Data from multimodal functions based on an array of photovoltaic modules and an approximation with artificial neural networks as a scenario for testing optimization algorithms
This paper presents the data of multimodal functions that emulate the performance of an array of five photovoltaic modules under partial shading conditions. These functions were obtained through mathematical modeling and represent the P–V curves of a photovoltaic module with several local maximums a...
- Autores:
-
Robles Algarín, Carlos
Restrepo-Leal, Diego
Ospino C., Adalberto
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7476
- Acceso en línea:
- https://hdl.handle.net/11323/7476
https://doi.org/10.1016/j.dib.2019.104669
https://repositorio.cuc.edu.co/
- Palabra clave:
- Artificial neural networks
Multimodal functions
Optimization algorithms
Partial shading
Photovoltaic modules
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
Summary: | This paper presents the data of multimodal functions that emulate the performance of an array of five photovoltaic modules under partial shading conditions. These functions were obtained through mathematical modeling and represent the P–V curves of a photovoltaic module with several local maximums and a global maximum. In addition, data from a feedforward neural network are shown, which represent an approximation of the multimodal functions that were obtained with mathematical modeling. The modeling of multimodal functions, the architecture of the neural network and the use of the data were discussed in our previous work entitled “Search for Global Maxima in Multimodal Functions by Applying Numerical Optimization Algorithms: A Comparison Between Golden Section and Simulated Annealing” [1]. Data were obtained through simulations in a C code, which were exported to DAT files and subsequently organized into four Excel tables. Each table shows the voltage and power data for the five modules of the photovoltaic array, for multimodal functions and for the approximation of the multimodal functions implemented by the artificial neural network. In this way, a dataset that can be used to evaluate the performance of optimization algorithms and system identification techniques applied in multimodal functions was obtained. |
---|