Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for man...
- Autores:
-
Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Del Arco, Jon
Fernández-Lucas, Jesús
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8221
- Acceso en línea:
- https://hdl.handle.net/11323/8221
https://doi.org/10.1016/j.colsurfb.2021.111747
https://repositorio.cuc.edu.co/
- Palabra clave:
- Marine organisms
Chitinolitic enzymes
Molecular cloning
Protein purification
Biochemical characterization
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a4855c89e3b347b98de1de4602b8a597 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8221 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
title |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
spellingShingle |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis Marine organisms Chitinolitic enzymes Molecular cloning Protein purification Biochemical characterization |
title_short |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
title_full |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
title_fullStr |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
title_full_unstemmed |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
title_sort |
Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis |
dc.creator.fl_str_mv |
Beygmoradi, Azadeh Homaei, Ahmad Hemmati, Roohullah Del Arco, Jon Fernández-Lucas, Jesús |
dc.contributor.author.spa.fl_str_mv |
Beygmoradi, Azadeh Homaei, Ahmad Hemmati, Roohullah Del Arco, Jon Fernández-Lucas, Jesús |
dc.subject.spa.fl_str_mv |
Marine organisms Chitinolitic enzymes Molecular cloning Protein purification Biochemical characterization |
topic |
Marine organisms Chitinolitic enzymes Molecular cloning Protein purification Biochemical characterization |
description |
Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min−1 and 43.37 s−1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-05-04T23:30:55Z |
dc.date.available.none.fl_str_mv |
2021-05-04T23:30:55Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.embargoEnd.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
0927-7765 1873-4367 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8221 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.colsurfb.2021.111747 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
0927-7765 1873-4367 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8221 https://doi.org/10.1016/j.colsurfb.2021.111747 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] S.M. Moss, D.R. Moss, S.M. Arce, D.V. Lightner, J.M. Lotz, The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture, J. Invertebr. Pathol. 110 (2012) 247–250. [2] A. Homaei, Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain, J. Mol. Catal. B Enzym. 118 (2015) 16–22. [3] D.J. Vance, P.C. Rothlisberg, The biology and ecology of the banana prawns: Penaeus merguiensis de Man and P. indicus H. Milne Edwards, Adv. Mar. Biol. 86 (2020) 1–139. [4] A. Beygmoradi, A. Homaei, R. Hemmati, P. Santos-Moriano, D. Hormigo, J. Fernandez-Lucas, Marine chitinolytic enzymes, a biotechnological treasure´ hidden in the ocean? Appl. Microbiol. Biotechnol. 102 (2018) 9937–9948. [5] H.P. Ramesh, R.N. Tharanathan, Carbohydrates—the renewable raw materials of high biotechnological value, Crit. Rev. Biotechnol. 23 (2003) 149–173. [6] Q.-S. Huang, X.-L. Xie, G. Liang, F. Gong, Y. Wang, X.-Q. Wei, Q. Wang, Z.-L. Ji, Q.- X. Chen, The GH18 family of chitinases: their domain architectures, functions and evolutions, Glycobiology 22 (2012) 23–34. [7] J. Zhang, Y. Sun, F. Li, B. Huang, J. Xiang, Molecular characterization and expression analysis of chitinase (Fcchi-3) from Chinese shrimp, Fenneropenaeus chinensis, Mol. Biol. Rep. 37 (2010) 1913–1921. [8] Y. Huang, F. Ma, W. Wang, Q. Ren, Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis, Dev. Comp. Immunol. 50 (2015) 129–138. [9] P.K. Dutta, J. Dutta, V. Tripathi, Chitin and Chitosan: Chemistry, Properties and Applications, 2004. [10] I. Hamed, F. Ozogul, J.M. Regenstein, Industrial applications of crustacean by-¨ products (chitin, chitosan, and chitooligosaccharides): a review, Trends Food Sci. Technol. 48 (2016) 40–50. [11] A. Beygmoradi, A. Homaei, Marine microbes as a valuable resource for brand new industrial biocatalysts, Biocatal. Agric. Biotechnol. 11 (2017) 131–152. [12] P.E. Kidibule, P. Santos-Moriano, E. Jim´enez-Ortega, M. Ramírez-Escudero, M. C. Limon, M. Remacha, F.J. Plou, J. Sanz-Aparicio, M. Fer´ nandez-Lobato, Use of´ chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity, Microb. Cell Fact. 17 (2018) 47. [13] L. Hartl, S. Zach, V. Seidl-Seiboth, Fungal chitinases: diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotechnol. 93 (2012) 533–543. [14] R.S. Patil, V. Ghormade, M.V. Deshpande, Chitinolytic enzymes: an exploration, Enzyme Microb. Technol. 26 (2000) 473–483. [15] S.S. Paulsen, B. Andersen, L. Gram, H. Machado, Biological potential of chitinolytic marine bacteria, Mar. Drugs 14 (2016) 230. [16] T. Fukamizo, Chitinolytic enzymes catalysis, substrate binding, and their application, Curr. Protein Pept. Sci. 1 (2000) 105–124. [17] T. Ohno, S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, T. Watanabe, A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037, J. Bacteriol. 178 (1996) 5065–5070. [18] A. Kasprzewska, Plant chitinases-regulation and function, Cell. Mol. Biol. Lett. 8 (2003) 809–824. [19] F. Fusetti, H. von Moeller, D. Houston, H.J. Rozeboom, B.W. Dijkstra, R.G. Boot, J. M. Aerts, D.M. van Aalten, Structure of human chitotriosidase implications for specific inhibitor design and function of mammalian chitinase-like lectins, J. Biol. Chem. 277 (2002) 25537–25544. [20] M.R. Stam, E. Blanc, P.M. Coutinho, B. Henrissat, Evolutionary and mechanistic relationships between glycosidases acting on α-and β-bonds, Carbohydr. Res. 340 (2005) 2728–2734. [21] A. Bendt, H. Hüller, U. Kammel, E. Helmke, T. Schweder, Cloning, experssion, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7, Extremophiles 5 (2001) 119–126. [22] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254. [23] J.D. Thompson, Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680. [24] S. Kumar, K. Tamura, M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinformatics 5 (2004) 150–163. [25] M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. G. Cassarino, M. Bertoni, L. Bordoli, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) W252–W258. [26] D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12, University of California, San Francisco, 2010, pp. 1–826, 2012, There is no corresponding record for this reference.[Google Scholar]. [27] R.L. Tellam, Protein motifs in filarial chitinases: an alter-native view, Parasitol. Today 12 (1996) 291–292. [28] Q. Zhu, Y. Deng, P. Vanka, S.J. Brown, S. Muthukrishnan, K.J. Kramer, Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome, Bioinformatics 20 (2004) 161–169. [29] Z. Shen, M. Jacobs-Lorena, Evolution of chitin-binding proteins in invertebrates, J. Mol. Evol. 48 (1999) 341–347. [30] Y. Arakane, Q. Zhu, M. Matsumiya, S. Muthukrishnan, K.J. Kramer, Properties of catalytic, linker and chitin-binding domains of insect chitinase, Insect Biochem. Mol. Biol. 33 (2003) 631–648. [31] M. Quentin, M. Ebbelaar, J. Derksen, C. Mariani, H. van Der Valk, Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi, Appl. Microbiol. Biotechnol. 58 (2002) 658–662. [32] M. Rechsteiner, S.W. Rogers, PEST sequences and regulation by proteolysis, Trends Biochem. Sci. 21 (1996) 267–271. [33] R. Sotelo-Mundo, E. Moran-Palacio, K. García-Orozco, C. Figueroa-Soto, M. Romo-´ Figueroa, E. Valenzuela-Soto, G. Yepiz-Plascencia, Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei, J. Food Biochem. 33 (2009) 246–259. [34] M. Kono, T. Matsui, C. Shimizu, D. Koga, Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2145–2147. [35] X.-L. Xie, Q.-X. Chen, J.-C. Lin, Y. Wang, Purification and some properties of β-N- acetyl-D-glucosaminidase from prawn (Penaeus vannamei), Mar. Biol. 146 (2004) 143–148. [36] D. Koga, K. Mizuki, A. Ide, M. Kono, T. Matsui, C. Shimizu, Kinetics of a chitinase from a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2505–2512. [37] F. Shojaei, A. Homaei, M.R. Taherizadeh, E. Kamrani, Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst, Int. J. Food Prop. 20 (2017) 1413–1423. [38] R.S. Rasmussen, M.T. Morrissey, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52 (2007) 237–292. [39] M. Hayes, B. Carney, J. Slater, W. Brück, Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications, Biotechnol. J.: Healthcare Nutr. Technol. 3 (2008) 878–889. [40] K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans, Mar. Biotechnol. 8 (2006) 203–226. [41] M. Revathi, R. Saravanan, A. Shanmugam, Production and Characterization of Chitinase from Vibrio species, A Head Waste of Shrimp Metapenaeus dobsonii (Miers, 1878) and Chitin of Sepiella inermis Orbigny, 1848, 2012. [42] D. Koga, Application of chitinase in agriculture, J. Met. Mater. Miner 15 (2005) 33–36. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Colloids and Surfaces B: Biointerfaces |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0927776521001910?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/071ac18c-3b9b-4c2f-a3a7-1cd8c8ef7ee1/download https://repositorio.cuc.edu.co/bitstreams/6c159437-6bec-47c2-9cb0-b9091a812127/download https://repositorio.cuc.edu.co/bitstreams/e7e0656f-351d-41b2-8c65-dec98bacf8cf/download https://repositorio.cuc.edu.co/bitstreams/d8b9fc9c-b3c8-4e4b-a691-07290522c553/download https://repositorio.cuc.edu.co/bitstreams/36a32c9e-7601-4a4e-9480-d5fdcd1d3269/download |
bitstream.checksum.fl_str_mv |
bb2caca1394db76a2f5707bd471e46eb 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 80a3427680e713943ac0867f20e5836e c789f1babbe192d19974d190961c3bbd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166910651400192 |
spelling |
Beygmoradi, AzadehHomaei, AhmadHemmati, RoohullahDel Arco, JonFernández-Lucas, Jesús2021-05-04T23:30:55Z2021-05-04T23:30:55Z202120230927-77651873-4367https://hdl.handle.net/11323/8221https://doi.org/10.1016/j.colsurfb.2021.111747Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min−1 and 43.37 s−1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste.Beygmoradi, AzadehHomaei, Ahmad-will be generated-orcid-0000-0001-9909-4761-600Hemmati, RoohullahDel Arco, Jon-will be generated-orcid-0000-0003-4646-492X-600Fernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colloids and Surfaces B: Biointerfaceshttps://www.sciencedirect.com/science/article/pii/S0927776521001910?via%3DihubMarine organismsChitinolitic enzymesMolecular cloningProtein purificationBiochemical characterizationIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] S.M. Moss, D.R. Moss, S.M. Arce, D.V. Lightner, J.M. Lotz, The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture, J. Invertebr. Pathol. 110 (2012) 247–250.[2] A. Homaei, Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain, J. Mol. Catal. B Enzym. 118 (2015) 16–22.[3] D.J. Vance, P.C. Rothlisberg, The biology and ecology of the banana prawns: Penaeus merguiensis de Man and P. indicus H. Milne Edwards, Adv. Mar. Biol. 86 (2020) 1–139.[4] A. Beygmoradi, A. Homaei, R. Hemmati, P. Santos-Moriano, D. Hormigo, J. Fernandez-Lucas, Marine chitinolytic enzymes, a biotechnological treasure´ hidden in the ocean? Appl. Microbiol. Biotechnol. 102 (2018) 9937–9948.[5] H.P. Ramesh, R.N. Tharanathan, Carbohydrates—the renewable raw materials of high biotechnological value, Crit. Rev. Biotechnol. 23 (2003) 149–173.[6] Q.-S. Huang, X.-L. Xie, G. Liang, F. Gong, Y. Wang, X.-Q. Wei, Q. Wang, Z.-L. Ji, Q.- X. Chen, The GH18 family of chitinases: their domain architectures, functions and evolutions, Glycobiology 22 (2012) 23–34.[7] J. Zhang, Y. Sun, F. Li, B. Huang, J. Xiang, Molecular characterization and expression analysis of chitinase (Fcchi-3) from Chinese shrimp, Fenneropenaeus chinensis, Mol. Biol. Rep. 37 (2010) 1913–1921.[8] Y. Huang, F. Ma, W. Wang, Q. Ren, Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis, Dev. Comp. Immunol. 50 (2015) 129–138.[9] P.K. Dutta, J. Dutta, V. Tripathi, Chitin and Chitosan: Chemistry, Properties and Applications, 2004.[10] I. Hamed, F. Ozogul, J.M. Regenstein, Industrial applications of crustacean by-¨ products (chitin, chitosan, and chitooligosaccharides): a review, Trends Food Sci. Technol. 48 (2016) 40–50.[11] A. Beygmoradi, A. Homaei, Marine microbes as a valuable resource for brand new industrial biocatalysts, Biocatal. Agric. Biotechnol. 11 (2017) 131–152.[12] P.E. Kidibule, P. Santos-Moriano, E. Jim´enez-Ortega, M. Ramírez-Escudero, M. C. Limon, M. Remacha, F.J. Plou, J. Sanz-Aparicio, M. Fer´ nandez-Lobato, Use of´ chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity, Microb. Cell Fact. 17 (2018) 47.[13] L. Hartl, S. Zach, V. Seidl-Seiboth, Fungal chitinases: diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotechnol. 93 (2012) 533–543.[14] R.S. Patil, V. Ghormade, M.V. Deshpande, Chitinolytic enzymes: an exploration, Enzyme Microb. Technol. 26 (2000) 473–483.[15] S.S. Paulsen, B. Andersen, L. Gram, H. Machado, Biological potential of chitinolytic marine bacteria, Mar. Drugs 14 (2016) 230.[16] T. Fukamizo, Chitinolytic enzymes catalysis, substrate binding, and their application, Curr. Protein Pept. Sci. 1 (2000) 105–124.[17] T. Ohno, S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, T. Watanabe, A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037, J. Bacteriol. 178 (1996) 5065–5070.[18] A. Kasprzewska, Plant chitinases-regulation and function, Cell. Mol. Biol. Lett. 8 (2003) 809–824.[19] F. Fusetti, H. von Moeller, D. Houston, H.J. Rozeboom, B.W. Dijkstra, R.G. Boot, J. M. Aerts, D.M. van Aalten, Structure of human chitotriosidase implications for specific inhibitor design and function of mammalian chitinase-like lectins, J. Biol. Chem. 277 (2002) 25537–25544.[20] M.R. Stam, E. Blanc, P.M. Coutinho, B. Henrissat, Evolutionary and mechanistic relationships between glycosidases acting on α-and β-bonds, Carbohydr. Res. 340 (2005) 2728–2734.[21] A. Bendt, H. Hüller, U. Kammel, E. Helmke, T. Schweder, Cloning, experssion, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7, Extremophiles 5 (2001) 119–126.[22] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.[23] J.D. Thompson, Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.[24] S. Kumar, K. Tamura, M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinformatics 5 (2004) 150–163.[25] M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. G. Cassarino, M. Bertoni, L. Bordoli, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) W252–W258.[26] D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12, University of California, San Francisco, 2010, pp. 1–826, 2012, There is no corresponding record for this reference.[Google Scholar].[27] R.L. Tellam, Protein motifs in filarial chitinases: an alter-native view, Parasitol. Today 12 (1996) 291–292.[28] Q. Zhu, Y. Deng, P. Vanka, S.J. Brown, S. Muthukrishnan, K.J. Kramer, Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome, Bioinformatics 20 (2004) 161–169.[29] Z. Shen, M. Jacobs-Lorena, Evolution of chitin-binding proteins in invertebrates, J. Mol. Evol. 48 (1999) 341–347.[30] Y. Arakane, Q. Zhu, M. Matsumiya, S. Muthukrishnan, K.J. Kramer, Properties of catalytic, linker and chitin-binding domains of insect chitinase, Insect Biochem. Mol. Biol. 33 (2003) 631–648.[31] M. Quentin, M. Ebbelaar, J. Derksen, C. Mariani, H. van Der Valk, Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi, Appl. Microbiol. Biotechnol. 58 (2002) 658–662.[32] M. Rechsteiner, S.W. Rogers, PEST sequences and regulation by proteolysis, Trends Biochem. Sci. 21 (1996) 267–271.[33] R. Sotelo-Mundo, E. Moran-Palacio, K. García-Orozco, C. Figueroa-Soto, M. Romo-´ Figueroa, E. Valenzuela-Soto, G. Yepiz-Plascencia, Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei, J. Food Biochem. 33 (2009) 246–259.[34] M. Kono, T. Matsui, C. Shimizu, D. Koga, Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2145–2147.[35] X.-L. Xie, Q.-X. Chen, J.-C. Lin, Y. Wang, Purification and some properties of β-N- acetyl-D-glucosaminidase from prawn (Penaeus vannamei), Mar. Biol. 146 (2004) 143–148.[36] D. Koga, K. Mizuki, A. Ide, M. Kono, T. Matsui, C. Shimizu, Kinetics of a chitinase from a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2505–2512.[37] F. Shojaei, A. Homaei, M.R. Taherizadeh, E. Kamrani, Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst, Int. J. Food Prop. 20 (2017) 1413–1423.[38] R.S. Rasmussen, M.T. Morrissey, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52 (2007) 237–292.[39] M. Hayes, B. Carney, J. Slater, W. Brück, Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications, Biotechnol. J.: Healthcare Nutr. Technol. 3 (2008) 878–889.[40] K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans, Mar. Biotechnol. 8 (2006) 203–226.[41] M. Revathi, R. Saravanan, A. Shanmugam, Production and Characterization of Chitinase from Vibrio species, A Head Waste of Shrimp Metapenaeus dobsonii (Miers, 1878) and Chitin of Sepiella inermis Orbigny, 1848, 2012.[42] D. Koga, Application of chitinase in agriculture, J. Met. Mater. Miner 15 (2005) 33–36.PublicationORIGINALIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdfIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdfapplication/pdf206345https://repositorio.cuc.edu.co/bitstreams/071ac18c-3b9b-4c2f-a3a7-1cd8c8ef7ee1/downloadbb2caca1394db76a2f5707bd471e46ebMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/6c159437-6bec-47c2-9cb0-b9091a812127/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e7e0656f-351d-41b2-8c65-dec98bacf8cf/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.jpgIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.jpgimage/jpeg55912https://repositorio.cuc.edu.co/bitstreams/d8b9fc9c-b3c8-4e4b-a691-07290522c553/download80a3427680e713943ac0867f20e5836eMD54TEXTIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.txtIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.txttext/plain9678https://repositorio.cuc.edu.co/bitstreams/36a32c9e-7601-4a4e-9480-d5fdcd1d3269/downloadc789f1babbe192d19974d190961c3bbdMD5511323/8221oai:repositorio.cuc.edu.co:11323/82212024-09-17 14:25:13.328http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |