Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms

This paper presents the data of multimodal functions that emulate the performance of an array of five photovoltaic modules under partial shading conditions. These functions were obtained through mathematical modeling and represent the P–V curves of a photovoltaic module with several local maximums a...

Full description

Autores:
Robles Algarín, Carlos
Restrepo-Leal, Diego
Ospino C., Adalberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7476
Acceso en línea:
https://hdl.handle.net/11323/7476
https://doi.org/10.1016/j.dib.2019.104669
https://repositorio.cuc.edu.co/
Palabra clave:
Artificial neural networks
Multimodal functions
Optimization algorithms
Partial shading
Photovoltaic modules
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id RCUC2_a3b35f0c1d28892a37dea6fc77ef7cfa
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7476
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
title Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
spellingShingle Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
Artificial neural networks
Multimodal functions
Optimization algorithms
Partial shading
Photovoltaic modules
title_short Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
title_full Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
title_fullStr Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
title_full_unstemmed Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
title_sort Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
dc.creator.fl_str_mv Robles Algarín, Carlos
Restrepo-Leal, Diego
Ospino C., Adalberto
dc.contributor.author.spa.fl_str_mv Robles Algarín, Carlos
Restrepo-Leal, Diego
Ospino C., Adalberto
dc.subject.spa.fl_str_mv Artificial neural networks
Multimodal functions
Optimization algorithms
Partial shading
Photovoltaic modules
topic Artificial neural networks
Multimodal functions
Optimization algorithms
Partial shading
Photovoltaic modules
description This paper presents the data of multimodal functions that emulate the performance of an array of five photovoltaic modules under partial shading conditions. These functions were obtained through mathematical modeling and represent the P–V curves of a photovoltaic module with several local maximums and a global maximum. In addition, data from a feedforward neural network are shown, which represent an approximation of the multimodal functions that were obtained with mathematical modeling. The modeling of multimodal functions, the architecture of the neural network and the use of the data were discussed in our previous work entitled “Search for Global Maxima in Multimodal Functions by Applying Numerical Optimization Algorithms: A Comparison Between Golden Section and Simulated Annealing” [1]. Data were obtained through simulations in a C code, which were exported to DAT files and subsequently organized into four Excel tables. Each table shows the voltage and power data for the five modules of the photovoltaic array, for multimodal functions and for the approximation of the multimodal functions implemented by the artificial neural network. In this way, a dataset that can be used to evaluate the performance of optimization algorithms and system identification techniques applied in multimodal functions was obtained.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-11-24T16:33:44Z
dc.date.available.none.fl_str_mv 2020-11-24T16:33:44Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7476
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.dib.2019.104669
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7476
https://doi.org/10.1016/j.dib.2019.104669
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] J. Guillot, D. Restrepo Leal, C. Robles Algarín, I. Oliveros, Search for global Maxima in multimodal functions by applying numerical optimization algorithms: a Comparison between golden section and simulated annealing, Computation 7 (3) (2019) 43, https://doi.org/10.3390/computation7030043.
[2] C.R. Algarín, D.S. Hernández, D.R. Leal, A low-cost maximum power point tracking system based on neural network inverse model controller, Electronics 7 (1) (2018) 4, https://doi.org/10.3390/electronics7010004.
[3] J. Guerrero, Y. Munoz, F. Ib ~ a nez, A. Ospino, Analysis of mismatch and shading effects in a photovoltaic array using different ~ technologies, IOP Conf. Ser.-Mat. Sci. 59 (1) (2014) 012007, https://doi.org/10.1088/1757-899X/59/1/012007.
[4] W.D. Chang, Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm, Appl. Soft Comput. 60 (2017) 60e72, https://doi.org/10.1016/j.asoc.2017.06.039.
[5] V. Kaczmarczyk, Z. Bradac, P. Fiedler, A heuristic algorithm to compute multimodal criterial function weights for demand management in residential areas, Energies 10 (7) (2017) 1049, https://doi.org/10.3390/en10071049.
[6] J. Viloria Porto, C. Robles Algarín, D. Restrepo Leal, A novel approach for an MPPT controller based on the ADALINE network trained with the RTRL algorithm, Energies 11 (12) (2018) 3407, https://doi.org/10.3390/en11123407.
[7] H.M.H. Farh, A.M. Eltamaly, A.B. Ibrahim, M.F. Othman, M.S. Al-Saud, Dynamic global power extraction from partially shaded photovoltaic using deep recurrent neural network and improved PSO techniques, Int. T. Electr. Energy 9 (1) (2019), e12061, https://doi.org/10.1002/2050-7038.12061.
[8] M. Zhang, Z. Chen, L. Wei, An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions, Energies 12 (16) (2019) 3083, https://doi.org/10.3390/en12163083.
[9] R.S. Kulkarni, D.B. Talange, Modeling of solar photovoltaic module using system identification, in: Proceedings of International Conference on Power Systems, India, 2018, pp. 782e784, https://doi.org/10.1109/ICPES.2017.8387395.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Data in brief
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2352340919310248?via%3Dihub
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/b1f10fd7-6d3c-4c3a-854a-24da09ebba6e/download
https://repositorio.cuc.edu.co/bitstreams/80b8d820-65e8-4369-8034-b298d46d1762/download
https://repositorio.cuc.edu.co/bitstreams/38d718c2-605a-4faa-9520-03de5218e05d/download
https://repositorio.cuc.edu.co/bitstreams/0402c8b2-e20b-4b09-bef0-d2db11e3ba86/download
https://repositorio.cuc.edu.co/bitstreams/879e6817-6288-44cb-bbc4-2f61c82e1832/download
bitstream.checksum.fl_str_mv b0efd79af423659daea5ae1be62d60d8
4460e5956bc1d1639be9ae6146a50347
e30e9215131d99561d40d6b0abbe9bad
3f1f080bc8344e158e5a9f6e84762714
59f8110e61b64db00ba823e6b2dbf1de
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760805468700672
spelling Robles Algarín, CarlosRestrepo-Leal, DiegoOspino C., Adalberto2020-11-24T16:33:44Z2020-11-24T16:33:44Z2019https://hdl.handle.net/11323/7476https://doi.org/10.1016/j.dib.2019.104669Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the data of multimodal functions that emulate the performance of an array of five photovoltaic modules under partial shading conditions. These functions were obtained through mathematical modeling and represent the P–V curves of a photovoltaic module with several local maximums and a global maximum. In addition, data from a feedforward neural network are shown, which represent an approximation of the multimodal functions that were obtained with mathematical modeling. The modeling of multimodal functions, the architecture of the neural network and the use of the data were discussed in our previous work entitled “Search for Global Maxima in Multimodal Functions by Applying Numerical Optimization Algorithms: A Comparison Between Golden Section and Simulated Annealing” [1]. Data were obtained through simulations in a C code, which were exported to DAT files and subsequently organized into four Excel tables. Each table shows the voltage and power data for the five modules of the photovoltaic array, for multimodal functions and for the approximation of the multimodal functions implemented by the artificial neural network. In this way, a dataset that can be used to evaluate the performance of optimization algorithms and system identification techniques applied in multimodal functions was obtained.Robles Algarín, Carlos-will be generated-orcid-0000-0002-5879-5243-600Restrepo-Leal, DiegoOspino C., Adalberto-will be generated-orcid-0000-0003-1466-0424-600application/pdfengCorporación Universidad de la CostaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data in briefhttps://www.sciencedirect.com/science/article/pii/S2352340919310248?via%3DihubArtificial neural networksMultimodal functionsOptimization algorithmsPartial shadingPhotovoltaic modulesData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithmsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] J. Guillot, D. Restrepo Leal, C. Robles Algarín, I. Oliveros, Search for global Maxima in multimodal functions by applying numerical optimization algorithms: a Comparison between golden section and simulated annealing, Computation 7 (3) (2019) 43, https://doi.org/10.3390/computation7030043.[2] C.R. Algarín, D.S. Hernández, D.R. Leal, A low-cost maximum power point tracking system based on neural network inverse model controller, Electronics 7 (1) (2018) 4, https://doi.org/10.3390/electronics7010004.[3] J. Guerrero, Y. Munoz, F. Ib ~ a nez, A. Ospino, Analysis of mismatch and shading effects in a photovoltaic array using different ~ technologies, IOP Conf. Ser.-Mat. Sci. 59 (1) (2014) 012007, https://doi.org/10.1088/1757-899X/59/1/012007.[4] W.D. Chang, Multimodal function optimizations with multiple maximums and multiple minimums using an improved PSO algorithm, Appl. Soft Comput. 60 (2017) 60e72, https://doi.org/10.1016/j.asoc.2017.06.039.[5] V. Kaczmarczyk, Z. Bradac, P. Fiedler, A heuristic algorithm to compute multimodal criterial function weights for demand management in residential areas, Energies 10 (7) (2017) 1049, https://doi.org/10.3390/en10071049.[6] J. Viloria Porto, C. Robles Algarín, D. Restrepo Leal, A novel approach for an MPPT controller based on the ADALINE network trained with the RTRL algorithm, Energies 11 (12) (2018) 3407, https://doi.org/10.3390/en11123407.[7] H.M.H. Farh, A.M. Eltamaly, A.B. Ibrahim, M.F. Othman, M.S. Al-Saud, Dynamic global power extraction from partially shaded photovoltaic using deep recurrent neural network and improved PSO techniques, Int. T. Electr. Energy 9 (1) (2019), e12061, https://doi.org/10.1002/2050-7038.12061.[8] M. Zhang, Z. Chen, L. Wei, An immune firefly algorithm for tracking the maximum power point of PV array under partial shading conditions, Energies 12 (16) (2019) 3083, https://doi.org/10.3390/en12163083.[9] R.S. Kulkarni, D.B. Talange, Modeling of solar photovoltaic module using system identification, in: Proceedings of International Conference on Power Systems, India, 2018, pp. 782e784, https://doi.org/10.1109/ICPES.2017.8387395.PublicationORIGINALData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdfData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdfapplication/pdf725472https://repositorio.cuc.edu.co/bitstreams/b1f10fd7-6d3c-4c3a-854a-24da09ebba6e/downloadb0efd79af423659daea5ae1be62d60d8MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/80b8d820-65e8-4369-8034-b298d46d1762/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/38d718c2-605a-4faa-9520-03de5218e05d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdf.jpgData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdf.jpgimage/jpeg42050https://repositorio.cuc.edu.co/bitstreams/0402c8b2-e20b-4b09-bef0-d2db11e3ba86/download3f1f080bc8344e158e5a9f6e84762714MD54TEXTData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdf.txtData from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms.pdf.txttext/plain14905https://repositorio.cuc.edu.co/bitstreams/879e6817-6288-44cb-bbc4-2f61c82e1832/download59f8110e61b64db00ba823e6b2dbf1deMD5511323/7476oai:repositorio.cuc.edu.co:11323/74762024-09-17 12:46:55.001http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==