Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia
Previous soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficult...
- Autores:
-
Salgado-Cassiani, Julio Jose
Coronado-Hernández, Oscar E.
Gustavo, Gatica
Linfati, Rodrigo
Coronado-Hernandez, Jairo R.
Coronado Hernández, Oscar E.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9219
- Acceso en línea:
- https://hdl.handle.net/11323/9219
https://doi.org/ 10.3390/w14081217
https://repositorio.cuc.edu.co/
- Palabra clave:
- Precipitation
Frequency analysis
Return period
Antecedent moisture condition
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a5126b8620ce0618e3e228f6a8678702 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9219 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
title |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
spellingShingle |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia Precipitation Frequency analysis Return period Antecedent moisture condition |
title_short |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
title_full |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
title_fullStr |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
title_full_unstemmed |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
title_sort |
Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, Colombia |
dc.creator.fl_str_mv |
Salgado-Cassiani, Julio Jose Coronado-Hernández, Oscar E. Gustavo, Gatica Linfati, Rodrigo Coronado-Hernandez, Jairo R. Coronado Hernández, Oscar E. |
dc.contributor.author.spa.fl_str_mv |
Salgado-Cassiani, Julio Jose Coronado-Hernández, Oscar E. Gustavo, Gatica Linfati, Rodrigo Coronado-Hernandez, Jairo R. |
dc.contributor.author.none.fl_str_mv |
Coronado Hernández, Oscar E. |
dc.subject.proposal.eng.fl_str_mv |
Precipitation Frequency analysis Return period Antecedent moisture condition |
topic |
Precipitation Frequency analysis Return period Antecedent moisture condition |
description |
Previous soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficulties facing hydrologists in Colombia lies in the time spent gathering and analyzing information related to the selection of antecedent moisture conditions. In this study, complete records from 19 rainfall stations located in the Atlántico region, Colombia, were used to analyze the cumulative precipitation during the 5 days prior to the annual maximum daily precipitation associated with different return periods using the Gev, Gumbel, Pearson Type III and Log Pearson Type III probability distributions. Different interpolation methods (IDW, kriging and spline) were applied to evaluate the spatial distribution of the antecedent moisture conditions. The main contribution of this research is establishing, using a probabilistic approach, the behavior of antecedent moisture conditions in a particular region, which can be used by engineers and designers to plan water infrastructure. This probabilistic approach was applied to a case study of the Atlántico region, Colombia, where the spatial distribution of antecedent moisture conditions was calculated for several return periods. The results indicate that the better results were obtained with the IDW interpolation method, and the Pearson Type III and Gumbel distributions also showed the best fits based on the Akaike criterion. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-06-08T12:21:59Z |
dc.date.available.none.fl_str_mv |
2022-06-08T12:21:59Z |
dc.date.issued.none.fl_str_mv |
2022-04-10 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/ 10.3390/w14081217 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9219 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/ 10.3390/w14081217 |
dc.identifier.doi.spa.fl_str_mv |
10.3390/w14081217 |
dc.identifier.eissn.spa.fl_str_mv |
2073-4441 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/ 10.3390/w14081217 10.3390/w14081217 2073-4441 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9219 https://doi.org/ 10.3390/w14081217 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Water |
dc.relation.references.spa.fl_str_mv |
1. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988; pp. 350–376. 2. Ceballos, A.; Schnabel, S. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain). J. Hydrol. 1998, 210, 146–160. [CrossRef] 3. Dusek, J.; Vogel, T. Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow. J. Hydrol. 2016, 534, 590–605. [CrossRef] 4. Berne, A.; Delrieu, G.; Creutin, J.D.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 2004, 299, 166–179. [CrossRef] 5. Manfreda, S.; Fiorentino, M.; Iacobellis, V. DREAM A distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Adv. Geosci. 2005, 2, 31–39. [CrossRef] 6. Lazzari, M.; Piccarreta, M.; Ray, L.R.; Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence. In Landslides: Investigation and Monitoring; Ram, L.R., Lazzari, M., Eds.; IntechOpen: London, UK, 2020. Available online: https://www.intechopen.com/chapters/72592 (accessed on 1 February 2022). 7. Lazzari, M.; Piccarreta, M.; Manfreda, S. The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides. Nat. Hazards Earth Syst. Sci. 2018, 1–11. Available online: https://nhess.copernicus.org/preprints/nhess-2018-371/ (accessed on 20 February 2022). [CrossRef] 8. Poveda, G.; Jaramillo, A.; Gil, M.M.; Quinceno, N.; Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [CrossRef] 9. Kim, G.-S.; Lee, S.-g.; Lee, J.; Park, E.; Song, C.; Hong, M.; Ko, Y.-J.; Lee, W.-K. Effects of Forest and Agriculture Land Covers on Organic Carbon Flux Mediated through Precipitation. Water 2022, 14, 623. [CrossRef] 10. Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [CrossRef] 11. Waylen, P.; Poveda, G. El Niño-Southern Oscillation and aspects of western South American hydro-climatology. Hydrol. Process 2002, 16, 1247–1260. [CrossRef] 12. de Alcântara, L.R.P.; Coutinho, A.P.; dos Santos Neto, S.M.; Carvalho de Gusmão da Cunha Rabelo, A.E.; Antonino, A.C.D. Modeling of the Hydrological Processes in Caatinga and Pasture Areas in the Brazilian Semi-Arid. Water 2021, 13, 1877. [CrossRef] 13. U.S. Water Resources Council. A Uniform Technique for Determining Flood Flow Frequencies; Bulletin 15; U.S. Water Resources Council: Washington, DC, USA, 1967. 14. Cunnane, C. Methods and merits of regional flood frequency analysis. J. Hydrol. 1988, 100, 269–290. [CrossRef] 15. Webster, V.L.; Stedinger, J. Log-Pearson Type III Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12, 482–491. 16. Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J. Hydrol. 2015, 3, 424–443. [CrossRef] 17. González-Álvarez, Á.; Viloria-Marimón, O.; Coronado-Hernández, Ó.E.; Vélez-Pereira, A.; Tesfagiorgis, K.; Coronado-Hernández, J.R. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water 2019, 11, 358. [CrossRef] 18. Pizarro, R.; Ingram, B.; Gonzalez-Leiva, F.; Valdés-Pineda, R.; Sangüesa, C.; Delgado, N.; García-Chevesich, P.; Valdés, J.B. WEBSEIDF: A Web-Based System for the Estimation of IDF Curves in Central Chile. Hydrology 2018, 5, 40. [CrossRef] 19. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef] 20. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213. 21. Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [CrossRef] 22. Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Earth Environ. Sci. 2017, 9, 354–371. [CrossRef] 23. Ngongondo, C.; Li, L.; Gong, L.; Xu, C.-Y.; Alemaw, B.F. Flood frequency under changing climate in the upper kafue river basin, southern africa: A large scale hydrological model application. Stoch. Environ. Res. Risk Assess. 2013, 27, 1883–1898. [CrossRef] 24. López, J.; Goñi, M.; Martín, I.S.; Erro, J. Regional frequency analysis of annual maximum daily rainfall in Navarra. Quantiles mapping. Ing. Del Agua 2019, 23, 33–51. [CrossRef] 25. Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [CrossRef] 26. Vargas, A.; Santos, A.; Cárdenas, E.; Obregón, N. Distribution and spatial interpolation of rainfall in Bogotá, Colombia. Dyna 2011, 167, 151–159. 27. Simpson, G.; Wu, Y.H. Accuracy and Effort of Interpolation and Sampling: Can GIS Help Lower Field Costs? Int. J. Geo-Inf. 2014, 3, 1317–1333. [CrossRef] 28. Mohamed, M.; Attia, K.; Azab, S. ssessment of Coastal Vulnerability to Climate Change Impacts using GIS and Remote Sensing: A Case Study of Al-Alamein New City. J. Clean. Prod. 2021, 290, 125723. 29. Malam Issa, O.; Valentin, C.; Rajot, J.L.; Cerdan, O.; Desprats, J.F.; Bouchet, T. Runoff generation fostered by physical and biological crusts in semi-arid sandy soils. Geoderma 2011, 167–168, 22–29. [CrossRef] 30. Dunne, T. Relation of field studies and modeling in the prediction of storm runoff. J. Hydrol. 1983, 65, 25–48. [CrossRef] 31. Barling, R.D.; Moore, I.D.; Grayson, R.B. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour. Res. 1994, 30, 1029–1044. [CrossRef] |
dc.relation.citationendpage.spa.fl_str_mv |
24 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
8 |
dc.relation.citationvolume.spa.fl_str_mv |
14 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 by the authors. Licensee MDPI, Basel, Switzerland. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
24 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.coverage.region.none.fl_str_mv |
Atlántico |
dc.publisher.spa.fl_str_mv |
Multidisciplinary Digital Publishing Institute (MDPI) |
dc.publisher.place.spa.fl_str_mv |
Switzerland |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/2073-4441/14/8/1217/htm |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/cb1240c5-57bb-4f07-bc32-2d17467c72c5/download https://repositorio.cuc.edu.co/bitstreams/1c9b6d9f-6120-4a13-bd8c-f492c0f2c9a6/download https://repositorio.cuc.edu.co/bitstreams/14cc8f92-a3e5-44c8-b85b-9cd40b5433d7/download https://repositorio.cuc.edu.co/bitstreams/d0c1a0f4-b638-4bdc-93db-aee4715f3098/download |
bitstream.checksum.fl_str_mv |
27da0b45c737d03d0e198af351e69b38 e30e9215131d99561d40d6b0abbe9bad 89123e21d37ee1a42007b39767e8697d a1db12a8d60b289410f2b7c084f846da |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1831932237948387328 |
spelling |
Salgado-Cassiani, Julio JoseCoronado-Hernández, Oscar E.Gustavo, GaticaLinfati, RodrigoCoronado-Hernandez, Jairo R.Coronado Hernández, Oscar E.2022-06-08T12:21:59Z2022-06-08T12:21:59Z2022-04-10Salgado-Cassiani, J.J.; Coronado-Hernández, O.E.; Gatica, G.; Linfati, R.; Coronado-Hernández, J.R. Probabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia. Water 2022, 14, 1217. https://doi.org/ 10.3390/w14081217https://hdl.handle.net/11323/9219https://doi.org/ 10.3390/w1408121710.3390/w140812172073-4441Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Previous soil moisture conditions play an important role in the design of hydraulic structures because they are directly related to the runoff threshold associated with a return period. These represent one of the main determinants of the runoff response of a drainage basin. One of the main difficulties facing hydrologists in Colombia lies in the time spent gathering and analyzing information related to the selection of antecedent moisture conditions. In this study, complete records from 19 rainfall stations located in the Atlántico region, Colombia, were used to analyze the cumulative precipitation during the 5 days prior to the annual maximum daily precipitation associated with different return periods using the Gev, Gumbel, Pearson Type III and Log Pearson Type III probability distributions. Different interpolation methods (IDW, kriging and spline) were applied to evaluate the spatial distribution of the antecedent moisture conditions. The main contribution of this research is establishing, using a probabilistic approach, the behavior of antecedent moisture conditions in a particular region, which can be used by engineers and designers to plan water infrastructure. This probabilistic approach was applied to a case study of the Atlántico region, Colombia, where the spatial distribution of antecedent moisture conditions was calculated for several return periods. The results indicate that the better results were obtained with the IDW interpolation method, and the Pearson Type III and Gumbel distributions also showed the best fits based on the Akaike criterion.24 páginasapplication/pdfengMultidisciplinary Digital Publishing Institute (MDPI)SwitzerlandAtribución 4.0 Internacional (CC BY 4.0)© 2022 by the authors. Licensee MDPI, Basel, Switzerland.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Probabilistic approach to determine the spatial distribution of the antecedent moisture conditions for different return periods in the Atlántico region, ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.mdpi.com/2073-4441/14/8/1217/htmColombiaAtlánticoWater1. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology, 1st ed.; McGraw-Hill: New York, NY, USA, 1988; pp. 350–376.2. Ceballos, A.; Schnabel, S. Hydrological behaviour of a small catchment in the dehesa landuse system (Extremadura, SW Spain). J. Hydrol. 1998, 210, 146–160. [CrossRef]3. Dusek, J.; Vogel, T. Hillslope-storage and rainfall-amount thresholds as controls of preferential stormflow. J. Hydrol. 2016, 534, 590–605. [CrossRef]4. Berne, A.; Delrieu, G.; Creutin, J.D.; Obled, C. Temporal and spatial resolution of rainfall measurements required for urban hydrology. J. Hydrol. 2004, 299, 166–179. [CrossRef]5. Manfreda, S.; Fiorentino, M.; Iacobellis, V. DREAM A distributed model for runoff, evapotranspiration, and antecedent soil moisture simulation. Adv. Geosci. 2005, 2, 31–39. [CrossRef]6. Lazzari, M.; Piccarreta, M.; Ray, L.R.; Manfreda, S. Modeling Antecedent Soil Moisture to Constrain Rainfall Thresholds for Shallow Landslides Occurrence. In Landslides: Investigation and Monitoring; Ram, L.R., Lazzari, M., Eds.; IntechOpen: London, UK, 2020. Available online: https://www.intechopen.com/chapters/72592 (accessed on 1 February 2022).7. Lazzari, M.; Piccarreta, M.; Manfreda, S. The role of antecedent soil moisture conditions on rainfall-triggered shallow landslides. Nat. Hazards Earth Syst. Sci. 2018, 1–11. Available online: https://nhess.copernicus.org/preprints/nhess-2018-371/ (accessed on 20 February 2022). [CrossRef]8. Poveda, G.; Jaramillo, A.; Gil, M.M.; Quinceno, N.; Mantilla, R.I. Seasonality in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [CrossRef]9. Kim, G.-S.; Lee, S.-g.; Lee, J.; Park, E.; Song, C.; Hong, M.; Ko, Y.-J.; Lee, W.-K. Effects of Forest and Agriculture Land Covers on Organic Carbon Flux Mediated through Precipitation. Water 2022, 14, 623. [CrossRef]10. Darouich, H.; Ramos, T.B.; Pereira, L.S.; Rabino, D.; Bagagiolo, G.; Capello, G.; Simionesei, L.; Cavallo, E.; Biddoccu, M. Water Use and Soil Water Balance of Mediterranean Vineyards under Rainfed and Drip Irrigation Management: Evapotranspiration Partition and Soil Management Modelling for Resource Conservation. Water 2022, 14, 554. [CrossRef]11. Waylen, P.; Poveda, G. El Niño-Southern Oscillation and aspects of western South American hydro-climatology. Hydrol. Process 2002, 16, 1247–1260. [CrossRef]12. de Alcântara, L.R.P.; Coutinho, A.P.; dos Santos Neto, S.M.; Carvalho de Gusmão da Cunha Rabelo, A.E.; Antonino, A.C.D. Modeling of the Hydrological Processes in Caatinga and Pasture Areas in the Brazilian Semi-Arid. Water 2021, 13, 1877. [CrossRef]13. U.S. Water Resources Council. A Uniform Technique for Determining Flood Flow Frequencies; Bulletin 15; U.S. Water Resources Council: Washington, DC, USA, 1967.14. Cunnane, C. Methods and merits of regional flood frequency analysis. J. Hydrol. 1988, 100, 269–290. [CrossRef]15. Webster, V.L.; Stedinger, J. Log-Pearson Type III Distribution and Its Application in Flood Frequency Analysis. I: Distribution Characteristics. J. Hydrol. Eng. 2007, 12, 482–491.16. Burgess, C.P.; Taylor, M.A.; Stephenson, T.; Mandal, A. Frequency analysis, infilling and trends for extreme precipitation for Jamaica (1895–2100). J. Hydrol. 2015, 3, 424–443. [CrossRef]17. González-Álvarez, Á.; Viloria-Marimón, O.; Coronado-Hernández, Ó.E.; Vélez-Pereira, A.; Tesfagiorgis, K.; Coronado-Hernández, J.R. Isohyetal Maps of Daily Maximum Rainfall for Different Return Periods for the Colombian Caribbean Region. Water 2019, 11, 358. [CrossRef]18. Pizarro, R.; Ingram, B.; Gonzalez-Leiva, F.; Valdés-Pineda, R.; Sangüesa, C.; Delgado, N.; García-Chevesich, P.; Valdés, J.B. WEBSEIDF: A Web-Based System for the Estimation of IDF Curves in Central Chile. Hydrology 2018, 5, 40. [CrossRef]19. Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [CrossRef]20. Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1998; pp. 199–213.21. Salas, J.D.; Obeysekera, J.; Vogel, R.M. Techniques for assessing water infrastructure for nonstationary extreme events: A review. Hydrol. Sci. J. 2018, 63, 325–352. [CrossRef]22. Ikechukwu, M.N.; Ebinne, E.; Idorenyin, U.; Raphael, N.I. Accuracy Assessment and Comparative Analysis of IDW, Spline and Kriging in Spatial Interpolation of Landform (Topography): An Experimental Study. Earth Environ. Sci. 2017, 9, 354–371. [CrossRef]23. Ngongondo, C.; Li, L.; Gong, L.; Xu, C.-Y.; Alemaw, B.F. Flood frequency under changing climate in the upper kafue river basin, southern africa: A large scale hydrological model application. Stoch. Environ. Res. Risk Assess. 2013, 27, 1883–1898. [CrossRef]24. López, J.; Goñi, M.; Martín, I.S.; Erro, J. Regional frequency analysis of annual maximum daily rainfall in Navarra. Quantiles mapping. Ing. Del Agua 2019, 23, 33–51. [CrossRef]25. Bhunia, G.S.; Shit, P.K.; Maiti, R. Comparison of GIS-based interpolation methods for spatial distribution of soil organic carbon (SOC). J. Saudi Soc. Agric. Sci. 2018, 17, 114–126. [CrossRef]26. Vargas, A.; Santos, A.; Cárdenas, E.; Obregón, N. Distribution and spatial interpolation of rainfall in Bogotá, Colombia. Dyna 2011, 167, 151–159.27. Simpson, G.; Wu, Y.H. Accuracy and Effort of Interpolation and Sampling: Can GIS Help Lower Field Costs? Int. J. Geo-Inf. 2014, 3, 1317–1333. [CrossRef]28. Mohamed, M.; Attia, K.; Azab, S. ssessment of Coastal Vulnerability to Climate Change Impacts using GIS and Remote Sensing: A Case Study of Al-Alamein New City. J. Clean. Prod. 2021, 290, 125723.29. Malam Issa, O.; Valentin, C.; Rajot, J.L.; Cerdan, O.; Desprats, J.F.; Bouchet, T. Runoff generation fostered by physical and biological crusts in semi-arid sandy soils. Geoderma 2011, 167–168, 22–29. [CrossRef]30. Dunne, T. Relation of field studies and modeling in the prediction of storm runoff. J. Hydrol. 1983, 65, 25–48. [CrossRef]31. Barling, R.D.; Moore, I.D.; Grayson, R.B. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour. Res. 1994, 30, 1029–1044. [CrossRef]241814PrecipitationFrequency analysisReturn periodAntecedent moisture conditionPublicationed6debd7-390c-4454-988f-881ac48d1279https://scholar.google.ca/citations?user=ELMB_rQAAAAJ&hl=en0000-0002-6574-0857ORIGINALProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdfProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdfapplication/pdf3974705https://repositorio.cuc.edu.co/bitstreams/cb1240c5-57bb-4f07-bc32-2d17467c72c5/download27da0b45c737d03d0e198af351e69b38MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/1c9b6d9f-6120-4a13-bd8c-f492c0f2c9a6/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdf.txtProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdf.txttext/plain58761https://repositorio.cuc.edu.co/bitstreams/14cc8f92-a3e5-44c8-b85b-9cd40b5433d7/download89123e21d37ee1a42007b39767e8697dMD53THUMBNAILProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdf.jpgProbabilistic Approach to Determine the Spatial Distribution of the Antecedent Moisture Conditions for Different Return Periods in the Atlántico Region, Colombia.pdf.jpgimage/jpeg16375https://repositorio.cuc.edu.co/bitstreams/d0c1a0f4-b638-4bdc-93db-aee4715f3098/downloada1db12a8d60b289410f2b7c084f846daMD5411323/9219oai:repositorio.cuc.edu.co:11323/92192025-02-25 19:45:26.172https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |