant porous structure with pores of different sizes. The results show the WRCC’s effectiveness, presenting surface area values (227 m2 g−1) and total pore volume (0.175 cm3 g−1). The general order kinetic model predicted the experimental curves sufficiently. The Sips model better described the two adsorbates' equilibrium data, with maximum adsorption capacities of 376.0 and 119.6 mg g−1 for 2-nitrophenol and ketoprofen, respectively. The WRCC carbon material was also highly efficient, with maximum removal of 81.4% and 94% in 1000 mg L−1 of the compounds 2-nitrophenol and ketoprofen. Finally, the prepared material has essential characteristics that make it an efficient adsorbent in treating effluents with emerging contaminants.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-27T20:21:12Z
dc.date.available.none.fl_str_mv 2021-05-27T20:21:12Z
dc.date.issued.none.fl_str_mv 2021
dc.date.embargoEnd.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2213-3437
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8294
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.jece.2021.105421
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2213-3437
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8294
https://doi.org/10.1016/j.jece.2021.105421
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] C. Rodrigues, C. Alves, A.J. Santos-neto, C. Fernandes, F.M. Lan Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography-mass spectrometry J. Mass Spectrom. (2007), pp. 1342-1347, 10.1002/jms
[2] R. Castagna, S. Donini, P. Colnago, A. Serafini, E. Parisini, C. Bertarelli Biohybrid electrospun membrane for the filtration of ketoprofen drug from water ACS Omega, 4 (2019), pp. 13270-13278, 10.1021/acsomega.9b01442
[3] J. Fan, G. Zhao, H. Zhao, S. Chai, T. Cao Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen Electrochim. Acta, 94 (2013), pp. 21-29, 10.1016/j.electacta.2013.01.129
[4] A.C. Fröhlich, G.S. dos Reis, F.A. Pavan, É.C. Lima, E.L. Foletto, G.L. Dotto Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption Environ. Sci. Pollut. Res., 25 (2018), pp. 24713-24725, 10.1007/s11356-018-2525-x
[5] A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037
[6] C. Schummer, C. Groff, J. Al Chami, F. Jaber, M. Millet Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France Sci. Total Environ., 407 (2009), pp. 5637-5643, 10.1016/j.scitotenv.2009.06.051
[7] A.E. Navarro, N.A. Cuizano, R.F. Portales, B.P. Llanos Adsorptive removal of 2-nitrophenol and 2-chlorophenol by cross-linked algae from aqueous solutions Sep. Sci. Technol., 43 (2008), pp. 3183-3199, 10.1080/01496390802221642
[8] J. He, Y. Li, X. Cai, K. Chen, H. Zheng, C. Wang, K. Zhang, D. Lin, L. Kong, J. Liu Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity Chemosphere, 174 (2017), pp. 380-389, 10.1016/j.chemosphere.2017.02.008
[9] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti Adsorption of 2–nitrophenol using rice straw and rice husks hydrolyzed by subcritical water Bioresour. Technol., 284 (2019), pp. 25-35, 10.1016/j.biortech.2019.03.110
[10] A.H.C. Chan, C.K. Chan, J.P. Barford, J.F. Porter Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater Water Res., 37 (2003), pp. 1125-1135, 10.1016/S0043-1354(02)00465-7
[11] Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO) Water Res., 91 (2016), pp. 104-114, 10.1016/j.watres.2016.01.001
[12] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions Appl. Surf. Sci., 256 (2010), pp. 4447-4455, 10.1016/j.apsusc.2010.01.057
[13] F.B. Dalla Nora, V.V.C. Lima, M.L.S. Oliveira, A. Hosseini-Bandegharaei, T.A. De Lima Burgo, L. Meili, G.L. Dotto Adsorptive potential of Zn-Al and Mg-Fe layered double hydroxides for the removal of 2-nitrophenol from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103913, 10.1016/j.jece.2020.103913
[14] J. Radjenović, M. Petrović, F. Ventura, D. Barceló Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment Water Res., 42 (2008), pp. 3601-3610, 10.1016/j.watres.2008.05.020
[15] H. Li, H. Xia, Y. Mei Modeling organic fouling of reverse osmosis membrane: from adsorption to fouling layer formation Desalination, 386 (2016), pp. 25-31, 10.1016/j.desal.2016.02.037
[16] S. Gul, Z.A. Rehan, S.A. Khan, K. Akhtar, M.A. Khan, M.I. Khan, M.I. Rashid, A.M. Asiri, S.B. Khan Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol J. Mol. Liq., 230 (2017), pp. 616-624, 10.1016/j.molliq.2016.12.093
[17] M. Tian, L. Bakovic, A. Chen Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics Electrochim. Acta, 52 (2007), pp. 6517-6524, 10.1016/j.electacta.2007.04.080
[18] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma Catalytic ozonation of ketoprofen with in situ n-doped carbon: a novel synergetic mechanism of hydroxyl radical oxidation and an intra-electron-transfer nonradical reaction Environ. Sci. Technol., 53 (2019), pp. 10342-10351, 10.1021/acs.est.9b02745
[19] A. Shokri Degradation of 2-nitrophenol from petrochemical wastewater by ozone Russ. J. Appl. Chem., 88 (2015), pp. 2038-2043, 10.1134/S10704272150120216
[20] Z. Li, L. Sellaoui, G. Luiz Dotto, A. Bonilla-Petriciolet, A. Ben Lamine Understanding the adsorption mechanism of phenol and 2-nitrophenol on a biopolymer-based biochar in single and binary systems via advanced modeling analysis Chem. Eng. J., 371 (2019), pp. 1-6, 10.1016/j.cej.2019.04.035
[21] B.S. Marques, K. Dalmagro, K.S. Moreira, M.L.S. Oliveira, S.L. Jahn, T.A. de Lima Burgo, G.L. Dotto Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol J. Alloy. Compd., 838 (2020), Article 155628, 10.1016/j.jallcom.2020.155628
[22] A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere (2020), 10.1016/j.chemosphere.2020.128322
[23] F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684
[24] D.M. Ruthven Principles of Adsorption and Adsorption Processes John Wiley & Sons, Hoboken (1984), p. 433
[25] J. Akhtar, N.A.S. Amin, K. Shahzad A review on removal of pharmaceuticals from water by adsorption Desalin. Water Treat., 57 (2016), pp. 12842-12860, 10.1080/19443994.2015.1051121
[26] G. Kyriakopoulos, D. Doulia Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review Sep. Purif. Rev., 35 (2006), pp. 97-191, 10.1080/15422110600822733
[27] B. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053
[28] C. Sophia A, E.C. Lima Removal of emerging contaminants from the environment by adsorption Ecotoxicol. Environ. Saf., 150 (2018), pp. 1-17, 10.1016/j.ecoenv.2017.12.026
[29] M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2 Appl. Surf. Sci., 252 (2006), pp. 5967-5971, 10.1016/j.apsusc.2005.11.008
[30] F. Karacan, U. Ozden, S. Karacan Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology Appl. Therm. Eng., 27 (2007), pp. 1212-1218, 10.1016/j.applthermaleng.2006.02.046
[31] D. Angin Production and characterization of activated carbon from sour cherry stones by zinc chloride Fuel, 115 (2014), pp. 804-811, 10.1016/j.fuel.2013.04.060
[32] D.C. Dos Santos, M.A. Adebayo, E.C. Lima, S.F.P. Pereira, R. Cataluña, C. Saucier, P.S. Thue, F.M. Machado Application of carbon composite adsorbents prepared from coffee waste and clay for the removal of reactive dyes from aqueous solutions J. Braz. Chem. Soc., 26 (2015), pp. 924-938, 10.5935/0103-5053.20150053
[33] D.C. dos Santos, M.A. Adebayo, S. de Fátima Pinheiro Pereira, L.D.T. Prola, R. Cataluña, E.C. Lima, C. Saucier, C.R. Gally, F.M. Machado New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: kinetic, equilibrium, and thermodynamic studies Korean J. Chem. Eng., 31 (2014), pp. 1470-1479, 10.1007/s11814-014-0086-3
[34] A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis Chem. Eng. J., 379 (2020), Article 122320, 10.1016/j.cej.2019.122320
[35] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review Renew. Sustain. Energy Rev., 46 (2015), pp. 218-235, 10.1016/j.rser.2015.02.051
[36] L.M.R. de Mello, Vitivinicultura brasileira: Panorama 2018, Mello-CampoNegocio-V22-N142-P54–56-2017.Pdf, 2019, embrapa.br (accessed December 3, 2020).
[37] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.O. Silva Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032
[38] B. Aline, intro, Embrapa Agroindústria de Alimentos, 2018, embrapa.br (accessed January 25, 2021).
[39] L.M.R. Mello, G.A. Silva Disponibilidade e Características de Resíduos Provenientes da Agroindústria de Processamento de Uva do Rio Grande do Sul Embrapa (2014), pp. 1-6 Comunicado Técnico 155
[40] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), pp. 1-8, 10.1016/j.envpol.2020.114794
[41] M.H. da S. Deolin, H.M.C. Fagnani, P.A. Arroyo, M.A.S.D. de Barros, Obtenção do Ponto de Carga zero de Materiais Adsorventes, VIII EPCC – Encontro Internacional de Produção Científica Cesumar, 2013, 2–5. http://www.cesumar.br/prppge/pesquisa/epcc2013/oit_mostra/Mara_Helen_da Silva_Deolin.pdf.
[42] S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination Carbon, 48 (2010), pp. 1252-1261, 10.1016/j.carbon.2009.11.050
[43] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129, 10.1016/j.jclepro.2017.01.004
[44] S. Lagergren About the theory of so-called adsorption of soluble substances K. Sven. Vetensk., 24 (1898), pp. 1-39
[45] Y.S. Ho, G. McKay Kinetic models for the sorption of dye from aqueous solution by wood Process Saf. Environ. Prot., 76 (1998), pp. 183-191, 10.1205/095758298529326
[46] E.C.N. Lopes, F.S.C. Dos Anjos, E.F.S. Vieira, A.R. Cestari An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes J. Colloid Interface Sci., 263 (2003), pp. 542-547, 10.1016/S0021-9797(03)00326-6
[47] W.S. Alencar, E.C. Lima, B. Royer, B.D. dos Santos, T. Calvete, E.A. da Silva, C.N. Alves Application of aqai stalks as biosorbents for the removal of the dye procion blue MX-R from aqueous solution Sep. Sci. Technol., 47 (2012), pp. 513-526, 10.1080/01496395.2011.616568
[48] H.M. Freundlich Over the adsorption in solution. J. Chem. Phys., 57 (1906), p. 385 e 470
[49] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (1918), pp. 1361-1403
[50] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495, 10.1063/1.1746922
[51] J. Tóth Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature J. Colloid Interface Sci., 225 (2000), pp. 378-383, 10.1006/jcis.2000.6723
[52] Y. Liu Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data, 54 (2009), pp. 1981-1985, 10.1021/je800661q
[53] J.H. Xueyong Zhou, Huifen Liu How to calculate the thermodynamic equilibrium constant using the langmuir equation Adsorpt. Sci. Technol., 30 (2012), pp. 647-649, 10.32380/alrj.v0i0.829
[54] I. Anastopoulos, G.Z. Kyzas Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq., 218 (2016), pp. 174-185, 10.1016/j.molliq.2016.02.059
[55] T. Chen, T. Da, Y. Ma Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant J. Mol. Liq., 322 (2021), Article 114980, 10.1016/j.molliq.2020.114980
[56] B.-P. Adrián, M.-C.D. Ileana, R.-Á.H. Elizabeth Adsorption Processes for Water Treatment and Purification (2017), 10.1007/978-3-319-58136-1
[57] R.S. Pigatto, D.S.P. Franco, M.S. Netto, É. Carissimi, L.F.S. Oliveira, S.L. Jahn, G.L. Dotto An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge J. Environ. Chem. Eng., 8 (2020), Article 104546, 10.1016/j.jece.2020.104546
[58] M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, G.L. Dotto, E.L. Foletto Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design Water Air Soil Pollut., 230 (2019), p. 187, 10.1007/s11270-019-4230-x
[59] Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M.L.S. Oliveira, M.K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet, Q. Li Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations Chem. Eng. J., 388 (2020), Article 124263, 10.1016/j.cej.2020.124263
[60] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, A. Arulrajah Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge Constr. Build. Mater., 82 (2015), pp. 20-30, 10.1016/j.conbuildmat.2015.02.040
[61] M. Muruganandham, S.H. Chen, J.J. Wu Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition Catal. Commun., 8 (2007), pp. 1609-1614, 10.1016/j.catcom.2007.01.018
[62] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review Desalination, 280 (2011), pp. 1-13, 10.1016/j.desal.2011.07.019
[63] C.N. Tejada, D. Almanza, A. Villabona, F. Colpas, C. Granados Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina Ing. Compet., 19 (2017), pp. 45-54, 10.25100/iyc.v19i2.5292
[64] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396
[65] L. Shao, Z. Ren, G. Zhang, L. Chen Facile synthesis, characterization of a MnFe 2O 4/activated carbon magnetic composite and its effectiveness in tetracycline removal Mater. Chem. Phys., 135 (2012), pp. 16-24, 10.1016/j.matchemphys.2012.03.035
[66] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents Chemosphere, 250 (2020), Article 126248, 10.1016/j.chemosphere.2020.126248
[67] C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents J. Hazard. Mater., 289 (2015), pp. 18-27, 10.1016/j.jhazmat.2015.02.026
[68] M.J. Puchana- Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059
[69] M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054
[70] C. Saucier, M.A. Adebayo, E.C. Lima, L.D.T. Prola, P.S. Thue, C.S. Umpierres, M.J. Puchana-Rosero, F.M. Machado Comparison of a homemade bacuri shell activated carbon with carbon nanotubes for food dye removal Clean. Soil Air Water, 43 (2015), pp. 1389-1400, 10.1002/clen.201400669
[71] R. Portinho, O. Zanella, L.A. Féris Grape stalk application for caffeine removal through adsorption J. Environ. Manag., 202 (2017), pp. 178-187, 10.1016/j.jenvman.2017.07.033
[72] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions Sci. Total Environ., 660 (2019), pp. 277-287, 10.1016/j.scitotenv.2019.01.027
[73] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass J. Clean. Prod., 179 (2018), pp. 191-209, 10.1016/j.jclepro.2018.01.034
[74] H. Zheng, W. Guo, S. Li, Y. Chen, Q. Wu, X. Feng, R. Yin, S.H. Ho, N. Ren, J.S. Chang Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism Bioresour. Technol., 244 (2017), pp. 1456-1464, 10.1016/j.biortech.2017.05.025
[75] P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons Chem. Eng. J., 277 (2015), pp. 360-367, 10.1016/j.cej.2015.04.097
[76] J.S. Piccin, G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan J. Chem. Eng. Data, 56 (2011), pp. 3759-3765, 10.1021/je200388s
[77] R. da Rosa Schio, B.C. da Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380, 10.1016/j.ijbiomac.2018.09.186
[78] J. Van Der Stap, S. Klaasse Labwaarden: acute nierinsufficiëntie Nursing, 22 (2016), pp. 36-38, 10.1007/s41193-016-0111-5
[79] L. Sellaoui, G.L. Dotto, J.O. Gonçalves, L.A.A. Pinto, S. Knani, A. Ben Lamine Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations J. Mol. Liq., 222 (2016), pp. 151-158, 10.1016/j.molliq.2016.07.005
[80] M.F. Elkady, A.M. Ibrahim, M.M.A. El-Latif Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads Desalination, 278 (2011), pp. 412-423, 10.1016/j.desal.2011.05.063
[81] X. Gu, H. Kang, H. Li, X. Liu, F. Dong, M. Fu, J. Chen Adsorption removal of various nitrophenols in aqueous solution by aminopropyl-modified mesoporous MCM-48 J. Chem. Eng. Data, 63 (2018), pp. 3606-3614, 10.1021/acs.jced.8b00477
[82] M. Darwish, Q. Sadr Manuchehri, A. Mohammadi, N. Assi NiFe2O4 nanomagnets prepared through a microwave autocombustion route as an efficient recoverable adsorbent for 2-nitrophenol removal Part. Sci. Technol., 37 (2019), pp. 524-533, 10.1080/02726351.2017.1402835
[83] L.B. Ariza Traslaviña, L.J. Torres Romero, D.A. Blanco Martínez Adsorption kinetics of 2-nitrophenol from aqueous solution on activated carbon Rev. Cienc., 20 (2016), pp. 65-75
[84] I.A. Lawal, M.M. Lawal, S.O. Akpotu, M.A. Azeez, P. Ndungu, B. Moodley Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs Ecotoxicol. Environ. Saf., 161 (2018), pp. 542-552, 10.1016/j.ecoenv.2018.06.019
[85] R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099
[86] M. Sarker, J.Y. Song, S.H. Jhung Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites Chem. Eng. J., 335 (2018), pp. 74-81, 10.1016/j.cej.2017.10.138
[87] Y. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343721003985?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/2518625d-9029-4afe-b6bc-dc5af20b5e1e/download
https://repositorio.cuc.edu.co/bitstreams/b31bb947-186a-4698-8ee3-c390d4375be1/download
https://repositorio.cuc.edu.co/bitstreams/3da36085-82da-48bc-aa2d-7be4046e015b/download
https://repositorio.cuc.edu.co/bitstreams/b62b6432-675a-404b-9fb5-377124a47a93/download
https://repositorio.cuc.edu.co/bitstreams/ae3dcca1-a29e-4888-9160-cf2c3dc6d03f/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
c706391665415de362bfc3d8474db834
2d5a4fc656eb17cbb4ccb233126e214a
df21a3dc39af76fe98909942bd9b9a73
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760787604111360
spelling Silva, Nathália F.Netto, Matias S.Silva Oliveira, Luis FelipeMallmann, Evandro S.Lima, Eder ClaudioFerrari, ValdecirDotto, Guilherme Luiz2021-05-27T20:21:12Z2021-05-27T20:21:12Z202120232213-3437https://hdl.handle.net/11323/8294https://doi.org/10.1016/j.jece.2021.105421Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work consisted of preparing and characterizing composite carbon materials (WRCC) from raw winery residues (WR) activated with zinc chloride to produce a carbon adsorbent. The WRCC was used for the adsorption of emerging contaminants in aqueous media. The WRCC presented a morphology with favorable characteristics for the adsorption process, giving an abundant porous structure with pores of different sizes. The results show the WRCC’s effectiveness, presenting surface area values (227 m2 g−1) and total pore volume (0.175 cm3 g−1). The general order kinetic model predicted the experimental curves sufficiently. The Sips model better described the two adsorbates' equilibrium data, with maximum adsorption capacities of 376.0 and 119.6 mg g−1 for 2-nitrophenol and ketoprofen, respectively. The WRCC carbon material was also highly efficient, with maximum removal of 81.4% and 94% in 1000 mg L−1 of the compounds 2-nitrophenol and ketoprofen. Finally, the prepared material has essential characteristics that make it an efficient adsorbent in treating effluents with emerging contaminants.Silva, Nathália F.Netto, Matias S.Silva Oliveira, Luis FelipeMallmann, Evandro S.Lima, Eder Claudio-will be generated-orcid-0000-0002-8734-1208-600Ferrari, ValdecirDotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S2213343721003985?via%3DihubAdsorptionEmerging contaminants2-nitrophenolKetoprofenComposite carbonComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenolPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] C. Rodrigues, C. Alves, A.J. Santos-neto, C. Fernandes, F.M. Lan Analysis of tricyclic antidepressant drugs in plasma by means of solid-phase microextraction-liquid chromatography-mass spectrometry J. Mass Spectrom. (2007), pp. 1342-1347, 10.1002/jms[2] R. Castagna, S. Donini, P. Colnago, A. Serafini, E. Parisini, C. Bertarelli Biohybrid electrospun membrane for the filtration of ketoprofen drug from water ACS Omega, 4 (2019), pp. 13270-13278, 10.1021/acsomega.9b01442[3] J. Fan, G. Zhao, H. Zhao, S. Chai, T. Cao Fabrication and application of mesoporous Sb-doped SnO2 electrode with high specific surface in electrochemical degradation of ketoprofen Electrochim. Acta, 94 (2013), pp. 21-29, 10.1016/j.electacta.2013.01.129[4] A.C. Fröhlich, G.S. dos Reis, F.A. Pavan, É.C. Lima, E.L. Foletto, G.L. Dotto Improvement of activated carbon characteristics by sonication and its application for pharmaceutical contaminant adsorption Environ. Sci. Pollut. Res., 25 (2018), pp. 24713-24725, 10.1007/s11356-018-2525-x[5] A.C. Fröhlich, E.L. Foletto, G.L. Dotto Preparation and characterization of NiFe2O4/activated carbon composite as potential magnetic adsorbent for removal of ibuprofen and ketoprofen pharmaceuticals from aqueous solutions J. Clean. Prod., 229 (2019), pp. 828-837, 10.1016/j.jclepro.2019.05.037[6] C. Schummer, C. Groff, J. Al Chami, F. Jaber, M. Millet Analysis of phenols and nitrophenols in rainwater collected simultaneously on an urban and rural site in east of France Sci. Total Environ., 407 (2009), pp. 5637-5643, 10.1016/j.scitotenv.2009.06.051[7] A.E. Navarro, N.A. Cuizano, R.F. Portales, B.P. Llanos Adsorptive removal of 2-nitrophenol and 2-chlorophenol by cross-linked algae from aqueous solutions Sep. Sci. Technol., 43 (2008), pp. 3183-3199, 10.1080/01496390802221642[8] J. He, Y. Li, X. Cai, K. Chen, H. Zheng, C. Wang, K. Zhang, D. Lin, L. Kong, J. Liu Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity Chemosphere, 174 (2017), pp. 380-389, 10.1016/j.chemosphere.2017.02.008[9] E.R. Abaide, G.L. Dotto, M.V. Tres, G.L. Zabot, M.A. Mazutti Adsorption of 2–nitrophenol using rice straw and rice husks hydrolyzed by subcritical water Bioresour. Technol., 284 (2019), pp. 25-35, 10.1016/j.biortech.2019.03.110[10] A.H.C. Chan, C.K. Chan, J.P. Barford, J.F. Porter Solar photocatalytic thin film cascade reactor for treatment of benzoic acid containing wastewater Water Res., 37 (2003), pp. 1125-1135, 10.1016/S0043-1354(02)00465-7[11] Y. Cui, X.Y. Liu, T.S. Chung, M. Weber, C. Staudt, C. Maletzko Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO) Water Res., 91 (2016), pp. 104-114, 10.1016/j.watres.2016.01.001[12] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions Appl. Surf. Sci., 256 (2010), pp. 4447-4455, 10.1016/j.apsusc.2010.01.057[13] F.B. Dalla Nora, V.V.C. Lima, M.L.S. Oliveira, A. Hosseini-Bandegharaei, T.A. De Lima Burgo, L. Meili, G.L. Dotto Adsorptive potential of Zn-Al and Mg-Fe layered double hydroxides for the removal of 2-nitrophenol from aqueous solutions J. Environ. Chem. Eng., 8 (2020), Article 103913, 10.1016/j.jece.2020.103913[14] J. Radjenović, M. Petrović, F. Ventura, D. Barceló Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment Water Res., 42 (2008), pp. 3601-3610, 10.1016/j.watres.2008.05.020[15] H. Li, H. Xia, Y. Mei Modeling organic fouling of reverse osmosis membrane: from adsorption to fouling layer formation Desalination, 386 (2016), pp. 25-31, 10.1016/j.desal.2016.02.037[16] S. Gul, Z.A. Rehan, S.A. Khan, K. Akhtar, M.A. Khan, M.I. Khan, M.I. Rashid, A.M. Asiri, S.B. Khan Antibacterial PES-CA-Ag2O nanocomposite supported Cu nanoparticles membrane toward ultrafiltration, BSA rejection and reduction of nitrophenol J. Mol. Liq., 230 (2017), pp. 616-624, 10.1016/j.molliq.2016.12.093[17] M. Tian, L. Bakovic, A. Chen Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics Electrochim. Acta, 52 (2007), pp. 6517-6524, 10.1016/j.electacta.2007.04.080[18] Z. Sun, L. Zhao, C. Liu, Y. Zhen, J. Ma Catalytic ozonation of ketoprofen with in situ n-doped carbon: a novel synergetic mechanism of hydroxyl radical oxidation and an intra-electron-transfer nonradical reaction Environ. Sci. Technol., 53 (2019), pp. 10342-10351, 10.1021/acs.est.9b02745[19] A. Shokri Degradation of 2-nitrophenol from petrochemical wastewater by ozone Russ. J. Appl. Chem., 88 (2015), pp. 2038-2043, 10.1134/S10704272150120216[20] Z. Li, L. Sellaoui, G. Luiz Dotto, A. Bonilla-Petriciolet, A. Ben Lamine Understanding the adsorption mechanism of phenol and 2-nitrophenol on a biopolymer-based biochar in single and binary systems via advanced modeling analysis Chem. Eng. J., 371 (2019), pp. 1-6, 10.1016/j.cej.2019.04.035[21] B.S. Marques, K. Dalmagro, K.S. Moreira, M.L.S. Oliveira, S.L. Jahn, T.A. de Lima Burgo, G.L. Dotto Ca–Al, Ni–Al and Zn–Al LDH powders as efficient materials to treat synthetic effluents containing o-nitrophenol J. Alloy. Compd., 838 (2020), Article 155628, 10.1016/j.jallcom.2020.155628[22] A.F.M. Streit, G.C. Collazzo, S.P. Druzian, R.S. Verdi, E.L. Foletto, L.F.S. Oliveira, G.L. Dotto Adsorption of ibuprofen, ketoprofen, and paracetamol onto activated carbon prepared from effluent treatment plant sludge of the beverage industry Chemosphere (2020), 10.1016/j.chemosphere.2020.128322[23] F.F. Liu, J. Zhao, S. Wang, P. Du, B. Xing Effects of solution chemistry on adsorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes Environ. Sci. Technol., 48 (2014), pp. 13197-13206, 10.1021/es5034684[24] D.M. Ruthven Principles of Adsorption and Adsorption Processes John Wiley & Sons, Hoboken (1984), p. 433[25] J. Akhtar, N.A.S. Amin, K. Shahzad A review on removal of pharmaceuticals from water by adsorption Desalin. Water Treat., 57 (2016), pp. 12842-12860, 10.1080/19443994.2015.1051121[26] G. Kyriakopoulos, D. Doulia Adsorption of pesticides on carbonaceous and polymeric materials from aqueous solutions: a review Sep. Purif. Rev., 35 (2006), pp. 97-191, 10.1080/15422110600822733[27] B. Petrie, R. Barden, B. Kasprzyk-Hordern A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring Water Res., 72 (2015), pp. 3-27, 10.1016/j.watres.2014.08.053[28] C. Sophia A, E.C. Lima Removal of emerging contaminants from the environment by adsorption Ecotoxicol. Environ. Saf., 150 (2018), pp. 1-17, 10.1016/j.ecoenv.2017.12.026[29] M. Olivares-Marín, C. Fernández-González, A. Macías-García, V. Gómez-Serrano Preparation of activated carbon from cherry stones by chemical activation with ZnCl 2 Appl. Surf. Sci., 252 (2006), pp. 5967-5971, 10.1016/j.apsusc.2005.11.008[30] F. Karacan, U. Ozden, S. Karacan Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology Appl. Therm. Eng., 27 (2007), pp. 1212-1218, 10.1016/j.applthermaleng.2006.02.046[31] D. Angin Production and characterization of activated carbon from sour cherry stones by zinc chloride Fuel, 115 (2014), pp. 804-811, 10.1016/j.fuel.2013.04.060[32] D.C. Dos Santos, M.A. Adebayo, E.C. Lima, S.F.P. Pereira, R. Cataluña, C. Saucier, P.S. Thue, F.M. Machado Application of carbon composite adsorbents prepared from coffee waste and clay for the removal of reactive dyes from aqueous solutions J. Braz. Chem. Soc., 26 (2015), pp. 924-938, 10.5935/0103-5053.20150053[33] D.C. dos Santos, M.A. Adebayo, S. de Fátima Pinheiro Pereira, L.D.T. Prola, R. Cataluña, E.C. Lima, C. Saucier, C.R. Gally, F.M. Machado New carbon composite adsorbents for the removal of textile dyes from aqueous solutions: kinetic, equilibrium, and thermodynamic studies Korean J. Chem. Eng., 31 (2014), pp. 1470-1479, 10.1007/s11814-014-0086-3[34] A. Yazidi, M. Atrous, F. Edi Soetaredjo, L. Sellaoui, S. Ismadji, A. Erto, A. Bonilla-Petriciolet, G. Luiz Dotto, A. Ben Lamine Adsorption of amoxicillin and tetracycline on activated carbon prepared from durian shell in single and binary systems: experimental study and modeling analysis Chem. Eng. J., 379 (2020), Article 122320, 10.1016/j.cej.2019.122320[35] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review Renew. Sustain. Energy Rev., 46 (2015), pp. 218-235, 10.1016/j.rser.2015.02.051[36] L.M.R. de Mello, Vitivinicultura brasileira: Panorama 2018, Mello-CampoNegocio-V22-N142-P54–56-2017.Pdf, 2019, embrapa.br (accessed December 3, 2020).[37] V. Ferrari, S.R. Taffarel, E. Espinosa-Fuentes, M.L.S. Oliveira, B.K. Saikia, L.F.O. Silva Chemical evaluation of by-products of the grape industry as potential agricultural fertilizers J. Clean. Prod., 208 (2019), pp. 297-306, 10.1016/j.jclepro.2018.10.032[38] B. Aline, intro, Embrapa Agroindústria de Alimentos, 2018, embrapa.br (accessed January 25, 2021).[39] L.M.R. Mello, G.A. Silva Disponibilidade e Características de Resíduos Provenientes da Agroindústria de Processamento de Uva do Rio Grande do Sul Embrapa (2014), pp. 1-6 Comunicado Técnico 155[40] A. Cortés, L.F.S. Oliveira, V. Ferrari, S.R. Taffarel, G. Feijoo, M.T. Moreira Environmental assessment of viticulture waste valorisation through composting as a biofertilisation strategy for cereal and fruit crops Environ. Pollut., 264 (2020), pp. 1-8, 10.1016/j.envpol.2020.114794[41] M.H. da S. Deolin, H.M.C. Fagnani, P.A. Arroyo, M.A.S.D. de Barros, Obtenção do Ponto de Carga zero de Materiais Adsorventes, VIII EPCC – Encontro Internacional de Produção Científica Cesumar, 2013, 2–5. http://www.cesumar.br/prppge/pesquisa/epcc2013/oit_mostra/Mara_Helen_da Silva_Deolin.pdf.[42] S.L. Goertzen, K.D. Thériault, A.M. Oickle, A.C. Tarasuk, H.A. Andreas Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination Carbon, 48 (2010), pp. 1252-1261, 10.1016/j.carbon.2009.11.050[43] G.L. Dotto, J.M.N. Santos, E.H. Tanabe, D.A. Bertuol, E.L. Foletto, E.C. Lima, F.A. Pavan Chitosan/polyamide nanofibers prepared by Forcespinning® technology: a new adsorbent to remove anionic dyes from aqueous solutions J. Clean. Prod., 144 (2017), pp. 120-129, 10.1016/j.jclepro.2017.01.004[44] S. Lagergren About the theory of so-called adsorption of soluble substances K. Sven. Vetensk., 24 (1898), pp. 1-39[45] Y.S. Ho, G. McKay Kinetic models for the sorption of dye from aqueous solution by wood Process Saf. Environ. Prot., 76 (1998), pp. 183-191, 10.1205/095758298529326[46] E.C.N. Lopes, F.S.C. Dos Anjos, E.F.S. Vieira, A.R. Cestari An alternative Avrami equation to evaluate kinetic parameters of the interaction of Hg(II) with thin chitosan membranes J. Colloid Interface Sci., 263 (2003), pp. 542-547, 10.1016/S0021-9797(03)00326-6[47] W.S. Alencar, E.C. Lima, B. Royer, B.D. dos Santos, T. Calvete, E.A. da Silva, C.N. Alves Application of aqai stalks as biosorbents for the removal of the dye procion blue MX-R from aqueous solution Sep. Sci. Technol., 47 (2012), pp. 513-526, 10.1080/01496395.2011.616568[48] H.M. Freundlich Over the adsorption in solution. J. Chem. Phys., 57 (1906), p. 385 e 470[49] I. Langmuir The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40 (1918), pp. 1361-1403[50] R. Sips On the structure of a catalyst surface J. Chem. Phys., 16 (1948), pp. 490-495, 10.1063/1.1746922[51] J. Tóth Calculation of the BET-compatible surface area from any Type I isotherms measured above the critical temperature J. Colloid Interface Sci., 225 (2000), pp. 378-383, 10.1006/jcis.2000.6723[52] Y. Liu Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data, 54 (2009), pp. 1981-1985, 10.1021/je800661q[53] J.H. Xueyong Zhou, Huifen Liu How to calculate the thermodynamic equilibrium constant using the langmuir equation Adsorpt. Sci. Technol., 30 (2012), pp. 647-649, 10.32380/alrj.v0i0.829[54] I. Anastopoulos, G.Z. Kyzas Are the thermodynamic parameters correctly estimated in liquid-phase adsorption phenomena? J. Mol. Liq., 218 (2016), pp. 174-185, 10.1016/j.molliq.2016.02.059[55] T. Chen, T. Da, Y. Ma Reasonable calculation of the thermodynamic parameters from adsorption equilibrium constant J. Mol. Liq., 322 (2021), Article 114980, 10.1016/j.molliq.2020.114980[56] B.-P. Adrián, M.-C.D. Ileana, R.-Á.H. Elizabeth Adsorption Processes for Water Treatment and Purification (2017), 10.1007/978-3-319-58136-1[57] R.S. Pigatto, D.S.P. Franco, M.S. Netto, É. Carissimi, L.F.S. Oliveira, S.L. Jahn, G.L. Dotto An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge J. Environ. Chem. Eng., 8 (2020), Article 104546, 10.1016/j.jece.2020.104546[58] M. Schadeck Netto, N.F. da Silva, E.S. Mallmann, G.L. Dotto, E.L. Foletto Effect of salinity on the adsorption behavior of methylene blue onto comminuted raw avocado residue: CCD-RSM design Water Air Soil Pollut., 230 (2019), p. 187, 10.1007/s11270-019-4230-x[59] Z. Li, H. Hanafy, L. Zhang, L. Sellaoui, M. Schadeck Netto, M.L.S. Oliveira, M.K. Seliem, G. Luiz Dotto, A. Bonilla-Petriciolet, Q. Li Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: experiments, characterization and physical interpretations Chem. Eng. J., 388 (2020), Article 124263, 10.1016/j.cej.2020.124263[60] C. Suksiripattanapong, S. Horpibulsuk, P. Chanprasert, P. Sukmak, A. Arulrajah Compressive strength development in fly ash geopolymer masonry units manufactured from water treatment sludge Constr. Build. Mater., 82 (2015), pp. 20-30, 10.1016/j.conbuildmat.2015.02.040[61] M. Muruganandham, S.H. Chen, J.J. Wu Evaluation of water treatment sludge as a catalyst for aqueous ozone decomposition Catal. Commun., 8 (2007), pp. 1609-1614, 10.1016/j.catcom.2007.01.018[62] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review Desalination, 280 (2011), pp. 1-13, 10.1016/j.desal.2011.07.019[63] C.N. Tejada, D. Almanza, A. Villabona, F. Colpas, C. Granados Caracterización de carbón activado sintetizado a baja temperatura a partir de cáscara de cacao (Theobroma cacao) para la adsorción de amoxicilina Ing. Compet., 19 (2017), pp. 45-54, 10.25100/iyc.v19i2.5292[64] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval Preparation of activated carbon from black wattle bark waste and its application for phenol adsorption J. Environ. Chem. Eng., 7 (2019), Article 103396, 10.1016/j.jece.2019.103396[65] L. Shao, Z. Ren, G. Zhang, L. Chen Facile synthesis, characterization of a MnFe 2O 4/activated carbon magnetic composite and its effectiveness in tetracycline removal Mater. Chem. Phys., 135 (2012), pp. 16-24, 10.1016/j.matchemphys.2012.03.035[66] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents Chemosphere, 250 (2020), Article 126248, 10.1016/j.chemosphere.2020.126248[67] C. Saucier, M.A. Adebayo, E.C. Lima, R. Cataluña, P.S. Thue, L.D.T. Prola, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, G.L. Dotto Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents J. Hazard. Mater., 289 (2015), pp. 18-27, 10.1016/j.jhazmat.2015.02.026[68] M.J. Puchana- Rosero, M.A. Adebayo, E.C. Lima, F.M. Machado, P.S. Thue, J.C.P. Vaghetti, C.S. Umpierres, M. Gutterres Microwave-assisted activated carbon obtained from the sludge of tannery-treatment effluent plant for removal of leather dyes Colloids Surf. A Physicochem. Eng. Asp., 504 (2016), pp. 105-115, 10.1016/j.colsurfa.2016.05.059[69] M.C. Ribas, M.A. Adebayo, L.D.T. Prola, E.C. Lima, R. Cataluña, L.A. Feris, M.J. Puchana-Rosero, F.M. Machado, F.A. Pavan, T. Calvete Comparison of a homemade cocoa shell activated carbon with commercial activated carbon for the removal of reactive violet 5 dye from aqueous solutions Chem. Eng. J., 248 (2014), pp. 315-326, 10.1016/j.cej.2014.03.054[70] C. Saucier, M.A. Adebayo, E.C. Lima, L.D.T. Prola, P.S. Thue, C.S. Umpierres, M.J. Puchana-Rosero, F.M. Machado Comparison of a homemade bacuri shell activated carbon with carbon nanotubes for food dye removal Clean. Soil Air Water, 43 (2015), pp. 1389-1400, 10.1002/clen.201400669[71] R. Portinho, O. Zanella, L.A. Féris Grape stalk application for caffeine removal through adsorption J. Environ. Manag., 202 (2017), pp. 178-187, 10.1016/j.jenvman.2017.07.033[72] A.F.M. Streit, L.N. Côrtes, S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G.L. Dotto Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions Sci. Total Environ., 660 (2019), pp. 277-287, 10.1016/j.scitotenv.2019.01.027[73] A.J.K. Kupeta, E.B. Naidoo, A.E. Ofomaja Kinetics and equilibrium study of 2-nitrophenol adsorption onto polyurethane cross-linked pine cone biomass J. Clean. Prod., 179 (2018), pp. 191-209, 10.1016/j.jclepro.2018.01.034[74] H. Zheng, W. Guo, S. Li, Y. Chen, Q. Wu, X. Feng, R. Yin, S.H. Ho, N. Ren, J.S. Chang Adsorption of p-nitrophenols (PNP) on microalgal biochar: analysis of high adsorption capacity and mechanism Bioresour. Technol., 244 (2017), pp. 1456-1464, 10.1016/j.biortech.2017.05.025[75] P. Iovino, S. Canzano, S. Capasso, A. Erto, D. Musmarra A modeling analysis for the assessment of ibuprofen adsorption mechanism onto activated carbons Chem. Eng. J., 277 (2015), pp. 360-367, 10.1016/j.cej.2015.04.097[76] J.S. Piccin, G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan J. Chem. Eng. Data, 56 (2011), pp. 3759-3765, 10.1021/je200388s[77] R. da Rosa Schio, B.C. da Rosa, J.O. Gonçalves, L.A.A. Pinto, E.S. Mallmann, G.L. Dotto Synthesis of a bio–based polyurethane/chitosan composite foam using ricinoleic acid for the adsorption of Food Red 17 dye Int. J. Biol. Macromol., 121 (2019), pp. 373-380, 10.1016/j.ijbiomac.2018.09.186[78] J. Van Der Stap, S. Klaasse Labwaarden: acute nierinsufficiëntie Nursing, 22 (2016), pp. 36-38, 10.1007/s41193-016-0111-5[79] L. Sellaoui, G.L. Dotto, J.O. Gonçalves, L.A.A. Pinto, S. Knani, A. Ben Lamine Equilibrium modeling of single and binary adsorption of Food Yellow 4 and Food Blue 2 on modified chitosan using a statistical physics theory: new microscopic interpretations J. Mol. Liq., 222 (2016), pp. 151-158, 10.1016/j.molliq.2016.07.005[80] M.F. Elkady, A.M. Ibrahim, M.M.A. El-Latif Assessment of the adsorption kinetics, equilibrium and thermodynamic for the potential removal of reactive red dye using eggshell biocomposite beads Desalination, 278 (2011), pp. 412-423, 10.1016/j.desal.2011.05.063[81] X. Gu, H. Kang, H. Li, X. Liu, F. Dong, M. Fu, J. Chen Adsorption removal of various nitrophenols in aqueous solution by aminopropyl-modified mesoporous MCM-48 J. Chem. Eng. Data, 63 (2018), pp. 3606-3614, 10.1021/acs.jced.8b00477[82] M. Darwish, Q. Sadr Manuchehri, A. Mohammadi, N. Assi NiFe2O4 nanomagnets prepared through a microwave autocombustion route as an efficient recoverable adsorbent for 2-nitrophenol removal Part. Sci. Technol., 37 (2019), pp. 524-533, 10.1080/02726351.2017.1402835[83] L.B. Ariza Traslaviña, L.J. Torres Romero, D.A. Blanco Martínez Adsorption kinetics of 2-nitrophenol from aqueous solution on activated carbon Rev. Cienc., 20 (2016), pp. 65-75[84] I.A. Lawal, M.M. Lawal, S.O. Akpotu, M.A. Azeez, P. Ndungu, B. Moodley Theoretical and experimental adsorption studies of sulfamethoxazole and ketoprofen on synthesized ionic liquids modified CNTs Ecotoxicol. Environ. Saf., 161 (2018), pp. 542-552, 10.1016/j.ecoenv.2018.06.019[85] R. Baccar, M. Sarrà, J. Bouzid, M. Feki, P. Blánquez Removal of pharmaceutical compounds by activated carbon prepared from agricultural by-product Chem. Eng. J., 211–212 (2012), pp. 310-317, 10.1016/j.cej.2012.09.099[86] M. Sarker, J.Y. Song, S.H. Jhung Adsorptive removal of anti-inflammatory drugs from water using graphene oxide/metal-organic framework composites Chem. Eng. J., 335 (2018), pp. 74-81, 10.1016/j.cej.2017.10.138[87] Y. Gao, M.A. Deshusses Adsorption of clofibric acid and ketoprofen onto powdered activated carbon: effect of natural organic matter Environ. Technol., 32 (2011), pp. 1719-1727, 10.1080/09593330.2011.554888PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/2518625d-9029-4afe-b6bc-dc5af20b5e1e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b31bb947-186a-4698-8ee3-c390d4375be1/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdfComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdfapplication/pdf224069https://repositorio.cuc.edu.co/bitstreams/3da36085-82da-48bc-aa2d-7be4046e015b/downloadc706391665415de362bfc3d8474db834MD51THUMBNAILComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdf.jpgComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdf.jpgimage/jpeg51515https://repositorio.cuc.edu.co/bitstreams/b62b6432-675a-404b-9fb5-377124a47a93/download2d5a4fc656eb17cbb4ccb233126e214aMD54TEXTComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdf.txtComposite carbon materials from winery composted waste for the treatment of effluents contaminated with ketoprofen and 2-nitrophenol.pdf.txttext/plain23199https://repositorio.cuc.edu.co/bitstreams/ae3dcca1-a29e-4888-9160-cf2c3dc6d03f/downloaddf21a3dc39af76fe98909942bd9b9a73MD5511323/8294oai:repositorio.cuc.edu.co:11323/82942024-09-17 11:09:17.276http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==