Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments
The Benue Trough Basin (BTB) of Nigeria is geologically and geo-morphologically subdivided into upper, middle, and lower segments. The BTB is the subject of geological research due to its rich coal deposits that have the potential for oil and gas. The purpose of the present study is to examine the o...
- Autores:
-
Akinyemi, Segun Ajayi
Hower, James C.
Madukwe, Henry
Nyakuma, Bemgba Bevan
Nasirudeen, Mohammed B.
Olanipekun, Timileyin
Mudzielwana, Rabelani
Gitari, Mugera Wilson
Silva, Luis F. O
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9398
- Acceso en línea:
- https://hdl.handle.net/11323/9398
https://doi.org/10.1016/j.engeos.2022.04.004.
https://repositorio.cuc.edu.co/
- Palabra clave:
- Coal
Maceral
Trace Elements
Mineralogy
Depositional Environments
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id |
RCUC2_a3105ccea683c2a3eef852c01a2bf77b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9398 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
title |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
spellingShingle |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments Coal Maceral Trace Elements Mineralogy Depositional Environments |
title_short |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
title_full |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
title_fullStr |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
title_full_unstemmed |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
title_sort |
Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environments |
dc.creator.fl_str_mv |
Akinyemi, Segun Ajayi Hower, James C. Madukwe, Henry Nyakuma, Bemgba Bevan Nasirudeen, Mohammed B. Olanipekun, Timileyin Mudzielwana, Rabelani Gitari, Mugera Wilson Silva, Luis F. O |
dc.contributor.author.spa.fl_str_mv |
Akinyemi, Segun Ajayi Hower, James C. Madukwe, Henry Nyakuma, Bemgba Bevan Nasirudeen, Mohammed B. Olanipekun, Timileyin Mudzielwana, Rabelani Gitari, Mugera Wilson Silva, Luis F. O |
dc.subject.proposal.eng.fl_str_mv |
Coal Maceral Trace Elements Mineralogy Depositional Environments |
topic |
Coal Maceral Trace Elements Mineralogy Depositional Environments |
description |
The Benue Trough Basin (BTB) of Nigeria is geologically and geo-morphologically subdivided into upper, middle, and lower segments. The BTB is the subject of geological research due to its rich coal deposits that have the potential for oil and gas. The purpose of the present study is to examine the origins, depositional environments, and thermal history of the selected coals and the processes that influence their quality. Coal samples from different open cast coal mines in the middle BTB were examined using proximate and ultimate, x-ray diffraction (XRD), x-ray fluorescence (XRF), laser ablation induced coupled plasma (LA-ICPMS), and petrographical analyses. The coal samples contained mainly quartz, kaolinite, and organic carbon. The XRD spectra peaks revealed the triclinic and monoclinic structure of kaolin. The SiO2/Al2O3 ratios confirmed the dominance of quartz and kaolinite. The Ni/Co versus V/Cr, Cu/Zn, and V/Mo values in the studied coals suggest oxic depositional environments, whereas the V/(Ni + V) and V/(V + Cr) values indicate oxic to suboxic conditions. The Ce/Ce∗ values are slightly below 1, which indicates a suboxic depositional environment. Maceral texture is indicative of transformations from sub-bituminous to high volatile C or B bituminous coal. The maceral components and mineral matter (≥10%) of the studied coals imply deposition in the planar margin mire, and a river system of planar margin mire environments, respectively. The high gelification index (GI) and tissue preservation index (TPI) values indicate peat accumulation developed within a wet forest swamp. The ternary diagram of the maceral component suggests deposition in a wet moor environment with intermittent moderate to high flooding episodes. The studied coals are sub-hydrous vitrinite inferring hydrogen-poor and thermally immature characteristics. The low V and Ni contents, low H/C and high O/C, indicate Type Ⅲ terrestrial organic matter with the potential to generate gaseous hydrocarbons. The investigated coals were deposited by the river within telmatic, limnic, and limno-telmatic zones in the planar margin mire depositional environments. Overall, the integrated petrologic and geochemical data used in this study provides a reliable approach for the assessment of coal depositional environments. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-07-22T14:00:00Z |
dc.date.available.none.fl_str_mv |
2022-07-22T14:00:00Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Segun A. Akinyemi, James C. Hower, Henry Y. Madukwe, Bemgba B. Nyakuma, Mohammed B. Nasirudeen, Timileyin A. Olanipekun, Rabelani Mudzielwana, Mugera W. Gitari, Luis F.O. Silva, Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments, Energy Geoscience, Volume 3, Issue 3, 2022, Pages 300-313, ISSN 2666-7592, https://doi.org/10.1016/j.engeos.2022.04.004. |
dc.identifier.issn.spa.fl_str_mv |
2666-7592 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9398 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1016/j.engeos.2022.04.004. |
dc.identifier.doi.spa.fl_str_mv |
10.1016/j.engeos.2022.04.004. |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Segun A. Akinyemi, James C. Hower, Henry Y. Madukwe, Bemgba B. Nyakuma, Mohammed B. Nasirudeen, Timileyin A. Olanipekun, Rabelani Mudzielwana, Mugera W. Gitari, Luis F.O. Silva, Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments, Energy Geoscience, Volume 3, Issue 3, 2022, Pages 300-313, ISSN 2666-7592, https://doi.org/10.1016/j.engeos.2022.04.004. 2666-7592 10.1016/j.engeos.2022.04.004. Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9398 https://doi.org/10.1016/j.engeos.2022.04.004. https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Energy Geoscience |
dc.relation.references.spa.fl_str_mv |
Adedosu et al., 2010 T. Adedosu, O. Sonibare, O. Ekundayo, J. Tuo Hydrocarbon-generative potential of coal and interbedded shale of Mamu formation, Benue Trough, Nigeria Petrol. Sci. Technol., 28 (4) (2010), pp. 412-427 Adighije, 1979 C. Adighije Gravity field of Benue trough, Nigeria Nature, 282 (5735) (1979), pp. 199-201 Aihua, 1996 W. Aihua Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms Acta Sedimentol. Sin., 4 (1996) Akinlua et al., 2015 A. Akinlua, A. Sigedle, T. Buthelezi, O. Fadipe Trace element geochemistry of crude oils and condensates from South African Basins Mar. Petrol. Geol., 59 (2015), pp. 286-293 Akinyemi et al., 2012 S. Akinyemi, W. Gitari, A. Akinlua, L. Petrik Mineralogy and Geochemistry of Sub-bituminous Coal and its Combustion Products from Mpumalanga Province, South Africa Analyt.Chem. InTech (2012) Akinyemi et al., 2021 S.A. Akinyemi, B.B. Nyakuma, A. Jauro, T.A. Olanipekun, R. Mudzielwana, M.W. Gitari, B.K. Saikia, G.L. Dotto, J.C. Hower, L.F. Silva Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: modes of occurrence for greater sustainability of mining Fuel, 304 (2021), Article 121468 Akinyemi et al., 2022 S.A. Akinyemi, O.F. Adebayo, H.Y. Madukwe, A.T. Kayode, A.O. Aturamu, O.A. OlaOlorun, B.B. Nyakuma, A. Jauro, W.M. Gitari, R. Mudzielwana, J.C. Hower Elemental geochemistry and organic facies of selected cretaceous coals from the Benue Trough basin in Nigeria: implication for paleodepositional environments Mar. Petrol. Geol., 137 (2022), Article 105490 Alves and Ade, 1996 R. Alves, M. Ade Sequence stratigraphy and coal petrography applied to the Candiota Coal Field, Rio Grande do Sul, Brazil: A depositional model Int. J. Coal Geol., 30 (3) (1996), pp. 231-248 Ameh, 2019 E.G. Ameh Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria Int J Coal Sci Technol, 6 (2) (2019), pp. 260-273 Arbuzov et al., 2019 S. Arbuzov, I.Y. Chekryzhov, R. Finkelman, Y. Sun, C. Zhao, S. Il'enok, M. Blokhin, N. Zarubina Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of North Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan) Int. J. Coal Geol., 206 (2019), pp. 106-120 ASTM D2013/D2013M-12, 2012 ASTM D2013/D2013M-12 Standard Practice for Preparing Coal Samples for Analysis ASTM International, West Conshohocken, PA, USA (2012) ASTM D3176-15, 2015 ASTM D3176-15 Standard Practice for Ultimate Analysis of Coal and Coke ASTM International, West Conshohocken, PA, USA (2015) ASTM D4239-12, 2012 ASTM D4239-12 Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion ASTM International, West Conshohocken, PA, USA (2012) ASTM D7582-12, 2012 ASTM D7582-12 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis ASTM International, West Conshohocken, PA, USA (2012) Ayinla et al., 2017 H.A. Ayinla, W.H. Abdullah, Y.M. Makeen, M. Abubakar, A. Jauro, B.M.S. Yandoka, K.A. Mustapha, N.S.Z. Abidin Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic-rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria Int. J. Coal Geol., 173 (2017), pp. 212-226 Barwise, 1990 A. Barwise Role of nickel and vanadium in petroleum classification Energy Fuels, 4 (6) (1990), pp. 647-652 Bau, 1996 M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect Contrib. Mineral. Petrol., 123 (3) (1996), pp. 323-333 Burger et al., 2000 K. Burger, F.K. Bandelow, G. Bieg Pyroclastic kaolin coal–tonsteins of the upper carboniferous of zonguldak and amasra, Turkey Int. J. Coal Geol., 45 (1) (2000), pp. 39-53 Calder et al., 1991 J. Calder, M. Gibling, P.K. Mukhopadhyay Peat Formation in a Westphalian B Piedmont Setting, Cumberland Basin, Nova Scotia: Implicatio Clemens et al., 2000 A. Clemens, J. Deely, D. Gong, T. Moore, J. Shearer Partitioning behaviour of some toxic trace elements during coal combustion—the influence of events occurring during the deposition stage Fuel, 79 (14) (2000), pp. 1781-1784 Cornelissen et al., 2004 G. Cornelissen, Z. Kukulska, S. Kalaitzidis, K. Christanis, Ö. Gustafsson Relations between environmental black carbon sorption and geochemical sorbent characteristics Environ. Sci. Technol., 38 (13) (2004), pp. 3632-3640 Cornford, 1979 C. Cornford Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP Site 397, Eastern North Atlantic U. von Rad, W.B.F. Ryan, et al. (Eds.), Init. Repts. DSDP, 47 (Pt. 1), U.S. Govt. Printing Office, Washington (1979), pp. 503-510 S.S. Crowley, R.W. Stanton, T.A. Ryer The effects of volcanic ash on the maceral and chemical composition of the C coal bed Emery Coal Field, Utah. Org. Geochem., 14 (3) (1989), pp. 315-331 Dai et al., 2020 S. Dai, A. Bechtel, C.F. Eble, R.M. Flores, D. French, I.T. Graham, M.M. Hood, J.C. Hower, V.A. Korasidis, T.A. Moore Recognition of peat depositional environments in coal: a review Int. J. Coal Geol., 219 (2020), Article 103383 Dai and Finkelman, 2018 S. Dai, R.B. Finkelman Coal as a promising source of critical elements: progress and future prospects Int. J. Coal Geol., 186 (2018), pp. 155-164 Dai et al., 2015 S. Dai, J. Liu, C.R. Ward, J.C. Hower, P. Xie, Y. Jiang, M.M. Hood, J.M. O'Keefe, H. Song Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: a comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit Ore Geol. Rev., 71 (2015), pp. 318-349 Dai et al., 2012a S. Dai, D. Ren, C.-L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization Int. J. Coal Geol., 94 (2012), pp. 3-21 Dai et al., 2012b S. Dai, X. Wang, V.V. Seredin, J.C. Hower, C.R. Ward, J.M. O'Keefe, W. Huang, T. Li, X. Li, H. Liu Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications Int. J. Coal Geol., 90 (2012), pp. 72-99 Deng and Qian, 1993 H. Deng, K. Qian Analysis on Sedimentary Geochemistry and Environment Gansu Science and Technology Publishing House, Lanzhou, Lanzhou, PR China (1993) Diessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22 Diessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261 Ding et al., 2009 S.-l. Ding, Q.-f. Liu, M.-Z. Wang Study of kaolinite rock in coal-bearing stratum, North China Procedia Earth Planet, 1 (1) (2009), pp. 1024-1028 El Atfy et al., 2014 H. El Atfy, R. Brocke, D. Uhl, B. Ghassal, A.T. Stock, R. Littke Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: an integrated palynofacies and organic geochemical approach Int. J. Coal Geol., 131 (2014), pp. 326-343 Farhaduzzaman et al., 2012 M. Farhaduzzaman, W.H. Abdullah, M.A. Islam Depositional environment and hydrocarbon source potential of the permian Gondwana coals from the Barapukuria basin, northwest Bangladesh Int. J. Coal Geol., 90 (2012), pp. 162-179 Fatoye and Gideon, 2013 F.B. Fatoye, Y.B. Gideon Appraisal of the economic geology of Nigerian coal resources Environ. Earth Sci., 3 (11) (2013), pp. 25-31 Finkelman et al., 1999 R.B. Finkelman, H.E. Belkin, B. Zheng Health impacts of domestic coal use in China PNAS, 96 (7) (1999), pp. 3427-3431 Finkelman et al., 2019 R.B. Finkelman, S. Dai, D. French The importance of minerals in coal as the hosts of chemical elements: a review Int. J. Coal Geol., 212 (2019), Article 103251 Flores, 2014 R.M. Flores Coalification, gasification, and gas storage Coal and coalbed gas (2014), pp. 167-233 Galarraga et al., 2008 F. Galarraga, K. Reategui, A. Martïnez, M. Martínez, J. Llamas, G. Márquez V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins J. Pet. Sci. Eng., 61 (1) (2008), pp. 9-14 Gallego-Torres et al., 2010 D. Gallego-Torres, F. Martinez-Ruiz, G. De Lange, F. Jimenez-Espejo, M. Ortega-Huertas Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels Palaeogeogr. Palaeoclimatol. Palaeoecol., 293 (1–2) (2010), pp. 76-89 Gómez Neita and López Carrasquilla, 2017 J.S. Gómez Neita, M.D. López Carrasquilla Paleoenvironments of coals using organic petrography and their relationship with physicochemical properties, guaduas formation, Checua-Lenguazaque syncline, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso (2017), pp. 1-106 Hallberg, 1976 R. Hallberg A geochemical method for investigation of palaeoredox conditions in sediments Ambio Spec. Rep., 4 (1976), pp. 139-147 Hatch and Leventhal, 1992 J. Hatch, J. Leventhal Relationship between inferred redox potential of the depositional environment and geochemistry of the upper pennsylvanian (Missourian) Stark shale Member of the Dennis limestone, Wabaunsee county, Kansas, USA Chem. Geol., 99 (1–3) (1992), pp. 65-82 Hendrix et al., 1995 M.S. Hendrix, S.C. Brassell, A.R. Carroll, S.A. Graham Sedimentology, organic geochemistry, and petroleum potential of Jurassic coal measures: Tarim, Junggar, and Turpan basins, northwest China AAPG Bull., 79 (7) (1995), pp. 929-958 Hetzel et al., 2009 A. Hetzel, M.E. Böttcher, U.G. Wortmann, H.-J. Brumsack Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207) Palaeogeogr. Palaeoclimatol. Palaeoecol., 273 (3–4) (2009), pp. 302-328 Horsfield et al., 1988 B. Horsfield, K. Yordy, J. Crelling Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology Org. Geochem., 13 (1988), pp. 121-129 Hower et al., 2020 J.C. Hower, C.F. Eble, J.S. Backus, P. Xie, J. Liu, B. Fu, M.M. Hood Aspects of rare earth element enrichment in Central Appalachian coals J. Appl. Geochem., 120 (2020), Article 104676 Hower et al., 2016 J.C. Hower, C.F. Eble, S. Dai, H.E. Belkin Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment? Int. J. Coal Geol., 160 (2016), pp. 73-81 Hower et al., 2015 J.C. Hower, C.F. Eble, J.M. O'Keefe, S. Dai, P. Wang, P. Xie, J. Liu, C.R. Ward, D. French Petrology, palynology, and geochemistry of gray hawk coal (early Pennsylvanian, Langsettian) in eastern Kentucky, USA Minerals, 5 (3) (2015), pp. 592-622 Hower et al., 1999 J.C. Hower, L.F. Ruppert, C.F. Eble Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky Int. J. Coal Geol., 39 (1–3) (1999), pp. 141-153 Hunt, 1991 J.M. Hunt Generation of gas and oil from coal and other terrestrial organic matter Org. Geochem., 17 (6) (1991), pp. 673-680 ICCP, 1998 ICCP The new vitrinite classification (ICCP System 1994) Fuel, 77 (5) (1998), pp. 349-358 ICCP, 2001 ICCP The new inertinite classification (ICCP System 1994) Fuel, 80 (4) (2001), pp. 459-471 Islam et al., 2021 N. Islam, S. Shahadev Rabha, K.S.V. Subramanyam, B.K. Saikia Geochemistry and mineralogy of coal mine overburden (waste): a study towards their environmental implications Chemosphere, 274 (2021), Article 129736 Jochum et al., 2005 K.P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hofmann GeoReM: a new geochemical database for reference materials and isotopic standards Geostand. Geoanal. Res., 29 (3) (2005), pp. 333-338 Jochum et al., 2016 K.P. Jochum, U. Weis, B. Schwager, B. Stoll, S.A. Wilson, G.H. Haug, M.O. Andreae, J. Enzweiler Reference values following ISO guidelines for frequently requested rock reference materials Geostand. Geoanal. Res., 40 (3) (2016), pp. 333-350 Jones and Manning, 1994 B. Jones, D.A. Manning Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones Chem. Geol., 111 (1–4) (1994), pp. 111-129 Kalkreuth, 1982 W. Kalkreuth Rank and petrographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia, Canada Bull. Can. Petrol. Geol., 30 (2) (1982), pp. 112-139 Keller et al., 2016 B.D. Keller, N. Ferralis, J.C. Grossman Rethinking coal: Thin films of solution processed natural carbon nanoparticles for electronic devices Nano Lett., 16 (5) (2016), pp. 2951-2957 Ketris and Yudovich, 2009 M.á. Ketris, Y.E. Yudovich Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals Int. J. Coal Geol., 78 (2) (2009), pp. 135-148 Kogbe, 1976 C. Kogbe Paleogeographic History of Nigeria from Albian Times Geology of Nig. Elizabeth Publishers, Lagos (1976), pp. 237-252 Kostova et al., 2016 I. Kostova, C. Vassileva, S. Dai, J.C. Hower Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria Fuel, 186 (2016), pp. 674-684 Diessel, 1982 C. Diessel An appraisal of coal facies based on maceral characteristics Aust. Coal Geol., 4 (2) (1982), pp. 474-484 Diessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22 Google Scholar Diessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261 Lewan, 1984 M.D. Lewan Factors controlling the proportionality of vanadium to nickel in crude oils Geochem. Cosmochim. Acta, 48 (11) (1984), pp. 2231-2238 Liu et al., 2020 B. Liu, C. Zhao, J. Fiebig, A. Bechtel, Y. Sun, W. Püttmann Stable isotopic and elemental characteristics of pale and dark layers in a late Pliocene lignite deposit basin in Yunnan Province, southwestern China: implications for paleoenvironmental changes Int. J. Coal Geol., 226 (2020), Article 103498 Little, 2015 K.R. Little Commercial Lignite Coal-Derived Amendments for Improved Pasture Growth and Soil Health Monash University (2015) Liu et al., 1984 Y. Liu, L. Cao, Z. Li, H. Wang, T. Chu, J. Zhang Element Geochemistry Science and Technology Press, Bejing (1984) ([in Chinese]) Mastalerz et al., 2000 M. Mastalerz, P.L. Padgett, C.F. Eble Block coals from Indiana: inferences on changing depositional environment Int. J. Coal Geol., 43 (1–4) (2000), pp. 211-226 McDaniel et al., 1994 D. McDaniel, S. Hemming, S. McLennan, G. Hanson Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: the early proterozoic chelmsford formation, Sudbury basin, Ontario, Canada Geochem. Cosmochim. Acta, 58 (2) (1994), pp. 931-941 Milodowski and Zalasiewicz, 1991 A. Milodowski, J. Zalasiewicz Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales Geol. Soc. Lond. Spec. Publ., 57 (1) (1991), pp. 101-124 Misiak, 2002 J. Misiak Środowiska Depozycji Materii Organicznej W Torfowiskach Karbońskich. Materiały XXV Sympozjum „Geologia Formacji Węglonośnych Polski AGH, Kraków (2002), pp. 105-108 Misiak, 2003 J. Misiak Projekt Diagramu Do Analizy Facjalnej Pokładów Węgla Kamiennego. Mat. XXIV Symp. Nt. Geologia Formacji Węglonośnych Polski Wyd. AGH, Kraków (2003) Misiak, 2006 J. Misiak Petrography and depositional environment of the No. 308 coal seam (Upper Silesian Coal Basin, Poland)—a new approach to maceral quantification and facies analysis Int. J. Coal Geol., 68 (1–2) (2006), pp. 117-126 Misz-Kennan and Fabiańska, 2011 M. Misz-Kennan, M.J. Fabiańska Application of organic petrology and geochemistry to coal waste studies Int. J. Coal Geol., 88 (1) (2011), pp. 1-23 Moore, 2012 T.A. Moore Coalbed methane: a review Int. J. Coal Geol., 101 (2012), pp. 36-81 Mukhopadhyay et al., 1991 P. Mukhopadhyay, P. Hatcher, J. Calder Hydrocarbon generation from deltaic and intermontane fluviodeltaic coal and coaly shale from the Tertiary of Texas and Carboniferous of Nova Scotia Org. Geochem., 17 (6) (1991), pp. 765-783 Mukhopadhyay and Hatcher, 1993 P.K. Mukhopadhyay, P.G. Hatcher Composition of coal B.a.R. Law, DD (Eds.), Hydrocarbons from Coal, American Association of Petroleum Geologists Studies in Geology, USA (1993), pp. 79-118 Nyakuma et al., 2018 B. Nyakuma, A. Jauro, O. Oladokun, A. Bello, H. Alkali, M. Modibo, M. Abba Physicochemical, mineralogical, and thermogravimetric properties of newly discovered Nigerian coals Pet. & Coal, 60 (4) (2018), pp. 641-649 Nyakuma and Jauro, 2016 B.B. Nyakuma, A. Jauro Chemical and pyrolytic thermogravimetric characterization of Nigerian bituminous coals Geo. Sci. Eng., 62 (3) (2016), pp. 1-5 N. Obaje, B. Ligouis Petrographic evaluation of the depositional environments of the Cretaceous Obi/Lafia coal deposits in the Benue Trough of Nigeria J. Afr. Earth Sci., 22 (2) (1996), pp. 159-171 Obaje et al., 1994 N. Obaje, B. Ligouis, S. Abaa Petrographic composition and depositional environments of Cretaceous coals and coal measures in the Middle Benue Trough of Nigeria Int. J. Coal Geol., 26 (3–4) (1994), pp. 233-260 Obaje et al., 2004 N. Obaje, H. Wehner, G. Scheeder, M. Abubakar, A. Jauro Hydrocarbon prospectivity of Nigeria's inland basins: from the viewpoint of organic geochemistry and organic petrology AAPG Bull., 88 (3) (2004), pp. 325-353 Ogala et al., 2012 J. Ogala, G. Siavalas, K. Christanis Coal petrography, mineralogy and geochemistry of lignite samples from the Ogwashi–Asaba Formation, Nigeria J. Afr. Earth Sci., 66 (2012), pp. 35-45 Ojoh, 1990 K. Ojoh Cretaceous geodynamic evolution of the southern part of the Benue Trough (Nigeria) in the equatorial domain of the South Atlantic. Stratigraphy, basin analysis and paleo-oceanography Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 14 (2) (1990), pp. 419-442 Ojoh, 1992 K. Ojoh The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography and geodynamic evolution in the Equatorial domain of the South Atlantic NAPE Bull, 7 (2) (1992), pp. 131-152 Olade, 1975 M. Olade Evolution of Nigeria's Benue Trough (aulacogen): a tectonic model Geol. Mag., 112 (6) (1975), pp. 575-583 Petters, 1982 S.W. Petters Central west African Cretaceous-Tertiary benthic foraminifera and stratigraphy Palaeontogr. Abt. v., 179 (1982), pp. 1-104 Pi et al., 2014 D.-H. Pi, S.-Y. Jiang, L. Luo, J.-H. Yang, H.-F. Ling Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: evidence from redox-sensitive trace element geochemistry Palaeogeogr. Palaeoclimatol. Palaeoecol., 398 (2014), pp. 125-131 Pickel et al., 2017 W. Pickel, J. Kus, D. Flores, S. Kalaitzidis, K. Christanis, B. Cardott, M. Misz-Kennan, S. Rodrigues, A. Hentschel, M. Hamor-Vido Classification of liptinite–ICCP system 1994 Int. J. Coal Geol., 169 (2017), pp. 40-61 Piper, 1974 D.Z. Piper Rare earth elements in the sedimentary cycle: a summary Chem. Geol., 14 (4) (1974), pp. 285-304 Price and Baker, 1985 L.C. Price, C.E. Baker Suppression of vitrinite reflectance in amorphous rich kerogen-a major unrecognized problem J. Petrol. Geol., 8 (1) (1985), pp. 59-84 Raymond and Murchison, 1991 A.C. Raymond, D.G. Murchison Influence of exinitic macerals on the reflectance of vitrinite in Carboniferous sediments of the Midland Valley of Scotland Fuel, 70 (2) (1991), pp. 155-161 Ren et al., 1999 D. Ren, F. Zhao, Y. Wang, S. Yang Distributions of minor and trace elements in Chinese coals Int. J. Coal Geol., 40 (2–3) (1999), pp. 109-118 Ryemshak and Jauro, 2013 S.A. Ryemshak, A. Jauro Proximate analysis, rheological properties and technological applications of some Nigerian coals Int. J. Ind. Chem., 4 (1) (2013), p. 7 Saikia et al., 2015 B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, A. O'Bryan, A. Sharma, B.P. Baruah, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37 Saxby, 1980 J.D. Saxby Atomic HC ratios and the generation of oil from coals and kerogens Fuel, 59 (5) (1980), pp. 305-307 Silva and Kalkreuth, 2005 M. Silva, W. Kalkreuth Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank Int. J. Coal Geol., 64 (3–4) (2005), pp. 217-238 Singh and Singh, 1996 M.P. Singh, P.K. Singh Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India Int. J. Coal Geol., 29 (1–3) (1996), pp. 93-118 Singh et al., 2012 P.K. Singh, M. Singh, A.K. Singh, A. Naik Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India Energy Explor. Exploit., 30 (2) (2012), pp. 171-191 Snowdon, 1991 L.R. Snowdon Oil from type III organic matter: resinite revisited Org. Geochem., 17 (6) (1991), pp. 743-747 Speight, 2012 J.G. Speight The Chemistry and Technology of Coal (third ed. ed), CRC Press, USA (2012) Sýkorová et al., 2005 I. Sýkorová, W. Pickel, K. Christanis, M. Wolf, G. Taylor, D. Flores Classification of huminite—ICCP system 1994 Int. J. Coal Geol., 62 (1–2) (2005), pp. 85-106 Taylor et al., 1998 G. Taylor, M. Teichmuller, A. Davis, C. Diessel, R. Littke, P. Robert Organic Petrology Gebruder Borntraeger, Berlin, Stutgart (1998) Tissot and Welte, 1984 B. Tissot, D. Welte Petroleum Formation and Occurrence (second ed.), Springer, Berlin (1984), p. 699 Udo, 1992 O. Udo Some trace metal in selected Niger Delta crude oils: application in oil-oil correlation studies J. Min. Geol., 28 (2) (1992), pp. 289-291 van Krevelen, 1961 D.W. van Krevelen Coal Typology, Chemistry, Physics, Constitution 3, Elsevier, Amsterdam (1961) Ward, 2016 C.R. Ward Analysis, origin and significance of the mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27 Wignall and Myers, 1988 P.B. Wignall, K.J. Myers Interpreting benthic oxygen levels in mudrocks: a new approach Geol., 16 (5) (1988), pp. 452-455 Wignall and Twitchett, 1996 P.B. Wignall, R.J. Twitchett Oceanic anoxia and the end Permian mass extinction Science, 272 (5265) (1996), pp. 1155-1158 Wilkins and George, 2002 R.W. Wilkins, S.C. George Coal as a source rock for oil: a review Int. J. Coal Geol., 50 (1–4) (2002), pp. 317-361 World Coal Association, 2017 World Coal Association Basic Coal Facts, Coal Factsheet World Coal Association (WCA), United Kingdom (UK) (2017) Yasnygina et al., 2006 T.M. Yasnygina, M. Yu, S.P. Rasskazov, Sp, T.K. Zemskaya, Om The ICP-MS Determination of Rare Earths and Other Metals in Baikal Crude Oil: Comparison with Crude Oils in Siberia and the Russian Far East, Doklady Earth Sciences Interperiodica Publishing, c1998-, Moscow (2006), pp. 1237-1240 Zhao et al., 2013 L. Zhao, C.R. Ward, D. French, I.T. Graham Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China Int. J. Coal Geol., 116 (2013), pp. 208-226 Zhao et al., 2018 Y. Zhao, C.Y. Liu, H.Q. Niu, X.C. Zhao, D.D. Zhang, D. Yang, H. Deng Trace and rare earth element geochemistry of crude oils and their coexisting water from the Jiyuan Area of the Ordos Basin, N China Geol. J., 53 (1) (2018), pp. 336-348 Zhao et al., 2015 L. Zhao, C.R. Ward, D. French, I.T. Graham Major and trace element geochemistry of coals and intra-seam claystone from the Songzao Coalfield, SW China Minerals, 5 (2015), pp. 870-893 |
dc.relation.citationendpage.spa.fl_str_mv |
313 |
dc.relation.citationstartpage.spa.fl_str_mv |
300 |
dc.relation.citationissue.spa.fl_str_mv |
3 |
dc.relation.citationvolume.spa.fl_str_mv |
3 |
dc.rights.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
14 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Nigeria |
dc.publisher.spa.fl_str_mv |
Elsevier B.V. on behalf of KeAi Communications Co. Ltd |
dc.publisher.place.spa.fl_str_mv |
China |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S2666759222000294?via%3Dihub |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/33677562-b645-488a-8fa2-d6621d4932a9/download https://repositorio.cuc.edu.co/bitstreams/ec016970-a3c1-47d9-98f3-684a8e5abc48/download https://repositorio.cuc.edu.co/bitstreams/baaa6415-28d3-4e3b-864b-81a2885ea97e/download https://repositorio.cuc.edu.co/bitstreams/9a173ba3-d9a5-436b-a77d-d38ad095be9d/download |
bitstream.checksum.fl_str_mv |
12eb16a88d3aec7ec2685088d1d98166 e30e9215131d99561d40d6b0abbe9bad c5e8f045ba80fa00b922d508bad3bf89 0e87e03e0ba52d48b2fae489fe826327 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760700586983424 |
spelling |
Akinyemi, Segun AjayiHower, James C.Madukwe, HenryNyakuma, Bemgba BevanNasirudeen, Mohammed B.Olanipekun, TimileyinMudzielwana, RabelaniGitari, Mugera WilsonSilva, Luis F. O2022-07-22T14:00:00Z2022-07-22T14:00:00Z2022Segun A. Akinyemi, James C. Hower, Henry Y. Madukwe, Bemgba B. Nyakuma, Mohammed B. Nasirudeen, Timileyin A. Olanipekun, Rabelani Mudzielwana, Mugera W. Gitari, Luis F.O. Silva, Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: Implication for coal depositional environments, Energy Geoscience, Volume 3, Issue 3, 2022, Pages 300-313, ISSN 2666-7592, https://doi.org/10.1016/j.engeos.2022.04.004.2666-7592https://hdl.handle.net/11323/9398https://doi.org/10.1016/j.engeos.2022.04.004.10.1016/j.engeos.2022.04.004.Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The Benue Trough Basin (BTB) of Nigeria is geologically and geo-morphologically subdivided into upper, middle, and lower segments. The BTB is the subject of geological research due to its rich coal deposits that have the potential for oil and gas. The purpose of the present study is to examine the origins, depositional environments, and thermal history of the selected coals and the processes that influence their quality. Coal samples from different open cast coal mines in the middle BTB were examined using proximate and ultimate, x-ray diffraction (XRD), x-ray fluorescence (XRF), laser ablation induced coupled plasma (LA-ICPMS), and petrographical analyses. The coal samples contained mainly quartz, kaolinite, and organic carbon. The XRD spectra peaks revealed the triclinic and monoclinic structure of kaolin. The SiO2/Al2O3 ratios confirmed the dominance of quartz and kaolinite. The Ni/Co versus V/Cr, Cu/Zn, and V/Mo values in the studied coals suggest oxic depositional environments, whereas the V/(Ni + V) and V/(V + Cr) values indicate oxic to suboxic conditions. The Ce/Ce∗ values are slightly below 1, which indicates a suboxic depositional environment. Maceral texture is indicative of transformations from sub-bituminous to high volatile C or B bituminous coal. The maceral components and mineral matter (≥10%) of the studied coals imply deposition in the planar margin mire, and a river system of planar margin mire environments, respectively. The high gelification index (GI) and tissue preservation index (TPI) values indicate peat accumulation developed within a wet forest swamp. The ternary diagram of the maceral component suggests deposition in a wet moor environment with intermittent moderate to high flooding episodes. The studied coals are sub-hydrous vitrinite inferring hydrogen-poor and thermally immature characteristics. The low V and Ni contents, low H/C and high O/C, indicate Type Ⅲ terrestrial organic matter with the potential to generate gaseous hydrocarbons. The investigated coals were deposited by the river within telmatic, limnic, and limno-telmatic zones in the planar margin mire depositional environments. Overall, the integrated petrologic and geochemical data used in this study provides a reliable approach for the assessment of coal depositional environments.14 páginasapplication/pdfengElsevier B.V. on behalf of KeAi Communications Co. LtdChinaAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Copyright © 2022 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria: implication for coal depositional environmentsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85https://www.sciencedirect.com/science/article/pii/S2666759222000294?via%3DihubNigeriaEnergy GeoscienceAdedosu et al., 2010 T. Adedosu, O. Sonibare, O. Ekundayo, J. Tuo Hydrocarbon-generative potential of coal and interbedded shale of Mamu formation, Benue Trough, Nigeria Petrol. Sci. Technol., 28 (4) (2010), pp. 412-427Adighije, 1979 C. Adighije Gravity field of Benue trough, Nigeria Nature, 282 (5735) (1979), pp. 199-201Aihua, 1996 W. Aihua Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms Acta Sedimentol. Sin., 4 (1996)Akinlua et al., 2015 A. Akinlua, A. Sigedle, T. Buthelezi, O. Fadipe Trace element geochemistry of crude oils and condensates from South African Basins Mar. Petrol. Geol., 59 (2015), pp. 286-293Akinyemi et al., 2012 S. Akinyemi, W. Gitari, A. Akinlua, L. Petrik Mineralogy and Geochemistry of Sub-bituminous Coal and its Combustion Products from Mpumalanga Province, South Africa Analyt.Chem. InTech (2012)Akinyemi et al., 2021 S.A. Akinyemi, B.B. Nyakuma, A. Jauro, T.A. Olanipekun, R. Mudzielwana, M.W. Gitari, B.K. Saikia, G.L. Dotto, J.C. Hower, L.F. Silva Rare earth elements study of Cretaceous coals from Benue Trough basin, Nigeria: modes of occurrence for greater sustainability of mining Fuel, 304 (2021), Article 121468Akinyemi et al., 2022 S.A. Akinyemi, O.F. Adebayo, H.Y. Madukwe, A.T. Kayode, A.O. Aturamu, O.A. OlaOlorun, B.B. Nyakuma, A. Jauro, W.M. Gitari, R. Mudzielwana, J.C. Hower Elemental geochemistry and organic facies of selected cretaceous coals from the Benue Trough basin in Nigeria: implication for paleodepositional environments Mar. Petrol. Geol., 137 (2022), Article 105490Alves and Ade, 1996 R. Alves, M. Ade Sequence stratigraphy and coal petrography applied to the Candiota Coal Field, Rio Grande do Sul, Brazil: A depositional model Int. J. Coal Geol., 30 (3) (1996), pp. 231-248Ameh, 2019 E.G. Ameh Geochemistry and multivariate statistical evaluation of major oxides, trace and rare earth elements in coal occurrences and deposits around Kogi east, Northern Anambra Basin, Nigeria Int J Coal Sci Technol, 6 (2) (2019), pp. 260-273Arbuzov et al., 2019 S. Arbuzov, I.Y. Chekryzhov, R. Finkelman, Y. Sun, C. Zhao, S. Il'enok, M. Blokhin, N. Zarubina Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of North Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan) Int. J. Coal Geol., 206 (2019), pp. 106-120ASTM D2013/D2013M-12, 2012 ASTM D2013/D2013M-12 Standard Practice for Preparing Coal Samples for Analysis ASTM International, West Conshohocken, PA, USA (2012)ASTM D3176-15, 2015 ASTM D3176-15 Standard Practice for Ultimate Analysis of Coal and Coke ASTM International, West Conshohocken, PA, USA (2015)ASTM D4239-12, 2012 ASTM D4239-12 Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion ASTM International, West Conshohocken, PA, USA (2012)ASTM D7582-12, 2012 ASTM D7582-12 Standard Test Methods for Proximate Analysis of Coal and Coke by Macro Thermogravimetric Analysis ASTM International, West Conshohocken, PA, USA (2012)Ayinla et al., 2017 H.A. Ayinla, W.H. Abdullah, Y.M. Makeen, M. Abubakar, A. Jauro, B.M.S. Yandoka, K.A. Mustapha, N.S.Z. Abidin Source rock characteristics, depositional setting and hydrocarbon generation potential of Cretaceous coals and organic-rich mudstones from Gombe Formation, Gongola Sub-basin, Northern Benue Trough, NE Nigeria Int. J. Coal Geol., 173 (2017), pp. 212-226Barwise, 1990 A. Barwise Role of nickel and vanadium in petroleum classification Energy Fuels, 4 (6) (1990), pp. 647-652Bau, 1996 M. Bau Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect Contrib. Mineral. Petrol., 123 (3) (1996), pp. 323-333Burger et al., 2000 K. Burger, F.K. Bandelow, G. Bieg Pyroclastic kaolin coal–tonsteins of the upper carboniferous of zonguldak and amasra, Turkey Int. J. Coal Geol., 45 (1) (2000), pp. 39-53Calder et al., 1991 J. Calder, M. Gibling, P.K. Mukhopadhyay Peat Formation in a Westphalian B Piedmont Setting, Cumberland Basin, Nova Scotia: ImplicatioClemens et al., 2000 A. Clemens, J. Deely, D. Gong, T. Moore, J. Shearer Partitioning behaviour of some toxic trace elements during coal combustion—the influence of events occurring during the deposition stage Fuel, 79 (14) (2000), pp. 1781-1784Cornelissen et al., 2004 G. Cornelissen, Z. Kukulska, S. Kalaitzidis, K. Christanis, Ö. Gustafsson Relations between environmental black carbon sorption and geochemical sorbent characteristics Environ. Sci. Technol., 38 (13) (2004), pp. 3632-3640Cornford, 1979 C. Cornford Organic deposition at a continental rise: organic geochemical interpretation and synthesis at DSDP Site 397, Eastern North Atlantic U. von Rad, W.B.F. Ryan, et al. (Eds.), Init. Repts. DSDP, 47 (Pt. 1), U.S. Govt. Printing Office, Washington (1979), pp. 503-510S.S. Crowley, R.W. Stanton, T.A. Ryer The effects of volcanic ash on the maceral and chemical composition of the C coal bed Emery Coal Field, Utah. Org. Geochem., 14 (3) (1989), pp. 315-331Dai et al., 2020 S. Dai, A. Bechtel, C.F. Eble, R.M. Flores, D. French, I.T. Graham, M.M. Hood, J.C. Hower, V.A. Korasidis, T.A. Moore Recognition of peat depositional environments in coal: a review Int. J. Coal Geol., 219 (2020), Article 103383Dai and Finkelman, 2018 S. Dai, R.B. Finkelman Coal as a promising source of critical elements: progress and future prospects Int. J. Coal Geol., 186 (2018), pp. 155-164Dai et al., 2015 S. Dai, J. Liu, C.R. Ward, J.C. Hower, P. Xie, Y. Jiang, M.M. Hood, J.M. O'Keefe, H. Song Petrological, geochemical, and mineralogical compositions of the low-Ge coals from the Shengli Coalfield, China: a comparative study with Ge-rich coals and a formation model for coal-hosted Ge ore deposit Ore Geol. Rev., 71 (2015), pp. 318-349Dai et al., 2012a S. Dai, D. Ren, C.-L. Chou, R.B. Finkelman, V.V. Seredin, Y. Zhou Geochemistry of trace elements in Chinese coals: a review of abundances, genetic types, impacts on human health, and industrial utilization Int. J. Coal Geol., 94 (2012), pp. 3-21Dai et al., 2012b S. Dai, X. Wang, V.V. Seredin, J.C. Hower, C.R. Ward, J.M. O'Keefe, W. Huang, T. Li, X. Li, H. Liu Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: new data and genetic implications Int. J. Coal Geol., 90 (2012), pp. 72-99Deng and Qian, 1993 H. Deng, K. Qian Analysis on Sedimentary Geochemistry and Environment Gansu Science and Technology Publishing House, Lanzhou, Lanzhou, PR China (1993)Diessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22Diessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261Ding et al., 2009 S.-l. Ding, Q.-f. Liu, M.-Z. Wang Study of kaolinite rock in coal-bearing stratum, North China Procedia Earth Planet, 1 (1) (2009), pp. 1024-1028El Atfy et al., 2014 H. El Atfy, R. Brocke, D. Uhl, B. Ghassal, A.T. Stock, R. Littke Source rock potential and paleoenvironment of the Miocene Rudeis and Kareem formations, Gulf of Suez, Egypt: an integrated palynofacies and organic geochemical approach Int. J. Coal Geol., 131 (2014), pp. 326-343Farhaduzzaman et al., 2012 M. Farhaduzzaman, W.H. Abdullah, M.A. Islam Depositional environment and hydrocarbon source potential of the permian Gondwana coals from the Barapukuria basin, northwest Bangladesh Int. J. Coal Geol., 90 (2012), pp. 162-179Fatoye and Gideon, 2013 F.B. Fatoye, Y.B. Gideon Appraisal of the economic geology of Nigerian coal resources Environ. Earth Sci., 3 (11) (2013), pp. 25-31Finkelman et al., 1999 R.B. Finkelman, H.E. Belkin, B. Zheng Health impacts of domestic coal use in China PNAS, 96 (7) (1999), pp. 3427-3431Finkelman et al., 2019 R.B. Finkelman, S. Dai, D. French The importance of minerals in coal as the hosts of chemical elements: a review Int. J. Coal Geol., 212 (2019), Article 103251Flores, 2014 R.M. Flores Coalification, gasification, and gas storage Coal and coalbed gas (2014), pp. 167-233Galarraga et al., 2008 F. Galarraga, K. Reategui, A. Martïnez, M. Martínez, J. Llamas, G. Márquez V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins J. Pet. Sci. Eng., 61 (1) (2008), pp. 9-14Gallego-Torres et al., 2010 D. Gallego-Torres, F. Martinez-Ruiz, G. De Lange, F. Jimenez-Espejo, M. Ortega-Huertas Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels Palaeogeogr. Palaeoclimatol. Palaeoecol., 293 (1–2) (2010), pp. 76-89Gómez Neita and López Carrasquilla, 2017 J.S. Gómez Neita, M.D. López Carrasquilla Paleoenvironments of coals using organic petrography and their relationship with physicochemical properties, guaduas formation, Checua-Lenguazaque syncline, Universidad Pedagógica y Tecnológica de Colombia, Sogamoso (2017), pp. 1-106Hallberg, 1976 R. Hallberg A geochemical method for investigation of palaeoredox conditions in sediments Ambio Spec. Rep., 4 (1976), pp. 139-147Hatch and Leventhal, 1992 J. Hatch, J. Leventhal Relationship between inferred redox potential of the depositional environment and geochemistry of the upper pennsylvanian (Missourian) Stark shale Member of the Dennis limestone, Wabaunsee county, Kansas, USA Chem. Geol., 99 (1–3) (1992), pp. 65-82Hendrix et al., 1995 M.S. Hendrix, S.C. Brassell, A.R. Carroll, S.A. Graham Sedimentology, organic geochemistry, and petroleum potential of Jurassic coal measures: Tarim, Junggar, and Turpan basins, northwest China AAPG Bull., 79 (7) (1995), pp. 929-958Hetzel et al., 2009 A. Hetzel, M.E. Böttcher, U.G. Wortmann, H.-J. Brumsack Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207) Palaeogeogr. Palaeoclimatol. Palaeoecol., 273 (3–4) (2009), pp. 302-328Horsfield et al., 1988 B. Horsfield, K. Yordy, J. Crelling Determining the petroleum-generating potential of coal using organic geochemistry and organic petrology Org. Geochem., 13 (1988), pp. 121-129Hower et al., 2020 J.C. Hower, C.F. Eble, J.S. Backus, P. Xie, J. Liu, B. Fu, M.M. Hood Aspects of rare earth element enrichment in Central Appalachian coals J. Appl. Geochem., 120 (2020), Article 104676Hower et al., 2016 J.C. Hower, C.F. Eble, S. Dai, H.E. Belkin Distribution of rare earth elements in eastern Kentucky coals: indicators of multiple modes of enrichment? Int. J. Coal Geol., 160 (2016), pp. 73-81Hower et al., 2015 J.C. Hower, C.F. Eble, J.M. O'Keefe, S. Dai, P. Wang, P. Xie, J. Liu, C.R. Ward, D. French Petrology, palynology, and geochemistry of gray hawk coal (early Pennsylvanian, Langsettian) in eastern Kentucky, USA Minerals, 5 (3) (2015), pp. 592-622Hower et al., 1999 J.C. Hower, L.F. Ruppert, C.F. Eble Lanthanide, yttrium, and zirconium anomalies in the Fire Clay coal bed, Eastern Kentucky Int. J. Coal Geol., 39 (1–3) (1999), pp. 141-153Hunt, 1991 J.M. Hunt Generation of gas and oil from coal and other terrestrial organic matter Org. Geochem., 17 (6) (1991), pp. 673-680ICCP, 1998 ICCP The new vitrinite classification (ICCP System 1994) Fuel, 77 (5) (1998), pp. 349-358ICCP, 2001 ICCP The new inertinite classification (ICCP System 1994) Fuel, 80 (4) (2001), pp. 459-471Islam et al., 2021 N. Islam, S. Shahadev Rabha, K.S.V. Subramanyam, B.K. Saikia Geochemistry and mineralogy of coal mine overburden (waste): a study towards their environmental implications Chemosphere, 274 (2021), Article 129736Jochum et al., 2005 K.P. Jochum, U. Nohl, K. Herwig, E. Lammel, B. Stoll, A.W. Hofmann GeoReM: a new geochemical database for reference materials and isotopic standards Geostand. Geoanal. Res., 29 (3) (2005), pp. 333-338Jochum et al., 2016 K.P. Jochum, U. Weis, B. Schwager, B. Stoll, S.A. Wilson, G.H. Haug, M.O. Andreae, J. Enzweiler Reference values following ISO guidelines for frequently requested rock reference materials Geostand. Geoanal. Res., 40 (3) (2016), pp. 333-350Jones and Manning, 1994 B. Jones, D.A. Manning Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones Chem. Geol., 111 (1–4) (1994), pp. 111-129Kalkreuth, 1982 W. Kalkreuth Rank and petrographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia, Canada Bull. Can. Petrol. Geol., 30 (2) (1982), pp. 112-139Keller et al., 2016 B.D. Keller, N. Ferralis, J.C. Grossman Rethinking coal: Thin films of solution processed natural carbon nanoparticles for electronic devices Nano Lett., 16 (5) (2016), pp. 2951-2957Ketris and Yudovich, 2009 M.á. Ketris, Y.E. Yudovich Estimations of Clarkes for Carbonaceous biolithes: world averages for trace element contents in black shales and coals Int. J. Coal Geol., 78 (2) (2009), pp. 135-148Kogbe, 1976 C. Kogbe Paleogeographic History of Nigeria from Albian Times Geology of Nig. Elizabeth Publishers, Lagos (1976), pp. 237-252Kostova et al., 2016 I. Kostova, C. Vassileva, S. Dai, J.C. Hower Mineralogy, geochemistry and mercury content characterization of fly ashes from the Maritza 3 and Varna thermoelectric power plants, Bulgaria Fuel, 186 (2016), pp. 674-684Diessel, 1982 C. Diessel An appraisal of coal facies based on maceral characteristics Aust. Coal Geol., 4 (2) (1982), pp. 474-484 Diessel, 1986 C. Diessel On the correlation between coal facies and depositional environments Proceeding 20th Symposium of Department Geology, University of New Castle, New South Wales (1986), pp. 19-22 Google Scholar Diessel, 1992 C.F.K. Diessel Coal-Bearing Depositional Systems, Springer-Verlag (1992), pp. 5-261Lewan, 1984 M.D. Lewan Factors controlling the proportionality of vanadium to nickel in crude oils Geochem. Cosmochim. Acta, 48 (11) (1984), pp. 2231-2238Liu et al., 2020 B. Liu, C. Zhao, J. Fiebig, A. Bechtel, Y. Sun, W. Püttmann Stable isotopic and elemental characteristics of pale and dark layers in a late Pliocene lignite deposit basin in Yunnan Province, southwestern China: implications for paleoenvironmental changes Int. J. Coal Geol., 226 (2020), Article 103498Little, 2015 K.R. Little Commercial Lignite Coal-Derived Amendments for Improved Pasture Growth and Soil Health Monash University (2015)Liu et al., 1984 Y. Liu, L. Cao, Z. Li, H. Wang, T. Chu, J. Zhang Element Geochemistry Science and Technology Press, Bejing (1984) ([in Chinese])Mastalerz et al., 2000 M. Mastalerz, P.L. Padgett, C.F. Eble Block coals from Indiana: inferences on changing depositional environment Int. J. Coal Geol., 43 (1–4) (2000), pp. 211-226McDaniel et al., 1994 D. McDaniel, S. Hemming, S. McLennan, G. Hanson Resetting of neodymium isotopes and redistribution of REEs during sedimentary processes: the early proterozoic chelmsford formation, Sudbury basin, Ontario, Canada Geochem. Cosmochim. Acta, 58 (2) (1994), pp. 931-941Milodowski and Zalasiewicz, 1991 A. Milodowski, J. Zalasiewicz Redistribution of rare earth elements during diagenesis of turbidite/hemipelagite mudrock sequences of Llandovery age from central Wales Geol. Soc. Lond. Spec. Publ., 57 (1) (1991), pp. 101-124Misiak, 2002 J. Misiak Środowiska Depozycji Materii Organicznej W Torfowiskach Karbońskich. Materiały XXV Sympozjum „Geologia Formacji Węglonośnych Polski AGH, Kraków (2002), pp. 105-108Misiak, 2003 J. Misiak Projekt Diagramu Do Analizy Facjalnej Pokładów Węgla Kamiennego. Mat. XXIV Symp. Nt. Geologia Formacji Węglonośnych Polski Wyd. AGH, Kraków (2003)Misiak, 2006 J. Misiak Petrography and depositional environment of the No. 308 coal seam (Upper Silesian Coal Basin, Poland)—a new approach to maceral quantification and facies analysis Int. J. Coal Geol., 68 (1–2) (2006), pp. 117-126Misz-Kennan and Fabiańska, 2011 M. Misz-Kennan, M.J. Fabiańska Application of organic petrology and geochemistry to coal waste studies Int. J. Coal Geol., 88 (1) (2011), pp. 1-23Moore, 2012 T.A. Moore Coalbed methane: a review Int. J. Coal Geol., 101 (2012), pp. 36-81Mukhopadhyay et al., 1991 P. Mukhopadhyay, P. Hatcher, J. Calder Hydrocarbon generation from deltaic and intermontane fluviodeltaic coal and coaly shale from the Tertiary of Texas and Carboniferous of Nova Scotia Org. Geochem., 17 (6) (1991), pp. 765-783Mukhopadhyay and Hatcher, 1993 P.K. Mukhopadhyay, P.G. Hatcher Composition of coal B.a.R. Law, DD (Eds.), Hydrocarbons from Coal, American Association of Petroleum Geologists Studies in Geology, USA (1993), pp. 79-118Nyakuma et al., 2018 B. Nyakuma, A. Jauro, O. Oladokun, A. Bello, H. Alkali, M. Modibo, M. Abba Physicochemical, mineralogical, and thermogravimetric properties of newly discovered Nigerian coals Pet. & Coal, 60 (4) (2018), pp. 641-649Nyakuma and Jauro, 2016 B.B. Nyakuma, A. Jauro Chemical and pyrolytic thermogravimetric characterization of Nigerian bituminous coals Geo. Sci. Eng., 62 (3) (2016), pp. 1-5N. Obaje, B. Ligouis Petrographic evaluation of the depositional environments of the Cretaceous Obi/Lafia coal deposits in the Benue Trough of Nigeria J. Afr. Earth Sci., 22 (2) (1996), pp. 159-171Obaje et al., 1994 N. Obaje, B. Ligouis, S. Abaa Petrographic composition and depositional environments of Cretaceous coals and coal measures in the Middle Benue Trough of Nigeria Int. J. Coal Geol., 26 (3–4) (1994), pp. 233-260Obaje et al., 2004 N. Obaje, H. Wehner, G. Scheeder, M. Abubakar, A. Jauro Hydrocarbon prospectivity of Nigeria's inland basins: from the viewpoint of organic geochemistry and organic petrology AAPG Bull., 88 (3) (2004), pp. 325-353Ogala et al., 2012 J. Ogala, G. Siavalas, K. Christanis Coal petrography, mineralogy and geochemistry of lignite samples from the Ogwashi–Asaba Formation, Nigeria J. Afr. Earth Sci., 66 (2012), pp. 35-45Ojoh, 1990 K. Ojoh Cretaceous geodynamic evolution of the southern part of the Benue Trough (Nigeria) in the equatorial domain of the South Atlantic. Stratigraphy, basin analysis and paleo-oceanography Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine, 14 (2) (1990), pp. 419-442Ojoh, 1992 K. Ojoh The southern part of the Benue Trough (Nigeria) Cretaceous stratigraphy, basin analysis, paleo-oceanography and geodynamic evolution in the Equatorial domain of the South Atlantic NAPE Bull, 7 (2) (1992), pp. 131-152Olade, 1975 M. Olade Evolution of Nigeria's Benue Trough (aulacogen): a tectonic model Geol. Mag., 112 (6) (1975), pp. 575-583Petters, 1982 S.W. Petters Central west African Cretaceous-Tertiary benthic foraminifera and stratigraphy Palaeontogr. Abt. v., 179 (1982), pp. 1-104Pi et al., 2014 D.-H. Pi, S.-Y. Jiang, L. Luo, J.-H. Yang, H.-F. Ling Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: evidence from redox-sensitive trace element geochemistry Palaeogeogr. Palaeoclimatol. Palaeoecol., 398 (2014), pp. 125-131Pickel et al., 2017 W. Pickel, J. Kus, D. Flores, S. Kalaitzidis, K. Christanis, B. Cardott, M. Misz-Kennan, S. Rodrigues, A. Hentschel, M. Hamor-Vido Classification of liptinite–ICCP system 1994 Int. J. Coal Geol., 169 (2017), pp. 40-61Piper, 1974 D.Z. Piper Rare earth elements in the sedimentary cycle: a summary Chem. Geol., 14 (4) (1974), pp. 285-304Price and Baker, 1985 L.C. Price, C.E. Baker Suppression of vitrinite reflectance in amorphous rich kerogen-a major unrecognized problem J. Petrol. Geol., 8 (1) (1985), pp. 59-84Raymond and Murchison, 1991 A.C. Raymond, D.G. Murchison Influence of exinitic macerals on the reflectance of vitrinite in Carboniferous sediments of the Midland Valley of Scotland Fuel, 70 (2) (1991), pp. 155-161Ren et al., 1999 D. Ren, F. Zhao, Y. Wang, S. Yang Distributions of minor and trace elements in Chinese coals Int. J. Coal Geol., 40 (2–3) (1999), pp. 109-118Ryemshak and Jauro, 2013 S.A. Ryemshak, A. Jauro Proximate analysis, rheological properties and technological applications of some Nigerian coals Int. J. Ind. Chem., 4 (1) (2013), p. 7Saikia et al., 2015 B.K. Saikia, C.R. Ward, M.L. Oliveira, J.C. Hower, F. De Leao, M.N. Johnston, A. O'Bryan, A. Sharma, B.P. Baruah, L.F. Silva Geochemistry and nano-mineralogy of feed coals, mine overburden, and coal-derived fly ashes from Assam (North-east India): a multi-faceted analytical approach Int. J. Coal Geol., 137 (2015), pp. 19-37Saxby, 1980 J.D. Saxby Atomic HC ratios and the generation of oil from coals and kerogens Fuel, 59 (5) (1980), pp. 305-307Silva and Kalkreuth, 2005 M. Silva, W. Kalkreuth Petrological and geochemical characterization of Candiota coal seams, Brazil—implication for coal facies interpretations and coal rank Int. J. Coal Geol., 64 (3–4) (2005), pp. 217-238Singh and Singh, 1996 M.P. Singh, P.K. Singh Petrographic characterization and evolution of the Permian coal deposits of the Rajmahal basin, Bihar, India Int. J. Coal Geol., 29 (1–3) (1996), pp. 93-118Singh et al., 2012 P.K. Singh, M. Singh, A.K. Singh, A. Naik Petrographic and geochemical characterization of coals from Tiru valley, Nagaland, NE India Energy Explor. Exploit., 30 (2) (2012), pp. 171-191Snowdon, 1991 L.R. Snowdon Oil from type III organic matter: resinite revisited Org. Geochem., 17 (6) (1991), pp. 743-747Speight, 2012 J.G. Speight The Chemistry and Technology of Coal (third ed. ed), CRC Press, USA (2012)Sýkorová et al., 2005 I. Sýkorová, W. Pickel, K. Christanis, M. Wolf, G. Taylor, D. Flores Classification of huminite—ICCP system 1994 Int. J. Coal Geol., 62 (1–2) (2005), pp. 85-106Taylor et al., 1998 G. Taylor, M. Teichmuller, A. Davis, C. Diessel, R. Littke, P. Robert Organic Petrology Gebruder Borntraeger, Berlin, Stutgart (1998)Tissot and Welte, 1984 B. Tissot, D. Welte Petroleum Formation and Occurrence (second ed.), Springer, Berlin (1984), p. 699Udo, 1992 O. Udo Some trace metal in selected Niger Delta crude oils: application in oil-oil correlation studies J. Min. Geol., 28 (2) (1992), pp. 289-291van Krevelen, 1961 D.W. van Krevelen Coal Typology, Chemistry, Physics, Constitution 3, Elsevier, Amsterdam (1961)Ward, 2016 C.R. Ward Analysis, origin and significance of the mineral matter in coal: an updated review Int. J. Coal Geol., 165 (2016), pp. 1-27Wignall and Myers, 1988 P.B. Wignall, K.J. Myers Interpreting benthic oxygen levels in mudrocks: a new approach Geol., 16 (5) (1988), pp. 452-455Wignall and Twitchett, 1996 P.B. Wignall, R.J. Twitchett Oceanic anoxia and the end Permian mass extinction Science, 272 (5265) (1996), pp. 1155-1158Wilkins and George, 2002 R.W. Wilkins, S.C. George Coal as a source rock for oil: a review Int. J. Coal Geol., 50 (1–4) (2002), pp. 317-361World Coal Association, 2017 World Coal Association Basic Coal Facts, Coal Factsheet World Coal Association (WCA), United Kingdom (UK) (2017)Yasnygina et al., 2006 T.M. Yasnygina, M. Yu, S.P. Rasskazov, Sp, T.K. Zemskaya, Om The ICP-MS Determination of Rare Earths and Other Metals in Baikal Crude Oil: Comparison with Crude Oils in Siberia and the Russian Far East, Doklady Earth Sciences Interperiodica Publishing, c1998-, Moscow (2006), pp. 1237-1240Zhao et al., 2013 L. Zhao, C.R. Ward, D. French, I.T. Graham Mineralogical composition of late permian coal seams in the Songzao coalfield, southwestern China Int. J. Coal Geol., 116 (2013), pp. 208-226Zhao et al., 2018 Y. Zhao, C.Y. Liu, H.Q. Niu, X.C. Zhao, D.D. Zhang, D. Yang, H. Deng Trace and rare earth element geochemistry of crude oils and their coexisting water from the Jiyuan Area of the Ordos Basin, N China Geol. J., 53 (1) (2018), pp. 336-348Zhao et al., 2015 L. Zhao, C.R. Ward, D. French, I.T. Graham Major and trace element geochemistry of coals and intra-seam claystone from the Songzao Coalfield, SW China Minerals, 5 (2015), pp. 870-89331330033CoalMaceralTrace ElementsMineralogyDepositional EnvironmentsPublicationORIGINALGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdfGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdfapplication/pdf4355814https://repositorio.cuc.edu.co/bitstreams/33677562-b645-488a-8fa2-d6621d4932a9/download12eb16a88d3aec7ec2685088d1d98166MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/ec016970-a3c1-47d9-98f3-684a8e5abc48/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdf.txtGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdf.txttext/plain70793https://repositorio.cuc.edu.co/bitstreams/baaa6415-28d3-4e3b-864b-81a2885ea97e/downloadc5e8f045ba80fa00b922d508bad3bf89MD53THUMBNAILGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdf.jpgGeochemical, mineralogical, and petrological characteristics of the Cretaceous coal from the middle Benue Trough Basin, Nigeria Implication for coal deposition.pdf.jpgimage/jpeg15069https://repositorio.cuc.edu.co/bitstreams/9a173ba3-d9a5-436b-a77d-d38ad095be9d/download0e87e03e0ba52d48b2fae489fe826327MD5411323/9398oai:repositorio.cuc.edu.co:11323/93982024-09-17 10:17:33.567https://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |