Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse,...
- Autores:
-
Frantz Lütke, Sabrina
Perondi, Daniele
M. Machado, Lauren M.
Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
- Tipo de recurso:
- http://purl.org/coar/resource_type/c_816b
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7133
- Acceso en línea:
- https://hdl.handle.net/11323/7133
https://repositorio.cuc.edu.co/
- Palabra clave:
- 2-chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
- Rights
- closedAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a39987e1bd562458ea22251a60c68394 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7133 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
title |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
spellingShingle |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars 2-chlorophenol Adsorption Biochar Malt bagasse Pyrolysis |
title_short |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
title_full |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
title_fullStr |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
title_full_unstemmed |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
title_sort |
Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars |
dc.creator.fl_str_mv |
Frantz Lütke, Sabrina Perondi, Daniele M. Machado, Lauren M. Godinho, Marcelo S. Oliveira, Marcos L. Collazzo, Gabriela Dotto, Guilherme Luiz |
dc.contributor.author.spa.fl_str_mv |
Frantz Lütke, Sabrina Perondi, Daniele M. Machado, Lauren M. Godinho, Marcelo S. Oliveira, Marcos L. Collazzo, Gabriela Dotto, Guilherme Luiz |
dc.subject.spa.fl_str_mv |
2-chlorophenol Adsorption Biochar Malt bagasse Pyrolysis |
topic |
2-chlorophenol Adsorption Biochar Malt bagasse Pyrolysis |
description |
The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-09-29T21:32:43Z |
dc.date.available.none.fl_str_mv |
2020-09-29T21:32:43Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Pre-Publicación |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_816b |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/preprint |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ARTOTR |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_816b |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7133 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/7133 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus brevi florus: a potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/ 10.1016/j.jece.2015.12.012. [2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j. jece.2018.01.051. [3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011. [4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876, https://doi.org/10.1016/j.jwpe.2019.100876. [5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j. eti.2018.05.006. [6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/ 10.1016/j.jenvman.2019.04.004. [7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988. [8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C. P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j. molliq.2016.09.032. [9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/ 10.1016/j.jclepro.2017.10.007. [10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363. [11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G. L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040. [12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´ an, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j. micromeso.2015.01.052. [13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051. [14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/ 10.1016/j.biortech.2009.10.031. [15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19) 30022-8. [16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G. C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104, https://doi.org/10.1016/j.wasman.2020.05.038. [17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G. L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027. [18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191. [19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004. [20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027. [22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of environmental chemical engineering preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396. [23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117. [24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012. [25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051. [26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review, J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j. jece.2013.09.017. [27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜ Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi. org/10.1016/j.aca.2017.11.042. [28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/ Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j. jhazmat.2013.11.057. [29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739. [30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020. [31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049. [32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055. [33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption characteristics of congo red from aqueous solution onto tea waste, Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/ 00986445.2013.836633. [34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973. [35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041. [36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/ S0301-7036(14)70853-3. [37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi. org/10.1016/j.chemosphere.2020.126248. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/closedAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_14cb |
eu_rights_str_mv |
closedAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Journal of Environmental Chemical Engineering |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2213343720308228 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/233e1e5c-3c59-49cc-98ee-57c1d9e957be/download https://repositorio.cuc.edu.co/bitstreams/96846338-efae-4a2d-987e-d53a82a41842/download https://repositorio.cuc.edu.co/bitstreams/16b30834-cf50-46da-90e9-87b4f4852c09/download https://repositorio.cuc.edu.co/bitstreams/8b45c3f6-337b-44f4-857b-5bbdec7406c2/download https://repositorio.cuc.edu.co/bitstreams/96d8cacb-f276-4e65-b4b1-ca0b1945550b/download |
bitstream.checksum.fl_str_mv |
42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad acea3348947e8ff2e9e88615fb64c3e9 b1ae2c946a68187381a047f6b5f5f4fa 7594b38c0de37208418da8a84f257d88 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760671223709696 |
spelling |
Frantz Lütke, SabrinaPerondi, DanieleM. Machado, Lauren M.Godinho, MarceloS. Oliveira, Marcos L.Collazzo, GabrielaDotto, Guilherme Luiz2020-09-29T21:32:43Z2020-09-29T21:32:43Z2020https://hdl.handle.net/11323/7133Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol.Lütke, Sabrina-will be generated-orcid-0000-0001-6003-5131-600Perondi, Daniele-will be generated-orcid-0000-0001-6110-9673-600M. Machado, Lauren M.Godinho, MarceloS. Oliveira, Marcos L.Collazzo, Gabriela-will be generated-orcid-0000-0001-9155-3353-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbJournal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S22133437203082282-chlorophenolAdsorptionBiocharMalt bagassePyrolysisTreatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biocharsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus brevi florus: a potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/ 10.1016/j.jece.2015.12.012.[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j. jece.2018.01.051.[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876, https://doi.org/10.1016/j.jwpe.2019.100876.[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j. eti.2018.05.006.[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/ 10.1016/j.jenvman.2019.04.004.[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C. P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j. molliq.2016.09.032.[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/ 10.1016/j.jclepro.2017.10.007.[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363.[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G. L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040.[12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´ an, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j. micromeso.2015.01.052.[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/ 10.1016/j.biortech.2009.10.031.[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19) 30022-8.[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G. C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104, https://doi.org/10.1016/j.wasman.2020.05.038.[17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G. L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027.[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027.[22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of environmental chemical engineering preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396.[23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117.[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review, J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j. jece.2013.09.017.[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜ Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi. org/10.1016/j.aca.2017.11.042.[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/ Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j. jhazmat.2013.11.057.[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020.[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049.[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055.[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption characteristics of congo red from aqueous solution onto tea waste, Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/ 00986445.2013.836633.[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041.[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/ S0301-7036(14)70853-3.[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi. org/10.1016/j.chemosphere.2020.126248.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/233e1e5c-3c59-49cc-98ee-57c1d9e957be/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/96846338-efae-4a2d-987e-d53a82a41842/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdfAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdfapplication/pdf106871https://repositorio.cuc.edu.co/bitstreams/16b30834-cf50-46da-90e9-87b4f4852c09/downloadacea3348947e8ff2e9e88615fb64c3e9MD54THUMBNAILAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.jpgAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.jpgimage/jpeg50751https://repositorio.cuc.edu.co/bitstreams/8b45c3f6-337b-44f4-857b-5bbdec7406c2/downloadb1ae2c946a68187381a047f6b5f5f4faMD55TEXTAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.txtAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.txttext/plain1482https://repositorio.cuc.edu.co/bitstreams/96d8cacb-f276-4e65-b4b1-ca0b1945550b/download7594b38c0de37208418da8a84f257d88MD5611323/7133oai:repositorio.cuc.edu.co:11323/71332024-09-16 16:41:15.617http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |