Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories
Extended theory of mathematical connections (ETC) and theory of mathematical argumentation (TMA) based on Toulmin’s (1984) model were articulated for the study of mathematical connections activated in the argumentation process. For this purpose, a “networking of theories” was made to obtain the comp...
- Autores:
-
Rodríguez-Nieto, Camilo Andrés
Cervantes-Barraza, JONATHAN
Font, Vicenç
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2023
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/10514
- Acceso en línea:
- https://hdl.handle.net/11323/10514
https://repositorio.cuc.edu.co/
- Palabra clave:
- Networking of theories
Extended theory of connections
Theory of mathematical argumentation
Proof
Derivative
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a381f3d2c5e6d982802292b76af433a1 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/10514 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
title |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
spellingShingle |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories Networking of theories Extended theory of connections Theory of mathematical argumentation Proof Derivative |
title_short |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
title_full |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
title_fullStr |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
title_full_unstemmed |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
title_sort |
Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theories |
dc.creator.fl_str_mv |
Rodríguez-Nieto, Camilo Andrés Cervantes-Barraza, JONATHAN Font, Vicenç |
dc.contributor.author.none.fl_str_mv |
Rodríguez-Nieto, Camilo Andrés Cervantes-Barraza, JONATHAN Font, Vicenç |
dc.subject.proposal.eng.fl_str_mv |
Networking of theories Extended theory of connections Theory of mathematical argumentation Proof Derivative |
topic |
Networking of theories Extended theory of connections Theory of mathematical argumentation Proof Derivative |
description |
Extended theory of mathematical connections (ETC) and theory of mathematical argumentation (TMA) based on Toulmin’s (1984) model were articulated for the study of mathematical connections activated in the argumentation process. For this purpose, a “networking of theories” was made to obtain the complementarities between both theories. Then, a class episode was selected that dealt with the demonstration of the continuity theorem of functions of real variable “if a function is derivable at a point then it is continuous at that point”, made by an in-service mathematics teacher of differential calculus, who participated in a non-participant observation, where his classes were videotaped. The arguments of this episode were analyzed through with Toulmin’s (1984) model, after with thematic analysis method to identify mathematical connections, and, finally, the connections in the proof and mathematical argumentation were analyzed. The main result of the research reveals that the mathematical connections play a fundamental role in the argumentation process of the episode, given that, connection is important for the establishment and identification the argument and the warrant that supports it. In addition, complementarities were found between both theories, which makes this networking a useful tool for a better analysis of mathematical argumentation processes. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-09-26T20:24:12Z |
dc.date.available.none.fl_str_mv |
2023-09-26T20:24:12Z |
dc.date.issued.none.fl_str_mv |
2023-04-03 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Rodríguez-Nieto, C. A., Cervantes-Barraza, J. A., & Font Moll, V. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2264. https://doi.org/10.29333/ejmste/13157 |
dc.identifier.issn.spa.fl_str_mv |
1305-8223 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/10514 |
dc.identifier.doi.none.fl_str_mv |
10.29333/ejmste/13157 |
dc.identifier.eissn.spa.fl_str_mv |
1305-8215 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Rodríguez-Nieto, C. A., Cervantes-Barraza, J. A., & Font Moll, V. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2264. https://doi.org/10.29333/ejmste/13157 1305-8223 10.29333/ejmste/13157 1305-8215 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/10514 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Eurasia Journal of Mathematics, Science and Technology Education |
dc.relation.references.spa.fl_str_mv |
1. AMTE. (2017). Standards for preparing teachers of mathematics. Association of Mathematics Teacher Educators. https://amte.net/standards 2. Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: The ReMath enterprise. Educational Studies in Mathematics, 85, 329-355. https://doi.org/10.1007/s10649-013-9522-2 3. Arzarello, F., & Olivero, F. (2006). Theories and empirical research: Towards a common framework. In Proceedings of the 4th Conference of the European Society for Research in Mathematics Education (pp. 1305-1315). 4. Bikner-Ahsbahs, A. (2016). Networking of theories in the tradition of TME. In Theories in and of mathematics education. ICME-13 topical surveys (pp. 33-42). https://doi.org/10.1007/978-3-319-42589-4_5 5. Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking theories–an approach for exploiting the diversity of theoretical approaches. In B. Sriraman, & L. English (Eds.), Theories of mathematics education (pp. 589-592). Springer. https://doi.org/10.1007/978-3-642-00742-2_46 6. Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education. Springer. https://doi.org/10.1007/978-3-319-05389-9 7. Boero, P., N., Douek, F., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: a contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto, & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology. 8. Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315.https://doi.org/10.29333/ejmste/89514 9. Borromeo, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer. https://doi.org/10.1007/978-3- 319-68072-9 10. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa 11. Brousseau, G. (2002). Theory of didactical situations in mathematics: Didactique des mathématiques [Mathematics didactics], 1970-1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans.). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47211-2 12. Brown, L. (Ed.). (1993). The new shorter Oxford English dictionary on historical principles. Clarendon Press. 13. Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished PhD thesis]. Simon Fraser University. 14. CCSSI. (2018). Common core state standards for mathe¬matics. National Governors Association Center for Best Practices and the Council of Chief State School Officers. 15. Cervantes-Barraza, J. A. & Cabañas-Sánchez, G. (2020). Teacher promoting student mathematical arguments through questions. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Interim Vol, (pp. 81-89). PME. 16. Cervantes-Barraza, J. A. (2020). Argumentos que construyen estudiantes de quinto grado de primaria [Arguments constructed by fifth grade students] [Unpublished doctoral dissertation] Universidad Autónoma de Guerrero. 17. Cervantes-Barraza, J. A., & Cabañas-Sánchez, M. G. (2022). Argumentación matemática basada en refutaciones [Mathematical argumentation based on refutations]. REDIMAT –Journal of Research in Mathematics Education, 11(2), 159-179. https://doi.org/10.17583/redimat.4015 18. Cervantes-Barraza, J. A., Cabañas-Sánchez, G. & Mercado-Porras, K. (2020). El rol del profesor en la construcción de conocimiento matemático a través de la argumentación colectiva [The role of the teacher in the construction of mathematical knowledge through collective argumentation]. En H. Hernández, J. Juárez, & J. Slisko (Eds.), Tendencias en la educación matemática basada en la investigación (vol. 4). El errante Editor. 19. Cervantes-Barraza, J. A., Cabañas-Sánchez, G. & Reid, D. (2019). Complex argumentation in elementary school. PNA, 13(4), 221-246. https://doi.org/10.30827/pna.v13i4.8279 20. Chevallard, Y. (1992). Concepts fondamentaux de la didactique: Perspectives apportées par une aproche anthropologique [Fundamental concepts of didactics: perspectives brought by an anthropological approach]. Recherches en Didactique des Mathématiques [Research in Didactics of Mathematics], 12(1), 73-112. 21. Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge. https://doi.org/10.4324/9781315456539 22. Conner, A., Singletary. L., Smith. R., Wagner. P., & Francisco, R. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies Mathematics, 86(2), 401-429. https://doi.org/10.1007/s10649-014-9532-8 23. De la Fuente, A., & Deulofeu, J. D. (2022). Uso de las conexiones entre representaciones por parte del profesor en la construcción del lenguaje algebraico [Use of connections between representations by the teacher in the construction of algebraic language]. Bolema: Mathematics Education Bulletin, 36, 389-410. https://doi.org/10.1590/1980-4415v36n72a17 24. DE. (2017). Competències bàsiques de l’àmbit matemàtic [Basic skills in the mathematical field]. Departament d’Ensenyament [Education Department]. http://ensenyament.gencat.cat/web/.content/home/departament/publicacions/colleccions/competenc ies-basiques/eso/eso-matematic.pdf 25. Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: Un estudio de casos en el nivel superior [Intra-mathematical and extra-mathematical connections that occur when solving calculus problems in context: A case study at the higher level]. Bolema: Mathematics Education Bulletin, 31(57), 158-180. https://doi.org/10.1590/1980-4415v31n57a08 26. Dolores-Flores, C., Rivera-López, M. I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematics Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050 27. Duval, R. (2000). Ecriture, raisonnement et découverte de la démonstration en mathématiques [Writing, reasoning and discovering the proof in mathematics]. Recherche en Didactique des Mathématiques [Research in Didactics of Mathematics], 20(2), 135-170. 28. Duval, R. (2017). Understanding the mathematical way of thinking–The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-9 29. Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394-011-0017-0 30. Erkek, O., & Isiksal-Bostan, M. I. (2019). Prospective middle school mathematics teachers’ global argumentation structures. International Journal of Science and Mathematics Education, 17(3), 613-633. https://doi.org/10.1007/s10763-018-9884-0 31. Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107-122. https://doi.org/10.1007/s10649-015-9639-6 32. Galindo-Illanes, M. K., Breda, A., Chamorro-Manríquez, D. D., & Alvarado-Martínez, H. A. (2022). Analysis of a teaching learning process of the derivative with the use of ICT oriented to engineering students in Chile. EURASIA Journal of Mathematics, Science and Technology Education, 18(7), em2130. https://doi.org/10.29333/ejmste/12162 33. García-García, J. G. (2019). Escenarios de exploración de conexiones matemáticas [Math connections exploration scenarios]. Números: Revista de Didáctica de las Matemáticas [Numbers: Mathematics Didactics Magazine], 100, 129-133. https://hdl.handle.net/11162/224840 34. García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.1355994 35. García-García, J., & Dolores-Flores, C. (2019). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33, 1-22. https://doi.org/10.1007/s13394-019-00286-x 36. García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students’ mathematical connections when solving calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739X.2020.1729429 37. Giannakoulias, E., Mastorides, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims. The Journal of Mathematical Behavior, 29(3), 160-168. https://doi.org/10.1016/j.jmathb.2010.07.001 38. Godden, D., & Walton, G. (2007). A Theory of presumption for everyday argumentation. Pragmatics & Cognition, 15(2), 313-346. https://doi.org/10.1075/pc.15.2.06god 39. Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM – Mathematics Education, 39(1), 127–135. https://doi.org/10.1007/s11858-006- 0004-1 40. Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly, & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates. 41. Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research of mathematics teaching and learning (pp. 65-79). Macmillan. 42. Kidron, I., & Bikner-Ahsbahs, A. (2015). Advancing research by means of the networking of theories. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative methods in mathematics education–Examples of methodology and methods (pp. 221-232). Springer. https://doi.org/10.1007/978-94-017-9181-6_9 43. Knipping, C., & Reid, D. (2015). Reconstructing argumentation structures: A Perspective on proving processes in secondary mathematics classroom interactions. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10. 1007/978-94-017-9181-6_4 44. Knipping, C., & Reid, D. A. (2019). Argumentation analysis for early career researchers. In G. Kaiser, & N. Presmeg (Eds.) Compendium for early career researchers in mathematics education. (pp. 3-31). Springer. https://doi.org/10.1007/978-3-030-15636-7_1 45. Krummheuer, G. (1995). The ethnology of argumentation. In P. Cobb, & H. Bauersfeld (Eds.). The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Erlbaum. 46. Krummheuer, G. (2015). Methods for reconstructing processes of argumentation and participation in primary mathematics classroom interaction. In A. Bikner-Ahsbahs, C. Knipping., & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10.1007/978-94-017-9181-6_4 47. Kuzniak, A. (2011). L’Espace de travail mathématique et ses génèses [The mathematical working spaces and its geneses]. Annales de Didactique et de Sciences Cognitives [Annals of Didactics and Cognitive Sciences], 16, 9–24. 48. Ledezma, C., Font, V., & Sala, G. (2022). Analyzing the mathematical activity in a modelling process from the cognitive and onto-semiotic perspectives. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-022-00411-3 49. Liljedahl, P., & Santos-Trigo, M. (Eds.). (2019). Mathematical problem solving: Current themes, trends, and research. Springer. https://doi.org/10.1007/978-3-030-10472-6 50. Lin, P. J. (2018). The development of students mathematical argumentation in a primary classroom. Educação y Realidade, Porto Alegre [Education and Reality, Porto Alegre], 43(3), 1171-1192. https://doi.org/10.1590/2175-623676887 51. MEN. (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencia y ciudadanas [Basic standards of competences in language, mathematics, science and citizenship]. Ministerio de Educación Nacional [Ministry of National Education]. 52. Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project. International Research in Education, 3(1), 82-92. https://doi.org/10.5296/ire.v3i1.6767 53. Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/10288457.2012.10740738 54. Mhlolo, M. K., Venkat, H., & Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1), 1-9. https://doi.org/10.4102/pythagoras.v33i1.22 55. Molina, O., Font, V., & Pino-Fan, L. (2019). Estructura y dinámica de argumentos analógicos, abductivos y deductivos: Un curso de geometría del espacio como contexto de reflexión [Structure and dynamics of analogical, abductive and deductive arguments: A course on the geometry of space as a context for reflection]. Enseñanza de las Ciencias [Science Education], 37(1), 93-116. https://doi.org/10.5565/rev/ensciencias.2484 56. Moon, K., Brenner, M., Jacob, B., & Okamoto, Y. (2013). Prospective secondary mathematics teachers’ understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, 15(3), 201-227. https://doi.org/10.1080/10986065.2013.794322 57. Mumcu, H. Y. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: Türev kavramı örneği [Examining the mathematical association skill in the theoretical dimension: An example of the concept of derivative]. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. https://doi.org/10.16949/turkbilmat.379891 58. Mwakapenda, W. (2008). Understanding connections in the school mathematics curriculum. South African Journal of Education, 28(2), 189-202. ttps://doi.org/10.15700/saje.v28n2a170 59. Nardi, E., Biza, I., & Zachariades, T. (2012). ‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79, 157-173. https://doi.org/10.1007/s10649-011-9345-y 60. NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics. 61. Pedemonte, B. & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. Journal of Mathematical Behavior, 41, 104-122. https://doi.org/10.1016/j.jmathb.2015.10.008 62. Pino-Fan, L., Godino, J, D., & Font, V. (2018). Assessing key epistemic features of didactic mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94. https://doi.org/10.1007/s10857-016-9349-8 63. Pino-Fan, L., Guzmán, I., Font, V., & Duval, R. (2017). Analysis of the underlying cognitive activity in the resolution of a task on derivability of the absolute-value functions: Two theoretical perspectives. PNA: Revista de Investigación en Didáctica de la Matemática [PNA: Research Journal on Mathematics Didactics], 11(2), 97-124. https://doi.org/10.30827/pna.v11i2.6076 64. Pólya, G. (1989). Cómo plantear y resolver problemas [How to suggest and solve problems]. Editorial Trillas. 65. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. ZDM-The International Journal on Mathematics Education, 40(2), 165-178. https://doi.org/10.1007/s11858-008-0086-z 66. Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In Á. Gutiérrez, & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205-235). Sense Publishers. https://doi.org/10.1163/9789087901127_009 67. Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM –Mathematics Education, 40(2), 317-327. https://doi.org/10.1007/s11858-008-0090-3 68. Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7-44. https://doi.org/10.4471/redimat.2013.19 69. Rigotti, E. & Greco, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller, & A. Perret-Clermont (Eds.), Argumentation and education. Springer. https://doi.org/10.1007/978-0-387-98125-3_2 70. Rodríguez-Nieto, C. A. (2021). Conexiones etnomatemáticas entre conceptos geométricos en la elaboración de las tortillas de Chilpancingo, México [Ethnomatematical connections between geometric concepts in the making of tortillas from Chilpancingo, Mexico]. Revista de Investigación Desarrollo e Innovación [Journal of Research, Development and Innovation], 11(2), 273-296. https://doi.org/10.19053/20278306.v11.n2.2021.12756 71. Rodríguez-Nieto, C. A., & Escobar-Ramírez, Y. C. (2022). Conexiones etnomatemáticas en la elaboración del Sancocho de Guandú y su comercialización en Sibarco, Colombia [Ethnomathematical connections in the elaboration of Sancocho de Guandú and its commercialization in Sibarco, Colombia]. Bolema: Boletim de Educação Matemática [Bulletin: Mathematics Education Bulletin], 36, 971-1002. https://doi.org/10.1590/1980-4415v36n74a02 72. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021a). Pre-service mathematics teachers’ mathematical connections in the context of problem-solving about the derivative. Turkish Journal of Computer and Mathematics Education, 12(1), 202-220. https://doi.org/10.16949/turkbilmat.797182 73. Rodríguez-Nieto, C. A., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2021b). Mathematical connections from a networking theory between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364-2390. https://doi.org/10.1080/0020739X.2021.1875071 74. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021c). Exploring university Mexican students’ quality of intra-mathematical connections when solving tasks about derivative concept. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/11160 75. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., Font, V. & Morales-Carballo, A. (2021d). Una visión desde el networking TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada [A view from the TAC-EOS network on the role of mathematical connections in understanding the derivative]. Revemop, 3, e202115, 1-32. https://doi.org/10.33532/revemop. e202115 76. Rodríguez-Nieto, C. A., & Alsina, Á. (2022). Networking between ethnomathematics, STEAM education, and the globalized approach to analyze mathematical connections in daily practices. EURASIA Journal of Mathematics Science and Technology Education, 18(3), 2-22. https://doi.org/10.29333/ejmste/11710 77. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Font, V. (2022a). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739 X.2020.1799254 78. Rodríguez-Nieto, C. A., Font, V., & Rodríguez-Vásquez, F. M. (2022b). Literature review on networking of theories developed in mathematics education context. EURASIA Journal of Mathematics, Science and Technology Education, 18(11), em2179. https://doi.org/10.29333/ejmste/12513 79. Rumsey, C., Guarino, J., Gildea, R., Cho, C. Y., & Lockhart, B. (2019). Tools to support K–2 students in mathematical argumentation. Teaching Children Mathematics, 25(4), 208-217. https://doi.org/10.5951/teacchilmath.25.4.0208 80. Solar, H. (2018). Implicaciones de la argumentación en el aula de matemáticas [Implications of argumentation in the mathematics classroom]. Revista Colombiana de Educación [Colombian Magazine of Education], 1(74), 155-176. https://doi.org/10.17227/rce.num74-6902 81. SPE. (2011). Plan de estudios 2011. Educación básica [2011 study plan. Basic education]. Secretaría de Educación Pública [Secretary of Public Education]. http://issuu.com/dgeb/docs/planedu2011?e=3503076/2622744 82. Stewart, J. (1999). Cálculo. Conceptos y contextos [Calculation. Concepts and contexts]. International Thomson Editores. 83. Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321. https://doi.org/10.2307/30034869 84. Tabach, M., Rasmussen, C., Dreyfus, T., & Apkarian, N. (2020). Towards an argumentative grammar for networking: A case of coordinating two approaches. Educational Studies in Mathematics, 103, 139-155. https://doi.org/10.1007/s10649-020-09934-7 85. Toulmin, S. (1984). An introduction to reasoning. Macmillan. 86. Toulmin, S. (2003). The uses of argument. Cambridge University Press. https://doi.org/10.1017/CBO9780511840005 87. Van Eemeren, F. H., & Grootendorst, R. (2015). From analysis to presentation: A pragma-dialectical approach to writing argumentative texts. In Reasonableness and effectiveness in argumentative discourse. Argumentation Library (vol. 27). Springer, Cham. https://doi.org/10.1007/978-3-319-20955-5_38 88. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge University Press. https://doi.org/10.1017/CBO9780511802034 |
dc.relation.citationendpage.spa.fl_str_mv |
20 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
5 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.rights.eng.fl_str_mv |
© 2023 by the authors; licensee Modestum. |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2023 by the authors; licensee Modestum. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
20 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Modestum Ltd. |
dc.publisher.place.spa.fl_str_mv |
Turkey |
dc.source.spa.fl_str_mv |
https://www.ejmste.com/article/exploring-mathematical-connections-in-the-context-of-proof-and-mathematical-argumentation-a-new-13157 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/78aedd24-4a3b-41f3-b8f5-bd2253ea15d0/download https://repositorio.cuc.edu.co/bitstreams/f6acfc95-9cec-4d42-84e6-77f8c58b9d1f/download https://repositorio.cuc.edu.co/bitstreams/95db19ed-f6c8-4d85-b60c-3221e12b4c7c/download https://repositorio.cuc.edu.co/bitstreams/b78966f1-1d49-4815-b48c-b6e52d935b79/download |
bitstream.checksum.fl_str_mv |
098570f73948e8560b77d2b4db2b0d8e 2f9959eaf5b71fae44bbf9ec84150c7a 1c27897989a697ce9bb39deef8c41a04 c6eda32be929cc9f46b785cab06fa4dd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166898004525056 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 2023 by the authors; licensee Modestum.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodríguez-Nieto, Camilo AndrésCervantes-Barraza, JONATHANFont, Vicenç2023-09-26T20:24:12Z2023-09-26T20:24:12Z2023-04-03Rodríguez-Nieto, C. A., Cervantes-Barraza, J. A., & Font Moll, V. (2023). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 19(5), em2264. https://doi.org/10.29333/ejmste/131571305-8223https://hdl.handle.net/11323/1051410.29333/ejmste/131571305-8215Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Extended theory of mathematical connections (ETC) and theory of mathematical argumentation (TMA) based on Toulmin’s (1984) model were articulated for the study of mathematical connections activated in the argumentation process. For this purpose, a “networking of theories” was made to obtain the complementarities between both theories. Then, a class episode was selected that dealt with the demonstration of the continuity theorem of functions of real variable “if a function is derivable at a point then it is continuous at that point”, made by an in-service mathematics teacher of differential calculus, who participated in a non-participant observation, where his classes were videotaped. The arguments of this episode were analyzed through with Toulmin’s (1984) model, after with thematic analysis method to identify mathematical connections, and, finally, the connections in the proof and mathematical argumentation were analyzed. The main result of the research reveals that the mathematical connections play a fundamental role in the argumentation process of the episode, given that, connection is important for the establishment and identification the argument and the warrant that supports it. In addition, complementarities were found between both theories, which makes this networking a useful tool for a better analysis of mathematical argumentation processes.20 páginasapplication/pdfengModestum Ltd.Turkeyhttps://www.ejmste.com/article/exploring-mathematical-connections-in-the-context-of-proof-and-mathematical-argumentation-a-new-13157Exploring mathematical connections in the context of proof and mathematical argumentation: a new proposal of networking of theoriesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Eurasia Journal of Mathematics, Science and Technology Education1. AMTE. (2017). Standards for preparing teachers of mathematics. Association of Mathematics Teacher Educators. https://amte.net/standards2. Artigue, M., & Mariotti, M. A. (2014). Networking theoretical frames: The ReMath enterprise. Educational Studies in Mathematics, 85, 329-355. https://doi.org/10.1007/s10649-013-9522-23. Arzarello, F., & Olivero, F. (2006). Theories and empirical research: Towards a common framework. In Proceedings of the 4th Conference of the European Society for Research in Mathematics Education (pp. 1305-1315).4. Bikner-Ahsbahs, A. (2016). Networking of theories in the tradition of TME. In Theories in and of mathematics education. ICME-13 topical surveys (pp. 33-42). https://doi.org/10.1007/978-3-319-42589-4_55. Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking theories–an approach for exploiting the diversity of theoretical approaches. In B. Sriraman, & L. English (Eds.), Theories of mathematics education (pp. 589-592). Springer. https://doi.org/10.1007/978-3-642-00742-2_466. Bikner-Ahsbahs, A., & Prediger, S. (Eds.). (2014). Networking of theories as a research practice in mathematics education. Springer. https://doi.org/10.1007/978-3-319-05389-97. Boero, P., N., Douek, F., Morselli, F., & Pedemonte, B. (2010). Argumentation and proof: a contribution to theoretical perspectives and their classroom implementation. In M. F. F. Pinto, & T. F. Kawasaki (Eds.), Proceedings of the 34th Conference of the International Group for the Psychology.8. Borji, V., Font, V., Alamolhodaei, H., & Sánchez, A. (2018). Application of the complementarities of two theories, APOS and OSA, for the analysis of the university students’ understanding on the graph of the function and its derivative. EURASIA Journal of Mathematics, Science and Technology Education, 14(6), 2301-2315.https://doi.org/10.29333/ejmste/895149. Borromeo, R. (2018). Learning how to teach mathematical modeling in school and teacher education. Springer. https://doi.org/10.1007/978-3- 319-68072-910. Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101. https://doi.org/10.1191/1478088706qp063oa11. Brousseau, G. (2002). Theory of didactical situations in mathematics: Didactique des mathématiques [Mathematics didactics], 1970-1990 (N. Balacheff, M. Cooper, R. Sutherland, & V. Warfield, Trans.). Kluwer Academic Publishers. https://doi.org/10.1007/0-306-47211-212. Brown, L. (Ed.). (1993). The new shorter Oxford English dictionary on historical principles. Clarendon Press.13. Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished PhD thesis]. Simon Fraser University.14. CCSSI. (2018). Common core state standards for mathe¬matics. National Governors Association Center for Best Practices and the Council of Chief State School Officers.15. Cervantes-Barraza, J. A. & Cabañas-Sánchez, G. (2020). Teacher promoting student mathematical arguments through questions. In M. Inprasitha, N. Changsri, & N. Boonsena (Eds), Proceedings of the 44th Conference of the International Group for the Psychology of Mathematics Education, Interim Vol, (pp. 81-89). PME.16. Cervantes-Barraza, J. A. (2020). Argumentos que construyen estudiantes de quinto grado de primaria [Arguments constructed by fifth grade students] [Unpublished doctoral dissertation] Universidad Autónoma de Guerrero.17. Cervantes-Barraza, J. A., & Cabañas-Sánchez, M. G. (2022). Argumentación matemática basada en refutaciones [Mathematical argumentation based on refutations]. REDIMAT –Journal of Research in Mathematics Education, 11(2), 159-179. https://doi.org/10.17583/redimat.401518. Cervantes-Barraza, J. A., Cabañas-Sánchez, G. & Mercado-Porras, K. (2020). El rol del profesor en la construcción de conocimiento matemático a través de la argumentación colectiva [The role of the teacher in the construction of mathematical knowledge through collective argumentation]. En H. Hernández, J. Juárez, & J. Slisko (Eds.), Tendencias en la educación matemática basada en la investigación (vol. 4). El errante Editor.19. Cervantes-Barraza, J. A., Cabañas-Sánchez, G. & Reid, D. (2019). Complex argumentation in elementary school. PNA, 13(4), 221-246. https://doi.org/10.30827/pna.v13i4.827920. Chevallard, Y. (1992). Concepts fondamentaux de la didactique: Perspectives apportées par une aproche anthropologique [Fundamental concepts of didactics: perspectives brought by an anthropological approach]. Recherches en Didactique des Mathématiques [Research in Didactics of Mathematics], 12(1), 73-112.21. Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. Routledge. https://doi.org/10.4324/978131545653922. Conner, A., Singletary. L., Smith. R., Wagner. P., & Francisco, R. (2014). Teacher support for collective argumentation: A framework for examining how teachers support students’ engagement in mathematical activities. Educational Studies Mathematics, 86(2), 401-429. https://doi.org/10.1007/s10649-014-9532-823. De la Fuente, A., & Deulofeu, J. D. (2022). Uso de las conexiones entre representaciones por parte del profesor en la construcción del lenguaje algebraico [Use of connections between representations by the teacher in the construction of algebraic language]. Bolema: Mathematics Education Bulletin, 36, 389-410. https://doi.org/10.1590/1980-4415v36n72a1724. DE. (2017). Competències bàsiques de l’àmbit matemàtic [Basic skills in the mathematical field]. Departament d’Ensenyament [Education Department]. http://ensenyament.gencat.cat/web/.content/home/departament/publicacions/colleccions/competenc ies-basiques/eso/eso-matematic.pdf25. Dolores-Flores, C., & García-García, J. (2017). Conexiones intramatemáticas y extramatemáticas que se producen al resolver problemas de cálculo en contexto: Un estudio de casos en el nivel superior [Intra-mathematical and extra-mathematical connections that occur when solving calculus problems in context: A case study at the higher level]. Bolema: Mathematics Education Bulletin, 31(57), 158-180. https://doi.org/10.1590/1980-4415v31n57a0826. Dolores-Flores, C., Rivera-López, M. I., & García-García, J. (2019). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematics Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.150705027. Duval, R. (2000). Ecriture, raisonnement et découverte de la démonstration en mathématiques [Writing, reasoning and discovering the proof in mathematics]. Recherche en Didactique des Mathématiques [Research in Didactics of Mathematics], 20(2), 135-170.28. Duval, R. (2017). Understanding the mathematical way of thinking–The registers of semiotic representations. Springer. https://doi.org/10.1007/978-3-319-56910-929. Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297-319. https://doi.org/10.1007/s13394-011-0017-030. Erkek, O., & Isiksal-Bostan, M. I. (2019). Prospective middle school mathematics teachers’ global argumentation structures. International Journal of Science and Mathematics Education, 17(3), 613-633. https://doi.org/10.1007/s10763-018-9884-031. Font, V., Trigueros, M., Badillo, E., & Rubio, N. (2016). Mathematical objects through the lens of two different theoretical perspectives: APOS and OSA. Educational Studies in Mathematics, 91(1), 107-122. https://doi.org/10.1007/s10649-015-9639-632. Galindo-Illanes, M. K., Breda, A., Chamorro-Manríquez, D. D., & Alvarado-Martínez, H. A. (2022). Analysis of a teaching learning process of the derivative with the use of ICT oriented to engineering students in Chile. EURASIA Journal of Mathematics, Science and Technology Education, 18(7), em2130. https://doi.org/10.29333/ejmste/1216233. García-García, J. G. (2019). Escenarios de exploración de conexiones matemáticas [Math connections exploration scenarios]. Números: Revista de Didáctica de las Matemáticas [Numbers: Mathematics Didactics Magazine], 100, 129-133. https://hdl.handle.net/11162/22484034. García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080/0020739X.2017.135599435. García-García, J., & Dolores-Flores, C. (2019). Pre-university students’ mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33, 1-22. https://doi.org/10.1007/s13394-019-00286-x36. García-García, J., & Dolores-Flores, C. (2020). Exploring pre-university students’ mathematical connections when solving calculus application problems. International Journal of Mathematical Education in Science and Technology, 52(6), 912-936. https://doi.org/10.1080/0020739X.2020.172942937. Giannakoulias, E., Mastorides, E., Potari, D., & Zachariades, T. (2010). Studying teachers’ mathematical argumentation in the context of refuting students’ invalid claims. The Journal of Mathematical Behavior, 29(3), 160-168. https://doi.org/10.1016/j.jmathb.2010.07.00138. Godden, D., & Walton, G. (2007). A Theory of presumption for everyday argumentation. Pragmatics & Cognition, 15(2), 313-346. https://doi.org/10.1075/pc.15.2.06god39. Godino, J., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM – Mathematics Education, 39(1), 127–135. https://doi.org/10.1007/s11858-006- 0004-140. Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly, & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates.41. Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research of mathematics teaching and learning (pp. 65-79). Macmillan.42. Kidron, I., & Bikner-Ahsbahs, A. (2015). Advancing research by means of the networking of theories. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative methods in mathematics education–Examples of methodology and methods (pp. 221-232). Springer. https://doi.org/10.1007/978-94-017-9181-6_943. Knipping, C., & Reid, D. (2015). Reconstructing argumentation structures: A Perspective on proving processes in secondary mathematics classroom interactions. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10. 1007/978-94-017-9181-6_444. Knipping, C., & Reid, D. A. (2019). Argumentation analysis for early career researchers. In G. Kaiser, & N. Presmeg (Eds.) Compendium for early career researchers in mathematics education. (pp. 3-31). Springer. https://doi.org/10.1007/978-3-030-15636-7_145. Krummheuer, G. (1995). The ethnology of argumentation. In P. Cobb, & H. Bauersfeld (Eds.). The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Erlbaum.46. Krummheuer, G. (2015). Methods for reconstructing processes of argumentation and participation in primary mathematics classroom interaction. In A. Bikner-Ahsbahs, C. Knipping., & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education: Examples of methodology and methods (pp. 75-101). Springer. https://doi.org/10.1007/978-94-017-9181-6_447. Kuzniak, A. (2011). L’Espace de travail mathématique et ses génèses [The mathematical working spaces and its geneses]. Annales de Didactique et de Sciences Cognitives [Annals of Didactics and Cognitive Sciences], 16, 9–24.48. Ledezma, C., Font, V., & Sala, G. (2022). Analyzing the mathematical activity in a modelling process from the cognitive and onto-semiotic perspectives. Mathematics Education Research Journal. https://doi.org/10.1007/s13394-022-00411-349. Liljedahl, P., & Santos-Trigo, M. (Eds.). (2019). Mathematical problem solving: Current themes, trends, and research. Springer. https://doi.org/10.1007/978-3-030-10472-650. Lin, P. J. (2018). The development of students mathematical argumentation in a primary classroom. Educação y Realidade, Porto Alegre [Education and Reality, Porto Alegre], 43(3), 1171-1192. https://doi.org/10.1590/2175-62367688751. MEN. (2006). Estándares básicos de competencias en lenguaje, matemáticas, ciencia y ciudadanas [Basic standards of competences in language, mathematics, science and citizenship]. Ministerio de Educación Nacional [Ministry of National Education].52. Metaxas, N. (2015). Mathematical argumentation of students participating in a mathematics–information technology project. International Research in Education, 3(1), 82-92. https://doi.org/10.5296/ire.v3i1.676753. Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176-191. https://doi.org/10.1080/10288457.2012.1074073854. Mhlolo, M. K., Venkat, H., & Schäfer, M. (2012). The nature and quality of the mathematical connections teachers make. Pythagoras, 33(1), 1-9. https://doi.org/10.4102/pythagoras.v33i1.2255. Molina, O., Font, V., & Pino-Fan, L. (2019). Estructura y dinámica de argumentos analógicos, abductivos y deductivos: Un curso de geometría del espacio como contexto de reflexión [Structure and dynamics of analogical, abductive and deductive arguments: A course on the geometry of space as a context for reflection]. Enseñanza de las Ciencias [Science Education], 37(1), 93-116. https://doi.org/10.5565/rev/ensciencias.248456. Moon, K., Brenner, M., Jacob, B., & Okamoto, Y. (2013). Prospective secondary mathematics teachers’ understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, 15(3), 201-227. https://doi.org/10.1080/10986065.2013.79432257. Mumcu, H. Y. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: Türev kavramı örneği [Examining the mathematical association skill in the theoretical dimension: An example of the concept of derivative]. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. https://doi.org/10.16949/turkbilmat.37989158. Mwakapenda, W. (2008). Understanding connections in the school mathematics curriculum. South African Journal of Education, 28(2), 189-202. ttps://doi.org/10.15700/saje.v28n2a17059. Nardi, E., Biza, I., & Zachariades, T. (2012). ‘Warrant’ revisited: Integrating mathematics teachers’ pedagogical and epistemological considerations into Toulmin’s model for argumentation. Educational Studies in Mathematics, 79, 157-173. https://doi.org/10.1007/s10649-011-9345-y60. NCTM. (2000). Principles and standards for school mathematics. National Council of Teachers of Mathematics.61. Pedemonte, B. & Balacheff, N. (2016). Establishing links between conceptions, argumentation and proof through the ck¢-enriched Toulmin model. Journal of Mathematical Behavior, 41, 104-122. https://doi.org/10.1016/j.jmathb.2015.10.00862. Pino-Fan, L., Godino, J, D., & Font, V. (2018). Assessing key epistemic features of didactic mathematical knowledge of prospective teachers: The case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94. https://doi.org/10.1007/s10857-016-9349-863. Pino-Fan, L., Guzmán, I., Font, V., & Duval, R. (2017). Analysis of the underlying cognitive activity in the resolution of a task on derivability of the absolute-value functions: Two theoretical perspectives. PNA: Revista de Investigación en Didáctica de la Matemática [PNA: Research Journal on Mathematics Didactics], 11(2), 97-124. https://doi.org/10.30827/pna.v11i2.607664. Pólya, G. (1989). Cómo plantear y resolver problemas [How to suggest and solve problems]. Editorial Trillas.65. Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. ZDM-The International Journal on Mathematics Education, 40(2), 165-178. https://doi.org/10.1007/s11858-008-0086-z66. Presmeg, N. (2006). Research on visualization in learning and teaching mathematics. In Á. Gutiérrez, & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 205-235). Sense Publishers. https://doi.org/10.1163/9789087901127_00967. Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM –Mathematics Education, 40(2), 317-327. https://doi.org/10.1007/s11858-008-0090-368. Radford, L. (2013). Three key concepts of the theory of objectification: Knowledge, knowing, and learning. Journal of Research in Mathematics Education, 2(1), 7-44. https://doi.org/10.4471/redimat.2013.1969. Rigotti, E. & Greco, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. Muller, & A. Perret-Clermont (Eds.), Argumentation and education. Springer. https://doi.org/10.1007/978-0-387-98125-3_270. Rodríguez-Nieto, C. A. (2021). Conexiones etnomatemáticas entre conceptos geométricos en la elaboración de las tortillas de Chilpancingo, México [Ethnomatematical connections between geometric concepts in the making of tortillas from Chilpancingo, Mexico]. Revista de Investigación Desarrollo e Innovación [Journal of Research, Development and Innovation], 11(2), 273-296. https://doi.org/10.19053/20278306.v11.n2.2021.1275671. Rodríguez-Nieto, C. A., & Escobar-Ramírez, Y. C. (2022). Conexiones etnomatemáticas en la elaboración del Sancocho de Guandú y su comercialización en Sibarco, Colombia [Ethnomathematical connections in the elaboration of Sancocho de Guandú and its commercialization in Sibarco, Colombia]. Bolema: Boletim de Educação Matemática [Bulletin: Mathematics Education Bulletin], 36, 971-1002. https://doi.org/10.1590/1980-4415v36n74a0272. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021a). Pre-service mathematics teachers’ mathematical connections in the context of problem-solving about the derivative. Turkish Journal of Computer and Mathematics Education, 12(1), 202-220. https://doi.org/10.16949/turkbilmat.79718273. Rodríguez-Nieto, C. A., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2021b). Mathematical connections from a networking theory between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364-2390. https://doi.org/10.1080/0020739X.2021.187507174. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021c). Exploring university Mexican students’ quality of intra-mathematical connections when solving tasks about derivative concept. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/1116075. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., Font, V. & Morales-Carballo, A. (2021d). Una visión desde el networking TAC-EOS sobre el papel de las conexiones matemáticas en la comprensión de la derivada [A view from the TAC-EOS network on the role of mathematical connections in understanding the derivative]. Revemop, 3, e202115, 1-32. https://doi.org/10.33532/revemop. e20211576. Rodríguez-Nieto, C. A., & Alsina, Á. (2022). Networking between ethnomathematics, STEAM education, and the globalized approach to analyze mathematical connections in daily practices. EURASIA Journal of Mathematics Science and Technology Education, 18(3), 2-22. https://doi.org/10.29333/ejmste/1171077. Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Font, V. (2022a). A new view about connections: the mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739 X.2020.179925478. Rodríguez-Nieto, C. A., Font, V., & Rodríguez-Vásquez, F. M. (2022b). Literature review on networking of theories developed in mathematics education context. EURASIA Journal of Mathematics, Science and Technology Education, 18(11), em2179. https://doi.org/10.29333/ejmste/1251379. Rumsey, C., Guarino, J., Gildea, R., Cho, C. Y., & Lockhart, B. (2019). Tools to support K–2 students in mathematical argumentation. Teaching Children Mathematics, 25(4), 208-217. https://doi.org/10.5951/teacchilmath.25.4.020880. Solar, H. (2018). Implicaciones de la argumentación en el aula de matemáticas [Implications of argumentation in the mathematics classroom]. Revista Colombiana de Educación [Colombian Magazine of Education], 1(74), 155-176. https://doi.org/10.17227/rce.num74-690281. SPE. (2011). Plan de estudios 2011. Educación básica [2011 study plan. Basic education]. Secretaría de Educación Pública [Secretary of Public Education]. http://issuu.com/dgeb/docs/planedu2011?e=3503076/262274482. Stewart, J. (1999). Cálculo. Conceptos y contextos [Calculation. Concepts and contexts]. International Thomson Editores.83. Stylianides, A. J. (2007). Proof and proving in school mathematics. Journal for Research in Mathematics Education, 38(3), 289-321. https://doi.org/10.2307/3003486984. Tabach, M., Rasmussen, C., Dreyfus, T., & Apkarian, N. (2020). Towards an argumentative grammar for networking: A case of coordinating two approaches. Educational Studies in Mathematics, 103, 139-155. https://doi.org/10.1007/s10649-020-09934-785. Toulmin, S. (1984). An introduction to reasoning. Macmillan.86. Toulmin, S. (2003). The uses of argument. Cambridge University Press. https://doi.org/10.1017/CBO978051184000587. Van Eemeren, F. H., & Grootendorst, R. (2015). From analysis to presentation: A pragma-dialectical approach to writing argumentative texts. In Reasonableness and effectiveness in argumentative discourse. Argumentation Library (vol. 27). Springer, Cham. https://doi.org/10.1007/978-3-319-20955-5_3888. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge University Press. https://doi.org/10.1017/CBO9780511802034201519Networking of theoriesExtended theory of connectionsTheory of mathematical argumentationProofDerivativePublicationORIGINALExploring mathematical connections in the context of proof and mathematical argumentation.pdfExploring mathematical connections in the context of proof and mathematical argumentation.pdfArtículosapplication/pdf1511825https://repositorio.cuc.edu.co/bitstreams/78aedd24-4a3b-41f3-b8f5-bd2253ea15d0/download098570f73948e8560b77d2b4db2b0d8eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/f6acfc95-9cec-4d42-84e6-77f8c58b9d1f/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTExploring mathematical connections in the context of proof and mathematical argumentation.pdf.txtExploring mathematical connections in the context of proof and mathematical argumentation.pdf.txtExtracted texttext/plain93870https://repositorio.cuc.edu.co/bitstreams/95db19ed-f6c8-4d85-b60c-3221e12b4c7c/download1c27897989a697ce9bb39deef8c41a04MD53THUMBNAILExploring mathematical connections in the context of proof and mathematical argumentation.pdf.jpgExploring mathematical connections in the context of proof and mathematical argumentation.pdf.jpgGenerated Thumbnailimage/jpeg16606https://repositorio.cuc.edu.co/bitstreams/b78966f1-1d49-4815-b48c-b6e52d935b79/downloadc6eda32be929cc9f46b785cab06fa4ddMD5411323/10514oai:repositorio.cuc.edu.co:11323/105142024-09-17 14:23:34.476https://creativecommons.org/licenses/by/4.0/© 2023 by the authors; licensee Modestum.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |