Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars

The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse,...

Full description

Autores:
Frantz Lütke, Sabrina
Perondi, Daniele
M. Machado, Lauren M.
Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
Tipo de recurso:
http://purl.org/coar/resource_type/c_816b
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7133
Acceso en línea:
https://hdl.handle.net/11323/7133
https://repositorio.cuc.edu.co/
Palabra clave:
2-chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
Rights
closedAccess
License
CC0 1.0 Universal
id RCUC2_a39987e1bd562458ea22251a60c68394
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7133
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
title Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
spellingShingle Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
2-chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
title_short Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
title_full Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
title_fullStr Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
title_full_unstemmed Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
title_sort Treatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biochars
dc.creator.fl_str_mv Frantz Lütke, Sabrina
Perondi, Daniele
M. Machado, Lauren M.
Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Frantz Lütke, Sabrina
Perondi, Daniele
M. Machado, Lauren M.
Godinho, Marcelo
S. Oliveira, Marcos L.
Collazzo, Gabriela
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv 2-chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
topic 2-chlorophenol
Adsorption
Biochar
Malt bagasse
Pyrolysis
description The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-29T21:32:43Z
dc.date.available.none.fl_str_mv 2020-09-29T21:32:43Z
dc.date.issued.none.fl_str_mv 2020
dc.type.spa.fl_str_mv Pre-Publicación
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_816b
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/preprint
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ARTOTR
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_816b
status_str acceptedVersion
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7133
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
url https://hdl.handle.net/11323/7133
https://repositorio.cuc.edu.co/
identifier_str_mv Corporación Universidad de la Costa
REDICUC - Repositorio CUC
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus brevi florus: a potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/ 10.1016/j.jece.2015.12.012.
[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j. jece.2018.01.051.
[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.
[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876, https://doi.org/10.1016/j.jwpe.2019.100876.
[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j. eti.2018.05.006.
[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/ 10.1016/j.jenvman.2019.04.004.
[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.
[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C. P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j. molliq.2016.09.032.
[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/ 10.1016/j.jclepro.2017.10.007.
[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363.
[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G. L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040.
[12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´ an, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j. micromeso.2015.01.052.
[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.
[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/ 10.1016/j.biortech.2009.10.031.
[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19) 30022-8.
[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G. C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104, https://doi.org/10.1016/j.wasman.2020.05.038.
[17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G. L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027.
[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.
[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.
[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027.
[22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of environmental chemical engineering preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396.
[23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117.
[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.
[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.
[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review, J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j. jece.2013.09.017.
[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜ Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi. org/10.1016/j.aca.2017.11.042.
[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/ Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j. jhazmat.2013.11.057.
[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.
[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020.
[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049.
[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055.
[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption characteristics of congo red from aqueous solution onto tea waste, Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/ 00986445.2013.836633.
[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.
[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041.
[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/ S0301-7036(14)70853-3.
[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi. org/10.1016/j.chemosphere.2020.126248.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/closedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_14cb
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_14cb
eu_rights_str_mv closedAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Journal of Environmental Chemical Engineering
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213343720308228
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/233e1e5c-3c59-49cc-98ee-57c1d9e957be/download
https://repositorio.cuc.edu.co/bitstreams/96846338-efae-4a2d-987e-d53a82a41842/download
https://repositorio.cuc.edu.co/bitstreams/16b30834-cf50-46da-90e9-87b4f4852c09/download
https://repositorio.cuc.edu.co/bitstreams/8b45c3f6-337b-44f4-857b-5bbdec7406c2/download
https://repositorio.cuc.edu.co/bitstreams/96d8cacb-f276-4e65-b4b1-ca0b1945550b/download
bitstream.checksum.fl_str_mv 42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
acea3348947e8ff2e9e88615fb64c3e9
b1ae2c946a68187381a047f6b5f5f4fa
7594b38c0de37208418da8a84f257d88
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760671223709696
spelling Frantz Lütke, SabrinaPerondi, DanieleM. Machado, Lauren M.Godinho, MarceloS. Oliveira, Marcos L.Collazzo, GabrielaDotto, Guilherme Luiz2020-09-29T21:32:43Z2020-09-29T21:32:43Z2020https://hdl.handle.net/11323/7133Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The application of adsorption using biochars for the remediation of effluents containing emerging contaminants, including chlorophenols, is a hotspot and trend development in the literature. This treatment is more interesting when using readily available wastes and at no cost, such as malt bagasse, for example. Here, the biochars were produced from malt bagasse, by physical and chemical activation (with CO2 and ZnCl2, respectively) and employed as adsorbents in the remediation of effluents containing 2-chlorophenol. Results revealed that the activated biochars have mesoporous structures and surface areas of 161 m² g−1 (CO2) and 545 m² g−1 (ZnCl2). For both activated biochars, adsorption of 2-chlorophenol was favored under acid conditions, with the highest adsorption capacities found using ZnCl2-activated biochar. The maximum adsorption capacity using ZnCl2-activated biochar was 150 mg g−1. The process was endothermic and spontaneous. ZnCl2-activated biochar exhibited an efficiency of 98 % (using a dosage of 10 g L−1) in the treatment of industrial effluents containing 2-chlorophenol.Lütke, Sabrina-will be generated-orcid-0000-0001-6003-5131-600Perondi, Daniele-will be generated-orcid-0000-0001-6110-9673-600M. Machado, Lauren M.Godinho, MarceloS. Oliveira, Marcos L.Collazzo, Gabriela-will be generated-orcid-0000-0001-9155-3353-600Dotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600engCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/closedAccesshttp://purl.org/coar/access_right/c_14cbJournal of Environmental Chemical Engineeringhttps://www.sciencedirect.com/science/article/pii/S22133437203082282-chlorophenolAdsorptionBiocharMalt bagassePyrolysisTreatment of effluents containing 2- chlorophenol by adsorption onto chemically and physically activated biocharsPre-Publicaciónhttp://purl.org/coar/resource_type/c_816bTextinfo:eu-repo/semantics/preprinthttp://purl.org/redcol/resource_type/ARTOTRinfo:eu-repo/semantics/acceptedVersion[1] A. Adewuyi, A. Gopfert, ¨ O. Anuoluwapo, T. Wolff, Adsorption of 2-chlorophenol onto the surface of underutilized seed of Adenopus brevi florus: a potential means of treating waste water, J. Environ. Chem. Eng. 4 (2016) 664–672, https://doi.org/ 10.1016/j.jece.2015.12.012.[2] T.K.M. Prashanthakumar, S.K.A. Kumar, S.K. Sahoo, A quick removal of toxic phenolic compounds using porous carbon prepared from renewable biomass coconut spathe and exploration of new source for porous carbon materials, J. Environ. Chem. Eng. 6 (2018) 1434–1442, https://doi.org/10.1016/j. jece.2018.01.051.[3] Ç. Kırbıyık, A.E. Pütün, E. Pütün, Equilibrium, kinetic, and thermodynamic studies of the adsorption of Fe(III) metal ions and 2,4-dichlorophenoxyacetic acid onto biomass-based activated carbon by ZnCl2 activation, Surf. Interfaces 8 (2017) 182–192, https://doi.org/10.1016/j.surfin.2017.03.011.[4] N. Taoufik, A. Elmchaouri, F. Anouar, S.A. Korili, A. Gil, Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants, J. Water Process Eng. 31 (2019) 100876, https://doi.org/10.1016/j.jwpe.2019.100876.[5] N.B. Singh, G. Nagpal, S. Agrawal, Rachna, water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240, https://doi.org/10.1016/j. eti.2018.05.006.[6] Z.N. Garba, W. Zhou, I. Lawan, W. Xiao, M. Zhang, L. Wang, L. Chen, Z. Yuan, An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: a review, J. Environ. Manage. 241 (2019) 59–75, https://doi.org/ 10.1016/j.jenvman.2019.04.004.[7] G.L. Dotto, G. McKay, Current scenario and challenges in adsorption for water treatment, J. Environ. Chem. Eng. 8 (2020) 103988, https://doi.org/10.1016/j. jece.2020.103988.[8] P.S. Thue, M.A. Adebayo, E.C. Lima, J.M. Sieliechi, F.M. Machado, G.L. Dotto, J.C. P. Vaghetti, S.L.P. Dias, Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution, J. Mol. Liq. 223 (2016) 1067–1080, https://doi.org/10.1016/j. molliq.2016.09.032.[9] M.A. Zazycki, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G.L. Dotto, New biochar from pecan nutshells as an alternative adsorbent for removing reactive red 141 from aqueous solutions, J. Clean. Prod. 171 (2018) 57–65, https://doi.org/ 10.1016/j.jclepro.2017.10.007.[10] K.M. Lynch, E.J. Steffen, E.K. Arendt, Brewers’ Spent Grain: a Review with an Emphasis on Food and Health, 2016, https://doi.org/10.1002/jib.363.[11] M.A. Franciski, E.C. Peres, M. Godinho, D. Perondi, E.L. Foletto, G.C. Collazzo, G. L. Dotto, Development of CO2 activated biochar from solid wastes of a beer industry and its application for methylene blue adsorption, Waste Manag. 78 (2018) 630–638, https://doi.org/10.1016/j.wasman.2018.06.040.[12] A.M. Carvajal-Bernal, F. Gomez, ´ L. Giraldo, J.C. Moreno-Piraj´ an, Adsorption of phenol and 2,4-dinitrophenol on activated carbons with surface modifications, Microporous Mesoporous Mater. 209 (2015) 150–156, https://doi.org/10.1016/j. micromeso.2015.01.052.[13] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.[14] J.N. Sahu, J. Acharya, B.C. Meikap, Optimization of production conditions for activated carbons from Tamarind wood by zinc chloride using response surface methodology, Bioresour. Technol. 101 (2010) 1974–1982, https://doi.org/ 10.1016/j.biortech.2009.10.031.[15] L. Duan, Q. Ma, L. Ma, L. Dong, B. Wang, X. Dai, B. Zhang, Effect of the CO2 activation parameters on the pore structure of silicon carbide-derived carbons, New Carbon Mater. 34 (2019) 367–372, https://doi.org/10.1016/s1872-5805(19) 30022-8.[16] L.M.M. Machado, S.F. Lütke, D. Perondi, M. Godinho, M.L.S. Oliveira, G. C. Collazzo, G.L. Dotto, Simultaneous production of mesoporous biochar and palmitic acid by pyrolysis of brewing industry wastes, Waste Manag. 113 (2020) 96–104, https://doi.org/10.1016/j.wasman.2020.05.038.[17] A.F.M. Streit, L.N. Cortes, ˆ S.P. Druzian, M. Godinho, G.C. Collazzo, D. Perondi, G. L. Dotto, Development of high quality activated carbon from biological sludge and its application for dyes removal from aqueous solutions, Sci. Total Environ. 660 (2019) 277–287, https://doi.org/10.1016/j.scitotenv.2019.01.027.[18] Y.S. Ho, G.M.F.E. Llow, Kinetic M Odels for Th E Sorption O F Dye Fro M Aqueous Solution By W O Od, Trans IChemE. 76 (1998) 183–191.[19] I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40 (1918) 1361–1403, https://doi.org/10.1021/ja02242a004.[20] Z.Y. Yao, J.H. Qi, L.H. Wang, Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto chestnut shell, J. Hazard. Mater. 174 (2010) 137–143, https://doi.org/10.1016/j.jhazmat.2009.09.027.[22] S.F. Lütke, A.V. Igansi, L. Pegoraro, G.L. Dotto, L.A.A. Pinto, T.R.S. Cadaval, Journal of environmental chemical engineering preparation of activated carbon from black wattle bark waste and its application for phenol adsorption, J. Environ. Chem. Eng. 7 (2019) 103396, https://doi.org/10.1016/j.jece.2019.103396.[23] M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015), https://doi.org/10.1515/pac-2014-1117.[24] K.B. Fontana, E.S. Chaves, J.D.S. Sanchez, E.R.L.R. Watanabe, J.M.T.A. Pietrobelli, G.G. Lenzi, Textile dye removal from aqueous solutions by malt bagasse: isotherm, kinetic and thermodynamic studies, Ecotoxicol. Environ. Saf. 124 (2016) 329–336, https://doi.org/10.1016/j.ecoenv.2015.11.012.[25] M.A. Yahya, Z. Al-Qodah, C.W.Z. Ngah, Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: a review, Renew. Sustain. Energy Rev. 46 (2015) 218–235, https://doi.org/10.1016/j. rser.2015.02.051.[26] N. Mohamad Nor, L.C. Lau, K.T. Lee, A.R. Mohamed, Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control - a review, J. Environ. Chem. Eng. 1 (2013) 658–666, https://doi.org/10.1016/j. jece.2013.09.017.[27] C. Herrero-Latorre, J. Barciela-García, S. García-Martín, R.M. Pena-Crecente, ˜ Graphene and carbon nanotubes as solid phase extraction sorbents for the speciation of chromium: a review, Anal. Chim. Acta 1002 (2018) 1–17, https://doi. org/10.1016/j.aca.2017.11.042.[28] Y. Sun, Q. Yue, Y. Mao, B. Gao, Y. Gao, L. Huang, Enhanced adsorption of chromium onto activated carbon by microwave-assisted H3PO4 mixed with Fe/Al/ Mn activation, J. Hazard. Mater. 265 (2014) 191–200, https://doi.org/10.1016/j. jhazmat.2013.11.057.[29] R. Labied, O. Benturki, A.Y. Eddine Hamitouche, A. Donnot, Adsorption of hexavalent chromium by activated carbon obtained from a waste lignocellulosic material (Ziziphus jujuba cores): kinetic, equilibrium, and thermodynamic study, Adsorp. Sci. Technol. 36 (2018) 1066–1099, https://doi.org/10.1177/ 0263617417750739.[30] W. Liu, J. Zhang, C. Zhang, Y. Wang, Y. Li, Adsorptive removal of Cr (VI) by Femodified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162 (2010) 677–684, https://doi.org/10.1016/j.cej.2010.06.020.[31] T. Soltani, B.K. Lee, Mechanism of highly efficient adsorption of 2-chlorophenol onto ultrasonic graphene materials: comparison and equilibrium, J. Colloid Interface Sci. 481 (2016) 168–180, https://doi.org/10.1016/j.jcis.2016.07.049.[32] L. Zhang, B. Zhang, T. Wu, D. Sun, Y. Li, Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution, Colloids Surf. A Physicochem. Eng. Asp. 484 (2015) 118–129, https://doi.org/10.1016/j.colsurfa.2015.07.055.[33] M. Foroughi-Dahr, H. Abolghasemi, M. Esmaili, A. Shojamoradi, H. Fatoorehchi, Adsorption characteristics of congo red from aqueous solution onto tea waste, Chem. Eng. Commun. 202 (2015) 181–193, https://doi.org/10.1080/ 00986445.2013.836633.[34] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, J. Chem. Soc. 786 (1960) 3973.[35] L.C. Zhou, X.G. Meng, J.W. Fu, Y.C. Yang, P. Yang, C. Mi, Highly efficient adsorption of chlorophenols onto chemically modified chitosan, Appl. Surf. Sci. 292 (2014) 735–741, https://doi.org/10.1016/j.apsusc.2013.12.041.[36] A. Bonilla-Petriciolet, D.I. Mendoza-Castillo, H.E. Reynel-Avila, ´ Adsorption Processes for Water Treatment and Purification, 2017, https://doi.org/10.1016/ S0301-7036(14)70853-3.[37] M.A. Zazycki, D. Perondi, M. Godinho, M.L.S. Oliveira, G.C. Collazzo, G.L. Dotto, Conversion of MDF wastes into a char with remarkable potential to remove Food Red 17 dye from aqueous effluents, Chemosphere 250 (2020) 126248, https://doi. org/10.1016/j.chemosphere.2020.126248.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/233e1e5c-3c59-49cc-98ee-57c1d9e957be/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/96846338-efae-4a2d-987e-d53a82a41842/downloade30e9215131d99561d40d6b0abbe9badMD53ORIGINALAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdfAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdfapplication/pdf106871https://repositorio.cuc.edu.co/bitstreams/16b30834-cf50-46da-90e9-87b4f4852c09/downloadacea3348947e8ff2e9e88615fb64c3e9MD54THUMBNAILAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.jpgAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.jpgimage/jpeg50751https://repositorio.cuc.edu.co/bitstreams/8b45c3f6-337b-44f4-857b-5bbdec7406c2/downloadb1ae2c946a68187381a047f6b5f5f4faMD55TEXTAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.txtAn eco-friendly and low-cost strategy for groundwater defluorination Adsorption of fluoride onto calcinated sludge.pdf.txttext/plain1482https://repositorio.cuc.edu.co/bitstreams/96d8cacb-f276-4e65-b4b1-ca0b1945550b/download7594b38c0de37208418da8a84f257d88MD5611323/7133oai:repositorio.cuc.edu.co:11323/71332024-09-16 16:41:15.617http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==