Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis

Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for man...

Full description

Autores:
Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Del Arco, Jon
Fernández-Lucas, Jesús
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8221
Acceso en línea:
https://hdl.handle.net/11323/8221
https://doi.org/10.1016/j.colsurfb.2021.111747
https://repositorio.cuc.edu.co/
Palabra clave:
Marine organisms
Chitinolitic enzymes
Molecular cloning
Protein purification
Biochemical characterization
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a4855c89e3b347b98de1de4602b8a597
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8221
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
title Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
spellingShingle Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
Marine organisms
Chitinolitic enzymes
Molecular cloning
Protein purification
Biochemical characterization
title_short Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
title_full Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
title_fullStr Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
title_full_unstemmed Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
title_sort Identification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis
dc.creator.fl_str_mv Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Del Arco, Jon
Fernández-Lucas, Jesús
dc.contributor.author.spa.fl_str_mv Beygmoradi, Azadeh
Homaei, Ahmad
Hemmati, Roohullah
Del Arco, Jon
Fernández-Lucas, Jesús
dc.subject.spa.fl_str_mv Marine organisms
Chitinolitic enzymes
Molecular cloning
Protein purification
Biochemical characterization
topic Marine organisms
Chitinolitic enzymes
Molecular cloning
Protein purification
Biochemical characterization
description Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min−1 and 43.37 s−1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-04T23:30:55Z
dc.date.available.none.fl_str_mv 2021-05-04T23:30:55Z
dc.date.issued.none.fl_str_mv 2021
dc.date.embargoEnd.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 0927-7765
1873-4367
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8221
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.colsurfb.2021.111747
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 0927-7765
1873-4367
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8221
https://doi.org/10.1016/j.colsurfb.2021.111747
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] S.M. Moss, D.R. Moss, S.M. Arce, D.V. Lightner, J.M. Lotz, The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture, J. Invertebr. Pathol. 110 (2012) 247–250.
[2] A. Homaei, Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain, J. Mol. Catal. B Enzym. 118 (2015) 16–22.
[3] D.J. Vance, P.C. Rothlisberg, The biology and ecology of the banana prawns: Penaeus merguiensis de Man and P. indicus H. Milne Edwards, Adv. Mar. Biol. 86 (2020) 1–139.
[4] A. Beygmoradi, A. Homaei, R. Hemmati, P. Santos-Moriano, D. Hormigo, J. Fernandez-Lucas, Marine chitinolytic enzymes, a biotechnological treasure´ hidden in the ocean? Appl. Microbiol. Biotechnol. 102 (2018) 9937–9948.
[5] H.P. Ramesh, R.N. Tharanathan, Carbohydrates—the renewable raw materials of high biotechnological value, Crit. Rev. Biotechnol. 23 (2003) 149–173.
[6] Q.-S. Huang, X.-L. Xie, G. Liang, F. Gong, Y. Wang, X.-Q. Wei, Q. Wang, Z.-L. Ji, Q.- X. Chen, The GH18 family of chitinases: their domain architectures, functions and evolutions, Glycobiology 22 (2012) 23–34.
[7] J. Zhang, Y. Sun, F. Li, B. Huang, J. Xiang, Molecular characterization and expression analysis of chitinase (Fcchi-3) from Chinese shrimp, Fenneropenaeus chinensis, Mol. Biol. Rep. 37 (2010) 1913–1921.
[8] Y. Huang, F. Ma, W. Wang, Q. Ren, Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis, Dev. Comp. Immunol. 50 (2015) 129–138.
[9] P.K. Dutta, J. Dutta, V. Tripathi, Chitin and Chitosan: Chemistry, Properties and Applications, 2004.
[10] I. Hamed, F. Ozogul, J.M. Regenstein, Industrial applications of crustacean by-¨ products (chitin, chitosan, and chitooligosaccharides): a review, Trends Food Sci. Technol. 48 (2016) 40–50.
[11] A. Beygmoradi, A. Homaei, Marine microbes as a valuable resource for brand new industrial biocatalysts, Biocatal. Agric. Biotechnol. 11 (2017) 131–152.
[12] P.E. Kidibule, P. Santos-Moriano, E. Jim´enez-Ortega, M. Ramírez-Escudero, M. C. Limon, M. Remacha, F.J. Plou, J. Sanz-Aparicio, M. Fer´ nandez-Lobato, Use of´ chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity, Microb. Cell Fact. 17 (2018) 47.
[13] L. Hartl, S. Zach, V. Seidl-Seiboth, Fungal chitinases: diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotechnol. 93 (2012) 533–543.
[14] R.S. Patil, V. Ghormade, M.V. Deshpande, Chitinolytic enzymes: an exploration, Enzyme Microb. Technol. 26 (2000) 473–483.
[15] S.S. Paulsen, B. Andersen, L. Gram, H. Machado, Biological potential of chitinolytic marine bacteria, Mar. Drugs 14 (2016) 230.
[16] T. Fukamizo, Chitinolytic enzymes catalysis, substrate binding, and their application, Curr. Protein Pept. Sci. 1 (2000) 105–124.
[17] T. Ohno, S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, T. Watanabe, A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037, J. Bacteriol. 178 (1996) 5065–5070.
[18] A. Kasprzewska, Plant chitinases-regulation and function, Cell. Mol. Biol. Lett. 8 (2003) 809–824.
[19] F. Fusetti, H. von Moeller, D. Houston, H.J. Rozeboom, B.W. Dijkstra, R.G. Boot, J. M. Aerts, D.M. van Aalten, Structure of human chitotriosidase implications for specific inhibitor design and function of mammalian chitinase-like lectins, J. Biol. Chem. 277 (2002) 25537–25544.
[20] M.R. Stam, E. Blanc, P.M. Coutinho, B. Henrissat, Evolutionary and mechanistic relationships between glycosidases acting on α-and β-bonds, Carbohydr. Res. 340 (2005) 2728–2734.
[21] A. Bendt, H. Hüller, U. Kammel, E. Helmke, T. Schweder, Cloning, experssion, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7, Extremophiles 5 (2001) 119–126.
[22] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.
[23] J.D. Thompson, Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.
[24] S. Kumar, K. Tamura, M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinformatics 5 (2004) 150–163.
[25] M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. G. Cassarino, M. Bertoni, L. Bordoli, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) W252–W258.
[26] D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12, University of California, San Francisco, 2010, pp. 1–826, 2012, There is no corresponding record for this reference.[Google Scholar].
[27] R.L. Tellam, Protein motifs in filarial chitinases: an alter-native view, Parasitol. Today 12 (1996) 291–292.
[28] Q. Zhu, Y. Deng, P. Vanka, S.J. Brown, S. Muthukrishnan, K.J. Kramer, Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome, Bioinformatics 20 (2004) 161–169.
[29] Z. Shen, M. Jacobs-Lorena, Evolution of chitin-binding proteins in invertebrates, J. Mol. Evol. 48 (1999) 341–347.
[30] Y. Arakane, Q. Zhu, M. Matsumiya, S. Muthukrishnan, K.J. Kramer, Properties of catalytic, linker and chitin-binding domains of insect chitinase, Insect Biochem. Mol. Biol. 33 (2003) 631–648.
[31] M. Quentin, M. Ebbelaar, J. Derksen, C. Mariani, H. van Der Valk, Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi, Appl. Microbiol. Biotechnol. 58 (2002) 658–662.
[32] M. Rechsteiner, S.W. Rogers, PEST sequences and regulation by proteolysis, Trends Biochem. Sci. 21 (1996) 267–271.
[33] R. Sotelo-Mundo, E. Moran-Palacio, K. García-Orozco, C. Figueroa-Soto, M. Romo-´ Figueroa, E. Valenzuela-Soto, G. Yepiz-Plascencia, Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei, J. Food Biochem. 33 (2009) 246–259.
[34] M. Kono, T. Matsui, C. Shimizu, D. Koga, Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2145–2147.
[35] X.-L. Xie, Q.-X. Chen, J.-C. Lin, Y. Wang, Purification and some properties of β-N- acetyl-D-glucosaminidase from prawn (Penaeus vannamei), Mar. Biol. 146 (2004) 143–148.
[36] D. Koga, K. Mizuki, A. Ide, M. Kono, T. Matsui, C. Shimizu, Kinetics of a chitinase from a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2505–2512.
[37] F. Shojaei, A. Homaei, M.R. Taherizadeh, E. Kamrani, Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst, Int. J. Food Prop. 20 (2017) 1413–1423.
[38] R.S. Rasmussen, M.T. Morrissey, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52 (2007) 237–292.
[39] M. Hayes, B. Carney, J. Slater, W. Brück, Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications, Biotechnol. J.: Healthcare Nutr. Technol. 3 (2008) 878–889.
[40] K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans, Mar. Biotechnol. 8 (2006) 203–226.
[41] M. Revathi, R. Saravanan, A. Shanmugam, Production and Characterization of Chitinase from Vibrio species, A Head Waste of Shrimp Metapenaeus dobsonii (Miers, 1878) and Chitin of Sepiella inermis Orbigny, 1848, 2012.
[42] D. Koga, Application of chitinase in agriculture, J. Met. Mater. Miner 15 (2005) 33–36.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Colloids and Surfaces B: Biointerfaces
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0927776521001910?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/071ac18c-3b9b-4c2f-a3a7-1cd8c8ef7ee1/download
https://repositorio.cuc.edu.co/bitstreams/6c159437-6bec-47c2-9cb0-b9091a812127/download
https://repositorio.cuc.edu.co/bitstreams/e7e0656f-351d-41b2-8c65-dec98bacf8cf/download
https://repositorio.cuc.edu.co/bitstreams/d8b9fc9c-b3c8-4e4b-a691-07290522c553/download
https://repositorio.cuc.edu.co/bitstreams/36a32c9e-7601-4a4e-9480-d5fdcd1d3269/download
bitstream.checksum.fl_str_mv bb2caca1394db76a2f5707bd471e46eb
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
80a3427680e713943ac0867f20e5836e
c789f1babbe192d19974d190961c3bbd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166910651400192
spelling Beygmoradi, AzadehHomaei, AhmadHemmati, RoohullahDel Arco, JonFernández-Lucas, Jesús2021-05-04T23:30:55Z2021-05-04T23:30:55Z202120230927-77651873-4367https://hdl.handle.net/11323/8221https://doi.org/10.1016/j.colsurfb.2021.111747Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Fenneropenaeus merguiensis (commonly named banana shrimp) is one of the most important farmed crustacean worldwide species for the fisheries and aquaculture industry. Besides its nutritional value, it is a good source of chitinase, an enzyme with excellent biological and catalytic properties for many industrial applications. In the present study, a putative chitinase-encoding cDNA was synthesized from mRNA from F. merguiensis hepatopancreas tissue. Subsequently, the corresponding cDNA was cloned, sequenced and functionally expressed in Escherichia coli, and the recombinant F. merguiensis chitinase (rFmCHI) was purified by His-tag affinity chromatography. The bioinformatics analysis of aminoacid sequence of rFmCHI displayed a cannonical multidomain architecture in chitinases which belongs to glycoside hydrolase family 18 (GH18 chitinase). Biochemical characterization revealed rFmCHI as a monomeric enzyme of molecular weight 52 kDa with maximum activity at 40 °C and pH 6.0 Moreover, the recombinant enzyme is also stable up to 60 °C, and in the pH range 5.0-8.0. Steady-state kinetic studies for colloidal chitin revealed KM, Vmax and kcat values of 78.18 μM, 0.07261 μM. min−1 and 43.37 s−1, respectively. Overall, our results aim to demonstrate the potential of rFmCHI as suitable catalyst for bioconversion of chitin waste.Beygmoradi, AzadehHomaei, Ahmad-will be generated-orcid-0000-0001-9909-4761-600Hemmati, RoohullahDel Arco, Jon-will be generated-orcid-0000-0003-4646-492X-600Fernández-Lucas, Jesús-will be generated-orcid-0000-0001-7045-8306-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Colloids and Surfaces B: Biointerfaceshttps://www.sciencedirect.com/science/article/pii/S0927776521001910?via%3DihubMarine organismsChitinolitic enzymesMolecular cloningProtein purificationBiochemical characterizationIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensisPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] S.M. Moss, D.R. Moss, S.M. Arce, D.V. Lightner, J.M. Lotz, The role of selective breeding and biosecurity in the prevention of disease in penaeid shrimp aquaculture, J. Invertebr. Pathol. 110 (2012) 247–250.[2] A. Homaei, Purification and biochemical properties of highly efficient alkaline phosphatase from Fenneropenaeus merguiensis brain, J. Mol. Catal. B Enzym. 118 (2015) 16–22.[3] D.J. Vance, P.C. Rothlisberg, The biology and ecology of the banana prawns: Penaeus merguiensis de Man and P. indicus H. Milne Edwards, Adv. Mar. Biol. 86 (2020) 1–139.[4] A. Beygmoradi, A. Homaei, R. Hemmati, P. Santos-Moriano, D. Hormigo, J. Fernandez-Lucas, Marine chitinolytic enzymes, a biotechnological treasure´ hidden in the ocean? Appl. Microbiol. Biotechnol. 102 (2018) 9937–9948.[5] H.P. Ramesh, R.N. Tharanathan, Carbohydrates—the renewable raw materials of high biotechnological value, Crit. Rev. Biotechnol. 23 (2003) 149–173.[6] Q.-S. Huang, X.-L. Xie, G. Liang, F. Gong, Y. Wang, X.-Q. Wei, Q. Wang, Z.-L. Ji, Q.- X. Chen, The GH18 family of chitinases: their domain architectures, functions and evolutions, Glycobiology 22 (2012) 23–34.[7] J. Zhang, Y. Sun, F. Li, B. Huang, J. Xiang, Molecular characterization and expression analysis of chitinase (Fcchi-3) from Chinese shrimp, Fenneropenaeus chinensis, Mol. Biol. Rep. 37 (2010) 1913–1921.[8] Y. Huang, F. Ma, W. Wang, Q. Ren, Identification and molecular characterization of a peritrophin-like gene, involved in the antibacterial response in Chinese mitten crab, Eriocheir sinensis, Dev. Comp. Immunol. 50 (2015) 129–138.[9] P.K. Dutta, J. Dutta, V. Tripathi, Chitin and Chitosan: Chemistry, Properties and Applications, 2004.[10] I. Hamed, F. Ozogul, J.M. Regenstein, Industrial applications of crustacean by-¨ products (chitin, chitosan, and chitooligosaccharides): a review, Trends Food Sci. Technol. 48 (2016) 40–50.[11] A. Beygmoradi, A. Homaei, Marine microbes as a valuable resource for brand new industrial biocatalysts, Biocatal. Agric. Biotechnol. 11 (2017) 131–152.[12] P.E. Kidibule, P. Santos-Moriano, E. Jim´enez-Ortega, M. Ramírez-Escudero, M. C. Limon, M. Remacha, F.J. Plou, J. Sanz-Aparicio, M. Fer´ nandez-Lobato, Use of´ chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity, Microb. Cell Fact. 17 (2018) 47.[13] L. Hartl, S. Zach, V. Seidl-Seiboth, Fungal chitinases: diversity, mechanistic properties and biotechnological potential, Appl. Microbiol. Biotechnol. 93 (2012) 533–543.[14] R.S. Patil, V. Ghormade, M.V. Deshpande, Chitinolytic enzymes: an exploration, Enzyme Microb. Technol. 26 (2000) 473–483.[15] S.S. Paulsen, B. Andersen, L. Gram, H. Machado, Biological potential of chitinolytic marine bacteria, Mar. Drugs 14 (2016) 230.[16] T. Fukamizo, Chitinolytic enzymes catalysis, substrate binding, and their application, Curr. Protein Pept. Sci. 1 (2000) 105–124.[17] T. Ohno, S. Armand, T. Hata, N. Nikaidou, B. Henrissat, M. Mitsutomi, T. Watanabe, A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037, J. Bacteriol. 178 (1996) 5065–5070.[18] A. Kasprzewska, Plant chitinases-regulation and function, Cell. Mol. Biol. Lett. 8 (2003) 809–824.[19] F. Fusetti, H. von Moeller, D. Houston, H.J. Rozeboom, B.W. Dijkstra, R.G. Boot, J. M. Aerts, D.M. van Aalten, Structure of human chitotriosidase implications for specific inhibitor design and function of mammalian chitinase-like lectins, J. Biol. Chem. 277 (2002) 25537–25544.[20] M.R. Stam, E. Blanc, P.M. Coutinho, B. Henrissat, Evolutionary and mechanistic relationships between glycosidases acting on α-and β-bonds, Carbohydr. Res. 340 (2005) 2728–2734.[21] A. Bendt, H. Hüller, U. Kammel, E. Helmke, T. Schweder, Cloning, experssion, and characterization of a chitinase gene from the Antarctic psychrotolerant bacterium Vibrio sp. strain Fi:7, Extremophiles 5 (2001) 119–126.[22] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72 (1976) 248–254.[23] J.D. Thompson, Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994) 4673–4680.[24] S. Kumar, K. Tamura, M. Nei, MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment, Brief. Bioinformatics 5 (2004) 150–163.[25] M. Biasini, S. Bienert, A. Waterhouse, K. Arnold, G. Studer, T. Schmidt, F. Kiefer, T. G. Cassarino, M. Bertoni, L. Bordoli, SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information, Nucleic Acids Res. 42 (2014) W252–W258.[26] D. Case, T. Darden, T. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, K. Merz, AMBER 12, University of California, San Francisco, 2010, pp. 1–826, 2012, There is no corresponding record for this reference.[Google Scholar].[27] R.L. Tellam, Protein motifs in filarial chitinases: an alter-native view, Parasitol. Today 12 (1996) 291–292.[28] Q. Zhu, Y. Deng, P. Vanka, S.J. Brown, S. Muthukrishnan, K.J. Kramer, Computational identification of novel chitinase-like proteins in the Drosophila melanogaster genome, Bioinformatics 20 (2004) 161–169.[29] Z. Shen, M. Jacobs-Lorena, Evolution of chitin-binding proteins in invertebrates, J. Mol. Evol. 48 (1999) 341–347.[30] Y. Arakane, Q. Zhu, M. Matsumiya, S. Muthukrishnan, K.J. Kramer, Properties of catalytic, linker and chitin-binding domains of insect chitinase, Insect Biochem. Mol. Biol. 33 (2003) 631–648.[31] M. Quentin, M. Ebbelaar, J. Derksen, C. Mariani, H. van Der Valk, Description of a cellulose-binding domain and a linker sequence from Aspergillus fungi, Appl. Microbiol. Biotechnol. 58 (2002) 658–662.[32] M. Rechsteiner, S.W. Rogers, PEST sequences and regulation by proteolysis, Trends Biochem. Sci. 21 (1996) 267–271.[33] R. Sotelo-Mundo, E. Moran-Palacio, K. García-Orozco, C. Figueroa-Soto, M. Romo-´ Figueroa, E. Valenzuela-Soto, G. Yepiz-Plascencia, Kinetic characterization, expression and molecular modeling of a chitinase from the pacific white shrimp Litopenaeus vannamei, J. Food Biochem. 33 (2009) 246–259.[34] M. Kono, T. Matsui, C. Shimizu, D. Koga, Purifications and some properties of chitinase from the liver of a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2145–2147.[35] X.-L. Xie, Q.-X. Chen, J.-C. Lin, Y. Wang, Purification and some properties of β-N- acetyl-D-glucosaminidase from prawn (Penaeus vannamei), Mar. Biol. 146 (2004) 143–148.[36] D. Koga, K. Mizuki, A. Ide, M. Kono, T. Matsui, C. Shimizu, Kinetics of a chitinase from a prawn, Penaeus japonicus, Agric. Biol. Chem. 54 (1990) 2505–2512.[37] F. Shojaei, A. Homaei, M.R. Taherizadeh, E. Kamrani, Characterization of biosynthesized chitosan nanoparticles from Penaeus vannamei for the immobilization of P. vannamei protease: an eco-friendly nanobiocatalyst, Int. J. Food Prop. 20 (2017) 1413–1423.[38] R.S. Rasmussen, M.T. Morrissey, Marine biotechnology for production of food ingredients, Adv. Food Nutr. Res. 52 (2007) 237–292.[39] M. Hayes, B. Carney, J. Slater, W. Brück, Mining marine shellfish wastes for bioactive molecules: chitin and chitosan–part B: applications, Biotechnol. J.: Healthcare Nutr. Technol. 3 (2008) 878–889.[40] K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans, Mar. Biotechnol. 8 (2006) 203–226.[41] M. Revathi, R. Saravanan, A. Shanmugam, Production and Characterization of Chitinase from Vibrio species, A Head Waste of Shrimp Metapenaeus dobsonii (Miers, 1878) and Chitin of Sepiella inermis Orbigny, 1848, 2012.[42] D. Koga, Application of chitinase in agriculture, J. Met. Mater. Miner 15 (2005) 33–36.PublicationORIGINALIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdfIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdfapplication/pdf206345https://repositorio.cuc.edu.co/bitstreams/071ac18c-3b9b-4c2f-a3a7-1cd8c8ef7ee1/downloadbb2caca1394db76a2f5707bd471e46ebMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/6c159437-6bec-47c2-9cb0-b9091a812127/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/e7e0656f-351d-41b2-8c65-dec98bacf8cf/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.jpgIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.jpgimage/jpeg55912https://repositorio.cuc.edu.co/bitstreams/d8b9fc9c-b3c8-4e4b-a691-07290522c553/download80a3427680e713943ac0867f20e5836eMD54TEXTIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.txtIdentification of a novel tailor-made chitinase from white shrimp fenneropenaeus merguiensis.pdf.txttext/plain9678https://repositorio.cuc.edu.co/bitstreams/36a32c9e-7601-4a4e-9480-d5fdcd1d3269/downloadc789f1babbe192d19974d190961c3bbdMD5511323/8221oai:repositorio.cuc.edu.co:11323/82212024-09-17 14:25:13.328http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==