A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities
Lead (Pb) is one of the most paradoxical elements, both having diverse practical uses, as well as being extremely toxic to humans, and especially to children. The use of Pb records a steady growth with annual production currently exceeding 10 million metric tons. In spite of the environmental awaren...
- Autores:
-
Schindler, Michael
Santosh, M
Dotto, Guilherme
Silva O, Luis F
Hochella Jr, Michael F
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8788
- Acceso en línea:
- https://hdl.handle.net/11323/8788
https://doi.org/10.1016/j.gr.2021.07.011
https://repositorio.cuc.edu.co/
- Palabra clave:
- environment
human health
mining
nanoparticles
smelting
- Rights
- openAccess
- License
- http://purl.org/coar/access_right/c_abf2
id |
RCUC2_a2f3944b69fc355c99f200478ebd1b64 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8788 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
title |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
spellingShingle |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities environment human health mining nanoparticles smelting |
title_short |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
title_full |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
title_fullStr |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
title_full_unstemmed |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
title_sort |
A review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activities |
dc.creator.fl_str_mv |
Schindler, Michael Santosh, M Dotto, Guilherme Silva O, Luis F Hochella Jr, Michael F |
dc.contributor.author.spa.fl_str_mv |
Schindler, Michael Santosh, M Dotto, Guilherme Silva O, Luis F Hochella Jr, Michael F |
dc.subject.spa.fl_str_mv |
environment human health mining nanoparticles smelting |
topic |
environment human health mining nanoparticles smelting |
description |
Lead (Pb) is one of the most paradoxical elements, both having diverse practical uses, as well as being extremely toxic to humans, and especially to children. The use of Pb records a steady growth with annual production currently exceeding 10 million metric tons. In spite of the environmental awareness of modern society, humans are still exposed to Pb through its emission by smelting and mining activities, and also by Pb-bearing mine wastes and soils. Here, we review the chemical and mineralogical forms of Pb generated from smelting and mining processes and subsequently altered in tailings, slag piles, and soils. In smelter plumes, Pb is emitted to the atmosphere either in the form of smaller nano-size particulate matter (PM) often associated with S, or larger micrometer Pb-bearing PM matter accompanied by oxide-silicate matrices. Pb-bearing phases in mine tailings and impacted soils depict a greater mineralogical and chemical complexity than those emitted from smelters and the larger particle size of this PM also leads to a lower Pb bioavailability. High resolution observations in aquatic system, soils and rock coatings impacted by smelting and mining activities show the presence of Pb-bearing phosphates, sulfides, sulfates, carbonates, and oxide nanoparticles. Larger micrometer size particles of Pb-bearing minerals form often through the aggregation of Pb-bearing nanoparticles, a process commonly referred to as crystallization through particle attachment. Mobilization of Pb within soil columns is strongly affected by the transport of colloids, especially those composed of organic matter and Fe-hydroxides because Pb is taken up efficiently by these two soil components. The extraordinary variability and complexities of all of these processes suggest that future reduction of Pb contamination in the environment and its impact on human health mainly depends on eliminating or greatly reducing Pb-release from smelting operations and tailings impoundments. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-19T16:14:14Z |
dc.date.available.none.fl_str_mv |
2021-10-19T16:14:14Z |
dc.date.issued.none.fl_str_mv |
2021-07-17 |
dc.date.embargoEnd.none.fl_str_mv |
2023-07-17 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1342937X |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8788 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.gr.2021.07.011 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1342937X Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8788 https://doi.org/10.1016/j.gr.2021.07.011 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Adiansyah, J.S., Rosano, M., Vink, S., Keir, G., 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Cleaner Prod. 108, 1050–1062. Ahmad, M., Ok, Y.S., Rajapaksha, A.U., Lim, J.E., Kim, B.-Y., Ahn, J.-H., Lee, Y.H., AlWabel, M.I., Lee, S.-E., Lee, S.S., 2016. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 301, 179– 186. Argyraki, A., 2014. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ. Geochem. Health 36 (4), 677– 692. Agency for Toxic Substances and Disease Registry (ATSDR), 2017. Lead Toxicity. What are possible health effects from lead exposure? Available: https://www. atsdr.cdc.gov/csem /lead/docs/csem-lead_toxicity_508.pdf. Barbosa Jr, F., Tanus-Santos, J.E., Gerlach, R.F., Parsons, P.J., 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspective 113, 1669– 1674. Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754. Bao, H.M., Reheis, M.C., 2003. Multiple oxygen and sulfur isotopic analyses on watersoluble sulfate in bulk atmospheric deposition from the southwestern United States. J. Geophys. Res. 108, 4430–4438. Batonneau, Y., Bremard, C., Gengembre, L., Laureyns, J., Le Maguer, A., Le Maguer, D., Perdrix, E., Sobanska, S., 2004. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environ. Sci. Technol. 38 (20), 5281–5289. Barcan, V., 2002. Nature and origin of multicomponent aerial emissions of the copper-nickel smelter complex. Environ. Int. 28, 451–456. Ben-Moshe, T., Dror, I., Berkowitz, B., 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81 (3), 387–393. Blacksmith Institute and Green Cross Switzerland. The Worlds Worst, 2013. The Top Ten Toxic Threats – Cleanup, Progress, and Ongoing Challenges Blacksmith Institute, Zurich, Switzerland (2013). USA and Green Cross Switzerland, New York. Boisa, N., Elom, N., Dean, J.R., Deary, M.E., Bird, G., Entwistle, J.A., 2014. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10size fraction of soil. Environ. Int. 70, 132–142. Bose-O’Reilly, S., Yabe, J., Makumba, J., Schutzmeier, P., Ericson, B., Caravanos, J., 2018. Lead intoxicated children in Kabwe, Zambia. Environ. Res. 165, 420–424. Bosso, S.T., Enzweiler, J., 2008. Bioaccessible lead in soils, slag, and mine wastes from abandoned mining district in Brazil. Environ. Geochem. Health 30, 219– 229. Boussen, S., Abdelaziz, S., Soubrand, M., Bril, H., Chaabani, F., Abdeljaouad, S., 2010. Mobilization of lead-zinc rich particles from mine tailing in Northern Tunisia by aeolian and run-off processes. Bulletin de la Société Géologique de France 181, 371–379. Braungardt, C.B., Achterberg, E.P., Elbaz-Poulichet, F., Morley, N.H., 2003. Metal geochemistry in a mine-polluted estuarine system in Spain. Appl. Geochem. 18 (11), 1757–1771. Brock, C.A., Hamill, P., Wilson, J.C., Jonsson, H.H., Chan, K.R., 1995. Particle formation in the upper tropical troposphere – a source of nuclei for the stratospheric aerosol. Science 270 (5242), 1650–1653. Brown, J.S., Gordon, T., Price, O., Asgharian, B., 2013. Thoracic and respirable particle definitions for human health risk assessment. Particle Fibre Toxicology 10 (1), 12. https://doi.org/10.1186/1743-8977-10-12. Brown Jr., G.E., Hochella Jr., M.F., Calas, G., 2017. Improving Mitigation of the LongTerm Legacy of Mining Activities: Nano- and Molecular-Level Concepts and Methods. Elements 13, 325–330. Buatier, M.D., Sobanska, S., Elsass, F., 2001. investigation on Zn-and Pbcontaminated soils. Appl. Geochem. 16 (9-10), 1165–1177. Buffle, J., Leppard, G.G., 1995. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 29 (9), 2169–2175. Buzek, F., Sramek, J., 1985. Sulphur isotopes in the study of stone monument conservation. Stud. Conserv. 30, 171–176. Calas, G., 2017. Mineral resources and sustainable development. Elements 13, 301– 306. Caplette, J.N., Schindler, M., Kyser, T.K., Widory, D., 2015. The Black Rock Coatings in Rouyn-Noranda, Québec: Fingerprints of Historical Smelter Emissions and the Local Ore. Can. J. Earth Sci. 52 (11), 952–965. Caplette, J.N., Schindler, M., 2018. Black rock-coatings in Trail B.C. Canada: Records of past emissions of Lead, Zinc, Antimony, Arsenic, Tellurium, Tin, Selenium, Silver, Bismuth and Indium-bearing atmospheric contaminants. Can. Mineral. 56, 113–127. Casteel, S.W., Weis, C.P., Henningsen, G.M., Brattin, W.J., 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ. Health Perspect. 114 (8), 1162–1171 Castillo, S., de la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-Caliani, J.C., Gonzalez, I., Romero, A., 2013. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 449, 363–372. Cerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces. J. Hazard. Mater. 195, 422–431. Cerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 421-422, 220–229. Chan, W.H., Vet, R.J., Skelton, G.B., Lusis, M.A., 1982a. Size distribution and emission rate measurements of particulates in the 93m Falconbridge smelter stack plume, 1979. Report ARBTDA- 57-80, Air Resources Branch, Ontario Ministry of the Environment. Chan, W.H., Vet, R.J., Lusis, M.A., Skelton, B.G., 1982b. Size distribution and emission rate measurements of particulates in the Inco 381 m chimney and iron ore recovery plant stack fumes, 1979–80. Report ARB-TDA-62-80, Air Resources Branch, Ontario Ministry of the Environment. Chan, W.H., Lusis, M.A., 1985. Post-superstack smelter emissions and their fate in the atmosphere: an overview of the Sudbury environment study results. Water Air Soil Pollut. 26, 43–58. Cheng, X. Tomas, Danek, T., Drozdova, J., Huang, O., Qi, W., Zou, L., Yang, S., Zhao, X., Xiang, Y., 2018. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environ. Monit. Assessment 190, 194. Choël, M., Deboudt, K., Flament, P., Lecornet, G., Perdrix, E., Sobanska, S., 2006. Fast evolution of tropospheric Pb- and Znrich particles in the vicinity of a lead smelter. Atmos. Environ. 40 (24), 4439–4449. Citeau, L., Lamy, I., van Oort, F., Elsass, F., 2003. Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf. A 217 (1-3), 11–19. Cave, M.R., Wragg, J., Denys, S., Jondreville, C., Feidt, C., 2011. Oral bioavailability. In: Swartjes, F.A. (Ed.), Dealing with Contaminated Sites. Springer Sciene, Business Media B.V, Berlin, pp. 261–286. Corona Sánchez, Jesús Eulises, González Chávez, Ma del Carmen Angeles, Carrillo González, Rogelio, Scheckel, Kirk, Tapia Maruri, Daniel, García Cue, José L., 2021. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. 28 (15), 19458–19472. Courtin-Nomade, Alexandra, Waltzing, Thomas, Evrard, Catherine, Soubrand, Marilyne, Lenain, Jean-François, Ducloux, Emmanuelle, Ghorbel, Sonda, Grosbois, Cécile, Bril, Hubert, 2016. Arsenic and lead mobility: From tailing materials to the aqueous compartment. Appl. Geochem. 64, 10–21. Courchesne, B., Schindler, M., Lussier, A.J., Mykytczuk, N., 2021. The mineralogy and geochemistry of Cobalt-bearing mine tailings in North-Eastern Ontario. Canadian Mineralogist (in press), Canada. Csavina, Janae, Landázuri, Andrea, Wonaschütz, Anna, Rine, Kyle, Rheinheimer, Paul, Barbaris, Brian, Conant, William, Sáez, Avelino Eduardo, Betterton, Eric A., 2011. Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut. 221 (1-4), 145–157. Csavina, Janae, Field, Jason, Taylor, Mark P., Gao, Song, Landázuri, Andrea, Betterton, Eric A., Sáez, A. Eduardo, 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. The Sci. Total Environ. 433, 58–73. Dapul, Heda, Laraque, Danielle, 2014. Lead poisoning in children. Adv. Pediatrics 61 (1), 313–333. Davies, B.E., 1983. Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In: Thornton, I. (Ed.), Applied Environmental Geochemistry. Academic Press London, pp. 425–462. Davis, Andy, Ruby, Michael V., Bergstrom, Paul D., 1992. Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environ. Sci. Technol. 26 (3), 461–468. Davis, A., Drexler, J.W., Ruby, M.V., Nicholson, A., 1993. Mineralogy of mine waste in relation to lead bioavailability. Environ. Sci. Technol. 27, 1415–1425. Denaix, L, Semlali, R.M, Douay, F, 2001. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ. Pollut. 114 (1), 29–38. Deng, Wenbo, Li, Xuxiang, An, Zhisheng, Yang, Liu, 2016. Lead Contamination and Source Characterization in Soils Around a Lead-Zinc Smelting Plant in a NearUrban Environment in Baoji, China. Arch. Environ. Contam. Toxicol. 71 (4), 500– 508. De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M., 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, 498. Dixon, S.L., Gaitens, J.M., Jacobs, D.E., Strauss, W., Nagaraja, J., Pivetz, T., Wilson, J.W., Ashley, P.J., 2009. Exposure of U.S. children to residential dust lead, 1999–2004: II. The contribution of lead contaminated dust to children’s blood lead levels. Environ. Health Perspect. 117, 468–474. Dorn, Ronald I., Oberlander, Theodore M., 1982. Rock varnish. Prog. Phys. Geogr. 6 (3), 317–367. Edwards, Marc, Dudi, Abhijeet, 2004. Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. J. – Am. Water Works Assoc. 96 (10), 69– 81. Entwistle, Jane A., Hursthouse, Andrew S., Marinho Reis, Paula A., Stewart, Alex G., 2019. Metalliferous mine dust: human health impacts and the potential determinants of disease inmining communities. Curr. Pollut. Rep. 5 (3), 67–83. Egli, M., Fitze, P., Oswald, M., 1999. Changes in heavy metal contents in an acidic forest soil affected by depletion of soil organic matter within the time span 1969–93. Environ. Pollut. 105 (3), 367–379. Equeenuddin, S.M., Akhtar, S., Bastia, F., Rout, S.S., Saika, P.I., 2020. Role of colloid in metal transport in river water around Jaduguda uranium mines, Singhbhum shear zone. J. Earth Syst. Sci. 129, 23. Ettler, V., Johan, Z., Barronnet, A., Jankovsky´ , F., Gilles, C., Mihaljevic, M., _Sebek, O., Strnad, L., Bezdicka, P., 2005a. Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environ. Sci. Technol., 39, 9309-9316. Ettler, Vojteˇch, Vaneˇk, Aleš, Mihaljevicˇ, Martin, Bezdicˇka, Petr, 2005b. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere 58 (10), 1449–1459. Ettler, V., Sebek, O., Grygar, T., Klementová, M., Bezdicka, P., Slavíková, H., 2008. Controls on metal leaching from secondary Pb smelter air-pollution-control residues. Environ. Sci. Technol. 42, 7878–7884. Ettler, V., Mihaljevic , M., S ebek, O., Grygar. T.M., Klementova´ M. 2012a. Experimental - transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539 10548. Ettler, Vojteˇch, Mihaljevicˇ, Martin, Šebek, Ondrˇej, Valigurová, Radka, Klementová, Mariana, 2012a. Differences in antimony and arsenic releases from lead smelter fly ash in soils. Chem. Erde 72, 15–22. Ettler, Vojteˇch, Krˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Mihaljevicˇ, Martin, 2012b. Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J. Geochem. Explor. 113, 68– 75. Ettler, Vojteˇch, Cihlová, Markéta, Jarošíková, Alice, Mihaljevicˇ, Martin, Drahota, Petr, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Klementová, Mariana, Engel, Zbyneˇk, Kamona, Fred, Mapani, Ben, 2019. Oral bioaccessibility of metal (loid)s in dust materials from mining areas of northern Namibia. Environ. Int. 124, 205–215. Ettler, Vojteˇch, Šteˇpánek, David, Mihaljevicˇ, Martin, Drahota, Petr, Jedlicka, Radim, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Nyambe, Imasiku, 2020. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 260, 127642. https://doi.org/10.1016/j. chemosphere.2020.127642. Ettler, Vojteˇch, 2016. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 64, 56–74. Freedman, B., Hutchinson, T.C., 1980. Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel–copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58 (1), 108–132. Gee, C., Ramsey, M.H., Maskall, J., Thornton, I., 1997. Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization of lead. J. Geochem. Explor. 58, 249–257. Gelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., Keller, C., 2019. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512. Glotov, Vladimir E., Chlachula, Jiri, Glotova, Ludmila P., Little, Edward, 2018. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 245, 236–247. Grolimund, D., Borkovec, M., Barmettler, K., Sticher, H., 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 30, 3118–3123. Gulson, Brian L., Mizon, Karen J., Korsch, Michael J., Palmer, Jacqueline M., Donnelly, John B., 2003. Mobilization of lead from human bone tissue during pregnancy and lactation - a summary of long-term research. Sci. Total Environ. 303 (1-2), 79–104. Hamill, Patrick, Jensen, Eric J., Russell, P.B., Bauman, Jill J., 1997. The life cycle of stratospheric aerosol particles. Bull. Am. Meteorol. Soc. 78 (7), 1395– 1410. Hassellov, M., von der Kammer, F., 2008. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4 (6), 401–406. Hashimoto, Yohey, Yamaguchi, Noriko, Takaoka, Masaki, Shiota, Kenji, 2011. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum. Sci. Total Environ. 409 (5), 1001–1007. Hawa, T., Zachariah, M.R., 2006. Coalescence kinetics of unequal sized nanoparticles Aerosol. Science 37 (1), 1–15. Hayes, Sarah M., Webb, Sam M., Bargar, John R., O’Day, Peggy A., Maier, Raina M., Chorover, Jon, 2012. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. Environ. Sci. Technol. 46 (11), 5834–5841. Henderson, P.J., McMartin, I., Hall, G.E., Percival, J.B., Walker, D.A., 1998. The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada. Environ. Geol. 34 (1), 39–58. Herms, U., Brümmer, G., 1984. Einflussgrössen der Schwermetalloslichkeit und - bindung in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 147, 400–424. Hernberg, Sven, 2000. Lead poisoning in a historical perspective. Am. J. Ind. Med. 38 (3), 244–254. Hochella Jr, M.F., Moore, J.N., Golla, U., Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport. Geochim. Cosmochim. Acta 63, 3395–3406. Hochella, Michael F., Moore, Johnnie N., Putnis, Christine V., Putnis, Andrew, Kasama, Takeshi, Eberl, Dennis D., 2005a. Direct observation of heavy metalmineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochim. Cosmochim. Acta 69 (7), 1651–1663. Hochella Jr., M.F., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. Am. Mineral. 90, 718–724. Hochella Jr., M.F. et al., 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319, 1631. Hochella Jr., M.F. et al., 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, 1414. Hogan, G.D., Wotton, D.L., 1984. Pollutant distribution and effects on forests adjacent to smelters. J. Environ. Qual. 13, 377–382. Hower, James C., O’Keefe, Jennifer M.K., Henke, Kevin R., Wagner, Nicola J., Copley, Gregory, Blake, Donald R., Garrison, Trent, Oliveira, Marcos L.S., Kautzmann, Rubens M., Silva, Luis F.O., 2013. Gaseous emissions and sublimates from the truman shepherd coal fire, floyd county, Kentucky: a re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 116-117, 63–74. Hudson-Edwards, K.A., Macklin, M.G., Curtis, C.D., Vaughan, D.J., 1996. Processes of formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing minerals in the Tyne Basin, northeast England: Implications for metal-contaminated river systems. Environ. Sci. Technol. 30, 72–80. International Lead Association, 2021. https://ila-lead.org/. International Union of Pure and Applied Chemistry (IUPAC), 2001. Appendix II Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Ed. D. H. Everett &L. K. Koopal; pp 78. Jackson, Togwell A., 1978. The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, and a proposed method for limiting heavymetal pollution of natural waters. Environ. Geol. 2 (3), 173–189. Jarošíková, Alice, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Drahota, Petr, Culka, Adam, Racek, Martin, 2018. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. J. Environ. Manage. 209, 71–80. Kastury, Farzana, Smith, Euan, Juhasz, Albert L., 2017. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 574, 1054–1074. Keim, Maximilian F., Markl, Gregor, 2015. Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite. Am. Mineral. 100 (7), 1584–1594. Kim, C.S., Wilson, K.M., Rytuba, J.J., 2011. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Appl. Geochem. 26 (4), 484–495. Kjøller, Claus, Postma, Dieke, Larsen, Flemming, 2004. Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ. Sci. Technol. 38 (10), 2829–2835. Klitzke, S., Lang, F., Kaupenjohann, M., 2008. Increasing pH releases colloidal lead in a highly contaminated forest soil. Eur. J. Soil Sci. 59 (2), 265–273. Klitzke, Sondra, Lang, Friederike, Kirby, Jason, Lombi, Enzo, Hamon, Rebecca, 2012. Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation. Environ. Chem. 9 (5), 462. https://doi.org/ 10.1071/EN12010. Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M., 1999. Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–194. Kretzschmar, R., Schafer, T., 2005. Metal retention and transport on colloidal particles in the environment. Elements 1 (4), 205–210. Krˇíbek, Bohdan, Majer, Vladimír, Veselovsky´ , František, Nyambe, Imasiku, 2010. Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. J. Geochem. Explor. 104 (3), 69–86. Krˇibek, B., Majer, V., Knesl, I., Nyambe, I., Mihaljevicˇ, M., Ettler, V., Sracek, O., 2014. Concentration of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J. Afr. Earth Sc. 99, 713–723. Krˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Keder, Josef, Mapani, Benjamin, Kamona, Frederick, Mihaljevicˇ, Martin, Ettler, Vojteˇch, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2016. Contamination of soil and grass in the Tsumeb smelter area, Namibia: modeling of contaminants dispersion and ground geochemical verification. Appl. Geochem. 64, 75–91. Krˇíbek, Bohdan, Šípková, Adéla, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Majer, Vladimír, Knésl, Ilja, Mapani, Benjamin, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2018. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia. Chem. Geol. 493, 121–135. Krinsley, David H., Dorn, Ronald I., DiGregorio, Barry E., Langworthy, Kurt A., Ditto, Jeffrey, 2012. Rock varnish in New York: an accelerated snapshot of accretionary processes. Geomorphology 138 (1), 339–351. Krinsley, David, Ditto, Jeffrey, Langworthy, Kurt, Dorn, Ronald I., Thompson, Tyler, 2013. Varnish microlaminations: new insights from focused ion beam preparation. Phys. Geogr. 34 (3), 159–173. Lanteigne, S., Schindler, M., McDonald, A., 2014. Distribution of metal(loid)s in smelter-derived particulate matter in soils, mineralogical insights into their retention and release in a low-T environment. Can. Mineral. 52, 453–471. Lenoble, Véronique, Bouras, Omar, Deluchat, Véronique, Serpaud, Bernard, Bollinger, Jean-Claude, 2002. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 255 (1), 52–58. Li, Zhonggen, Feng, Xinbin, Bi, Xiangyang, Li, Guanghui, Lin, Yan, Sun, Guangyi, 2014. Probing the distribution and contamination levels of 10 trace metal/ metalloids in soils near a Pb/Zn smelter in Middle China. Environ. Sci. Pollut. Res. Int. 21 (6), 4149–4162. Li, Hong-Bo, Chen, Kai, Juhasz, Albert L., Huang, Lei, Ma, Lena Q., 2015. Childhood lead exposure in an industrial town in China: coupling stable isotope ratios with bioaccessible lead. Environ. Sci. Technol. 49 (8), 5080–5087. Löv, Åsa, Cornelis, Geert, Larsbo, Mats, Persson, Ingmar, Sjöstedt, Carin, Gustafsson, Jon Petter, Boye, Kristin, Kleja, Dan B., 2018. Particle- and colloid-facilitated Pb transport in four historically contaminated soils - Speciation and effect of irrigation intensity. Appl. Geochem. 96, 327–338. Lu, Hongjian, Qi, Chongchong, Chen, Qiusong, Gan, Deqing, Xue, Zhenlin, Hu, Yajun, 2018. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Cleaner Prod. 188, 601–612. Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., Wu, J., 2014. Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water Air Soil Pollut. 225, 1–9. Li, J., McDonald-Gillespie, K., 2020. Airborne Lead (Pb) From Abandoned Mine Waste in Northeastern Oklahoma, USA. GeoHealth, 4, e2020GH000273. Mai, F.M., 2006. Beethoven’s terminal illness and death. J. Royal College of Phys. Edinburgh 36, 258–263. Mason, P.M., 2013. Trace Metals in Aquatic Systems. Wiley, Chichester. McCarthy, J.F., McKay, L.D., 2004. Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J. 3 (2), 326–337. McKay, Larry D., Cherry, John A., Bales, Roger C., Yahya, Moyasar T., Gerba, Charles P., 1993. A field example of bacteriophage as tracers of fracture flow. Environ. Sci. Technol. 27 (6), 1075–1079. Mantha, Nathalie M., Schindler, Michael, Murayama, Mitsuhiro, Hochella, Michael F., 2012a. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta 85, 254–274. Mantha, N.M., Schindler, M., Kyser, T.K., 2012b. Silica- and sulfate-bearing rock coatings in smelter areas: II. Forensic tools for atmospheric metal(loid)- and sulfur-isotope compositions. Geochim. Cosmochim. Acta 90, 221–241. Marcotte, A., Anbar, A., Majestic, B., Herckes, P., 2020. Mineral dust and iron solubility: effects of composition, particle size, and surface area. Atmosphere. 11, 533. https://doi.org/10.3390/atmos11050533. Martin, Rachael, Dowling, Kim, Pearce, Dora, Sillitoe, James, Florentine, Singarayer, 2014. Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4 (3), 128–175. McCarthy, J.F., Zachara, J.M., 1989. Subsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502. McCarthy, J.F., Degueldre, C., 1993. Sampling and characterization of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle, J., van Leeuwen, H.P. (Eds.), Environmental Particles, Vol. 2. Lewis Publishers, Boca Raton, pp. 247–315. McConnell, Joseph R., Wilson, Andrew I., Stohl, Andreas, Arienzo, Monica M., Chellman, Nathan J., Eckhardt, Sabine, Thompson, Elisabeth M., Pollard, A. Mark, Steffensen, Jørgen Peder, 2018. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc. Natl. Acad. Sci. 115 (22), 5726–5731. Merill, J.C., Morton, J.J.P., Soileau, S.D., 2007. Metals. In: Hayes, A.W., Principles and Methods of Toxicology (5th ed.) CRC Press. Millward, Geoffrey E., 1995. Processes affecting trace element speciation in estuaries; a review. Analyst 120 (3), 609. https://doi.org/10.1039/ an9952000609. Mindat, 2021. https://www.mindat.org Monaci, Fabrizio, Ancora, Stefania, Bianchi, Nicola, Bonini, Ilaria, Paoli, Luca, Loppi, Stefano, 2021. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Sci. Total Environ. 750, 141669. https://doi.org/10.1016/j.scitotenv.2020.141669. Morin, Guillaume, Ostergren, John D., Juillot, Farid, Ildefonse, Philippe, Calas, Georges, Brown, Gordon E., 1999. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: importance of adsorption processes. Am. Mineral. 84 (3), 420–434. Morrison, Anthony L., Gulson, Brian L., 2007. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Sci. Total Environ. 382 (1), 30–42. Morrison, Anthony L., Swierczek, Zofia, Gulson, Brian L., 2016. Visualisation and quantification of heavy metal accessibility in smelter slags: the influence of morphology on availability. Environ. Pollut. 210, 271–281. Natural Resources Canada, 2019. https://www.nrcan.gc.ca/science-data/scienceresearch/earth-sciences/earth-sciences-resources/earth-sciences-federalprograms/lead-facts/20518. Neubauer, Elisabeth, Schenkeveld, Walter D.C., Plathe, Kelly L., Rentenberger, Christian, von der Kammer, Frank, Kraemer, Stephan M., Hofmann, Thilo, 2013. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles. Sci. Total Environ. 461- 462, 108–116. Ojelede, M.E., Annegarn, H.J., Kneen, M.A., 2012. Evaluation of Aeolian emissions from gold mine tailings on the Witwatersrand. Aeolian Res. 3 (4), 477–486. O’Reilly, S.E, Hochella, Michael F, 2003. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim. Cosmochim. Acta 67 (23), 4471–4487. Ostergren, J.D., Brown, G.E., Parks, G.A., Tingle, T.N., 1999. Quantitative speciation of lead in selected mine tailings from Leadville. CO, Environmental Science Technology 33, 1627–1636. Ouattara, A.A., Yao, K.M., Soro, M.P., Diaco, T., Trokourey, A., 2018. Arsenic and trace metals in three west African rivers: concentrations, partitioning, and distribution in particle-size fractions. Arch. Environ. Contam. Toxicol. 75, 449–463. Pédrot, M., Dia, A., Davranche, M., Bouhnik-Le Coz, M., Henin, O., Gruau, G., 2008. Insights into colloid-mediated trace element release at the soil/water interface. J. Colloid Interface Sci. 325, 187–197. Perdrial, N., Perdrial, J.N., Delphin, J.-E., Elsass, F., Liewig, N., 2010. Temporal and spatial monitoring of mobile nanoparticles in a vineyard soil: evidence of nanoaggregate formation. Eur. J. Soil Sci. 61, 456–468. Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., Douay, F., 2011. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environ. Geochem. Health 33, 477–493. Piña, A.A., Villaseñor, G.T., Jacinto, P.S., Fernández, M.M., 2002. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 36, 5235–5243. Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J., Muruyama, M., Hofmann, T., Hochella Jr., M.F., 2010. Using FlFFF and aTEM to determine trace metal – nanoparticle associations in riverbed sediment. J. Environ. Chem. 7, 82–93. Plathe, K.L., von der Kammer, F., Hassellov, M., Moore, J.N., Murayama, M., Hofmann, T., Hochella Jr., M.F., 2013. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochim. Cosmochim. Acta 102, 213–225. Plumlee, G.S., Morman, S.A., 2011. Mine wastes and human health. Elements 7, 399–404. Pokrovsky, O.S., Schott, J., Dupre, B., 2006. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia. Geochem. Cosmochim. Acta 70, 3239–3260. Reed, W.R., Westman, E.C., 2005. A model for predicting the dispersion of dust from a haul truck. Int. J. Surf. Mining Reclamation and Environ. 19, 66–74. Ren, Z., Sivry, Y., Tharaud, M., Cordier, L., Li, Y., Dai, J., Benedetti, M.F., 2017. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: stable isotope dilution, chemical extraction and model views. Environ. Pollut. 225, 654–662. Resongles, E., Casiot, C., Freydier, R., Le Gall, M., Elbaz-Poulichet, F., 2015. Variation of dissolved and particulate metal(loid) (As, Cd, Pb, Sb, Tl, Zn) concentrations under varying discharge during a Mediterranean flood in a former mining watershed, the Gardon River (France). J. Geochem. Explor. 158, 132–142. Rich, V., 1995. The International Lead Trade. Woodhead Publishing, Cambridge. Roelofs, F., Vogelsberger, W., 2004. Dissolution kinetics of synthetic amorphous silica in biological-like media and its theoretical description. J. Phys. Chem. B 108, 11308–11316. Romero, F.M., Villalobos, M., Aguirre, R., Gutierrez, M.E., 2008. Solid-phase control on lead bioaccessibility in smelter-impacted soils. Arch. Environ. Contam. Toxicol. 55, 566–575. Rossi, E., 2008. Low level environmental lead exposure–a continuing challenge. The Clin. Biochem. Rev. 29, 63–70. Roulier, S., Robinson, B., Kuster, E., Schulin, R., 2008. Analysing the preferential transport of lead in a vegetated roadside soil using lysimeter experiments and a dual porosity model. Eur. J. Soil Sci. 59, 61–70. Roussel, C., Neel, C., Bril, H., 2000. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ. 263, 209–219. Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., Chappell, W., 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33, 3697–3705. Sánchez-Peña, N.E., Narváez-Semanate, J.L., Pabón-Patiño, D., Fernández-Mera, J.E., Oliveira, M.L., Da Boit, K., Tutikian, B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 191, 1048–1055. Sauvé, S., McBride, M., Hendershot, W., 1998. Soil solution speciation of lead(II): effects of organic matter and pH. Soil Sci. Soc. Am. J. 62, 618–621. Schindler, M., Fayek, M., Hawthorne, F.C., 2010. Uranium in opaline rock-coatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochim. Cosmochim. 74, 187–202. Schindler, M., Mantha, N.M., Kyser, K.T., Murayama, M., Hochella Jr., M.F., 2012. Shining light on black rock-coatings in smelter-impacted areas. Geosci. Can. 39, 148–157. Schindler, M., Kamber, B.S., 2012. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada. Appl. Geochem. 37, 102–116. Schindler, M., Dorn, R., 2017. Coatings on rocks and minerals: The interface between lithosphere and the bio-, hydro- and atmosphere. Elements 13, 155–158. Schindler, M., Hochella Jr., M.F., 2017. Sequestration of Pb- Zn- Sb- and As-bearing incidental nanoparticles in mineral surface coatings and mineralized organic matter in soils. Environ. Sci.: Processes Impacts 19, 1016–1027. Schindler, M., Mantha, H., Hochella (Jr), M.F., 2019. The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles. Geochem. Trans. 20, 1–13. Scheckel, K.G., Ryan, J.A., 2002. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ. Sci. Technol. 36, 2198–2204. Schmidt, J., Vogelsberger, W., 2006. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J. Phys. Chem. B 110, 3955–3963. Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018a. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1: the damaging effects of air pollution. Chest S0012–3692, 32723–32725. Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018b. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 2: air pollution and organ systems. Chest S0012–3692 (18), 32722–32723. Schroder, J.L., Basta, N.T., Casteel, S.W., Evans, T.J., Payton, M.E., Si, J., 2004. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J. Environ. Qual. 33, 513–521. Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M.K., Wang, Q., Zhang, Z., 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 139, 254– 262. Shotyk, W., Weiss, D., Kramers, J.D., Frei, R., Cheburkin, A.K., Gloor, M., Reese, S., 2001. Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochim. Cosmochim. Acta 65, 2337– 2360. Siciliano, S.D., James, K., Zhang, G., Schafer, A.N., Peak, J.D., 2009. Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environ. Sci. Technol. 43, 6385–6390. Simonetti, A., Gariepy, C., Banic, C., Tanabe, R., Wong, H.K.T., 2004. Pb isotopic investigation of emissions from the Horne smelter (Rouyn, Québec) – implications for atmospheric pollution in northeastern North America. Geochim. Cosmochim. Acta 68, 3285–3294. Skeaff, J.M., Thibault, Y., Hardy, D.J., 2011. A new method for the characterization and quantitative speciation of base metal smelter stack particulates. Environ. Monit. Assessment 177, 165–192. Small, C.C., Cho, S., Hashisho, Z., Ulrich, A.C., 2015. Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J. Petrol. Sci. Eng. 127, 490–501. Schneider, A.R., Cancès, B., Ponthieu, M., Sobanska, S., Benedetti, M.F., Pourret, O., Conreux, A., Calandra, I., Martinet, B., Morvan, X., Gommeaux, M., Marin, B., 2016. Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches. Sci. Total Environ. 568, 155–163. Sobanska, S., Ricq, N., Laboudigue, A., Guillermo, R., Bremard, C., Laureyns, J., Merlin, J.C., Wignacourt, J.P., 1999. Microchemical investigation of dust emitted by a lead smelter. Environ. Sci. Technol. 33, 1334–1339. Steckerman, T., Douay, F., Proix, N., Fourrier, H., 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ. Pollut. 107, 377– 389. Sun, H.M., Gao, B., Tian, Y., Yin, X., You, C., Wang, Y., Ma, L.Q., 2010. Kaolinite and lead in saturated porous media: facilitated and Impeded transport. J. Environ. Eng. 136, 1305–1308. Sun, J., Wang, F., Sui, Y., She, Z., Zhai, W., Wang, C., Deng, Y., 2012. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomed. 7, 5733–5744. Telmer, K., Bonham-Carter, G.F., Kliza, D.A., Hall, G.A., 2004. The atmospheric transport and deposition of smelter emissions: Evidence from the multielement geochemistry of snow, Quebec, Canada. Geochim. Cosmochim. Acta 68, 2691–2980. Thiagarajan, N., Lee, C., 2004. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet. Sci. Lett. 224, 131–141. US EPA, 2007. Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. Office of Solid Waste and Emergency Response, US EPA, Washington. OSWER 9285.7-77. USGS, 2021. https://www.usgs.gov/energy-and-minerals/mineral-resourcesprogram. Vítková, M., Ettler, V., Sebek, O., Mihaljevic, M., Grygar, T., Rohovec, J., 2009. The pHdependent leaching of inorganic contaminants from secondary lead smelter fly ash. J. Hazard. Mater. 167, 427–433. Wani, A.L., Ara, A., Usmani, J.A., 2015. Lead toxicity: a review. Interdisciplinary Toxicology 8, 55–64. Wang, Y., Yin, X., Sun, H., Wang, C., 2016. Transport of vanadium (V) in saturated porous media: effects of pH, ionic strength and clay mineral. Chem. Speciat. Bioavailab. 28, 7–12. Wen, J., Tang, C., Cao, Y., Li, X., Chen, Q., 2019. Assessment of trace metals in an aquifer with river-groundwater interaction: The influence of colloidal redistribution and porous matrix change on the migration of metals. Chemosphere 223, 588–598. Wong, H.K., Banic, C.M., Robert, S., Nejedly, Z., J.L. Campbell, J.L., 2006. In-stack and in-plume characterization of particulate metals emitted from a copper smelter. Geochem.: Exploration Environ. Anal., 6, 131–137. Yabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam, N., Oroszlany, B., Muzandu, K., Choongo, K., Kabalo, A.N., Ntapisha, J., Mweene, A., Umemura, T., Ishizuka, M., 2021. Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 119, 941–947. Yabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam Kabalo, A.N., Ntapisha, J., Mizukawa, H., Umemura, T., Ishizuka, M., 2018. Lead and cadmium excretion in feces and urine of children from polluted townships near a leadzinc mine in Kabwe, Zambia. Chemosphere 202, 48–55. Yabe, J., Nakayama, S.M., Nakata, H., Toyomaki, H., Yohannes, Y.B., Muzandu, K., Kataba, A., Zyambo, G., Hiwatari, M., Narita, D., Yamada, D., Hangoma, P., Munyinda, N.S., Mufune, T., Ikenaka, Y., Choongo, K., Ishizuka, M., 2020. Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe. Zambia. Chemosphere 243, 125412. Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., Shibata, Y., 2006. Size distributions of soil particles adhered to children’s hands. Arch. Environ. Contam. Toxicol. 51, 157–163. Yedjou, C.G., Tchounwou, H.M., Tchounwou, P.B., 2015. DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. Int. J. Environ. Res. Public Health 13 (1). Yin, S., Shao, Y.,Wu, A., Liu, X.,Wang, Y., 2020. A systematic review of paste technology in metal mines for cleaner production in China. J. Cleaner Prod. 247, 119590. Yin, X., Gao, B., Ma, L.Q., Saha, U.K., Sun, H., Wang, G., 2010. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 177, 620–625. Zänker, H., Moll, H., Richter, W., Brendler, V., Hennig, C., Reich, T., Kluge, A., Hüttig, G., 2002. The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl. Geochem. 17, 633–648. Zdanowicz, C.M., Banic, C.M., Paktunc, D.A., Kliza-Petelle, D.A., 2006. Metal emissions from a Cu smelter, Rouyn-Noranda, Québec: characterization of particles sampled in air and snow. Geochem.: Exploration Environ. Anal. 6, 147– 162. Zahran, S., Laidlaw, M.A., McElmurry, S.P., Filippelli, G.M., Taylor, M., 2013. Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 47, 2839–2845. Zhang, H., De Yoreo, J.J., Banfield, J.F., 2014. A unified description of attachmentbased crystal growth. ACS Nano 8 (7), 6526–6530. Zhang, M., Shao, L., Jones, T., Hu, Y., Adams, R., BéruBé, K., 2021. Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area. Geosci. Frontiers, 101176. Zoltai, S., 1988. Distribution of base metals in peat near a smelter at Flin Flon, Manitoba. Water Air and Soil Pollution 37, 217–228. Zupancˇicˇ, N., Miler, M., Ašler, A., Pompe, N., Jarc, S., 2021. Contamination of children’s sandboxes with potentially toxic elements in historically polluted industrial city. J. Hazard. Mater. 412, 125275. |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Gondwana Research |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1342937X2100215X https://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85112081474&origin=resultslist&sort=plf-f&src=s&sid=e739f667779faa9317435431ebc77840&sot=b&sdt=b&sl=129&s=TITLE-ABS-KEY%28A+review+on+Pb-bearing+nanoparticles%2c+particulate+matter+and+colloids+released+from+mining+and+smelting+activities%29&relpos=0&citeCnt=0&searchTerm= |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/23bc42c5-db1b-43a6-91de-9b3ceb1e4142/download https://repositorio.cuc.edu.co/bitstreams/17c63c92-f42c-4999-9aec-c5128e42710e/download https://repositorio.cuc.edu.co/bitstreams/02dd5cac-3de9-4f58-9a6c-845476166d6f/download https://repositorio.cuc.edu.co/bitstreams/102c2a4d-19e1-46a8-be87-f9a335777595/download https://repositorio.cuc.edu.co/bitstreams/1e96f386-d5de-4c71-8bd9-5bc00d37ef16/download |
bitstream.checksum.fl_str_mv |
7980aa146288fe9fa2c3c80a2c9c8a4c e30e9215131d99561d40d6b0abbe9bad c7cc47b7b9696319a146a4cc000dd4ac c7cc47b7b9696319a146a4cc000dd4ac cee987e3bde2a8242df55eb319b8ac0d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760713115369472 |
spelling |
Schindler, MichaelSantosh, MDotto, GuilhermeSilva O, Luis FHochella Jr, Michael F2021-10-19T16:14:14Z2021-10-19T16:14:14Z2021-07-172023-07-171342937Xhttps://hdl.handle.net/11323/8788https://doi.org/10.1016/j.gr.2021.07.011Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Lead (Pb) is one of the most paradoxical elements, both having diverse practical uses, as well as being extremely toxic to humans, and especially to children. The use of Pb records a steady growth with annual production currently exceeding 10 million metric tons. In spite of the environmental awareness of modern society, humans are still exposed to Pb through its emission by smelting and mining activities, and also by Pb-bearing mine wastes and soils. Here, we review the chemical and mineralogical forms of Pb generated from smelting and mining processes and subsequently altered in tailings, slag piles, and soils. In smelter plumes, Pb is emitted to the atmosphere either in the form of smaller nano-size particulate matter (PM) often associated with S, or larger micrometer Pb-bearing PM matter accompanied by oxide-silicate matrices. Pb-bearing phases in mine tailings and impacted soils depict a greater mineralogical and chemical complexity than those emitted from smelters and the larger particle size of this PM also leads to a lower Pb bioavailability. High resolution observations in aquatic system, soils and rock coatings impacted by smelting and mining activities show the presence of Pb-bearing phosphates, sulfides, sulfates, carbonates, and oxide nanoparticles. Larger micrometer size particles of Pb-bearing minerals form often through the aggregation of Pb-bearing nanoparticles, a process commonly referred to as crystallization through particle attachment. Mobilization of Pb within soil columns is strongly affected by the transport of colloids, especially those composed of organic matter and Fe-hydroxides because Pb is taken up efficiently by these two soil components. The extraordinary variability and complexities of all of these processes suggest that future reduction of Pb contamination in the environment and its impact on human health mainly depends on eliminating or greatly reducing Pb-release from smelting operations and tailings impoundments.Schindler, MichaelSantosh, MDotto, GuilhermeSilva O, Luis FHochella Jr, Michael Fapplication/pdfengGondwana Researchenvironmenthuman healthminingnanoparticlessmeltingA review on Pb-bearing nanoparticles, particulate matter and colloids released from mining and smelting activitiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://www.sciencedirect.com/science/article/pii/S1342937X2100215Xhttps://ezproxy.cuc.edu.co:2104/record/display.uri?eid=2-s2.0-85112081474&origin=resultslist&sort=plf-f&src=s&sid=e739f667779faa9317435431ebc77840&sot=b&sdt=b&sl=129&s=TITLE-ABS-KEY%28A+review+on+Pb-bearing+nanoparticles%2c+particulate+matter+and+colloids+released+from+mining+and+smelting+activities%29&relpos=0&citeCnt=0&searchTerm=info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Adiansyah, J.S., Rosano, M., Vink, S., Keir, G., 2015. A framework for a sustainable approach to mine tailings management: disposal strategies. J. Cleaner Prod. 108, 1050–1062.Ahmad, M., Ok, Y.S., Rajapaksha, A.U., Lim, J.E., Kim, B.-Y., Ahn, J.-H., Lee, Y.H., AlWabel, M.I., Lee, S.-E., Lee, S.S., 2016. Lead and copper immobilization in a shooting range soil using soybean stover- and pine needle-derived biochars: chemical, microbial and spectroscopic assessments. J. Hazard. Mater. 301, 179– 186.Argyraki, A., 2014. Garden soil and house dust as exposure media for lead uptake in the mining village of Stratoni, Greece. Environ. Geochem. Health 36 (4), 677– 692.Agency for Toxic Substances and Disease Registry (ATSDR), 2017. Lead Toxicity. What are possible health effects from lead exposure? Available: https://www. atsdr.cdc.gov/csem /lead/docs/csem-lead_toxicity_508.pdf.Barbosa Jr, F., Tanus-Santos, J.E., Gerlach, R.F., Parsons, P.J., 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environmental Health Perspective 113, 1669– 1674.Banfield, J.F., Welch, S.A., Zhang, H., Ebert, T.T., Penn, R.L., 2000. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751–754.Bao, H.M., Reheis, M.C., 2003. Multiple oxygen and sulfur isotopic analyses on watersoluble sulfate in bulk atmospheric deposition from the southwestern United States. J. Geophys. Res. 108, 4430–4438.Batonneau, Y., Bremard, C., Gengembre, L., Laureyns, J., Le Maguer, A., Le Maguer, D., Perdrix, E., Sobanska, S., 2004. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters. Environ. Sci. Technol. 38 (20), 5281–5289.Barcan, V., 2002. Nature and origin of multicomponent aerial emissions of the copper-nickel smelter complex. Environ. Int. 28, 451–456.Ben-Moshe, T., Dror, I., Berkowitz, B., 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere 81 (3), 387–393.Blacksmith Institute and Green Cross Switzerland. The Worlds Worst, 2013. The Top Ten Toxic Threats – Cleanup, Progress, and Ongoing Challenges BlacksmithInstitute, Zurich, Switzerland (2013). USA and Green Cross Switzerland, New York.Boisa, N., Elom, N., Dean, J.R., Deary, M.E., Bird, G., Entwistle, J.A., 2014. Development and application of an inhalation bioaccessibility method (IBM) for lead in the PM10size fraction of soil. Environ. Int. 70, 132–142.Bose-O’Reilly, S., Yabe, J., Makumba, J., Schutzmeier, P., Ericson, B., Caravanos, J., 2018. Lead intoxicated children in Kabwe, Zambia. Environ. Res. 165, 420–424.Bosso, S.T., Enzweiler, J., 2008. Bioaccessible lead in soils, slag, and mine wastes from abandoned mining district in Brazil. Environ. Geochem. Health 30, 219– 229.Boussen, S., Abdelaziz, S., Soubrand, M., Bril, H., Chaabani, F., Abdeljaouad, S., 2010. Mobilization of lead-zinc rich particles from mine tailing in Northern Tunisia by aeolian and run-off processes. Bulletin de la Société Géologique de France 181, 371–379.Braungardt, C.B., Achterberg, E.P., Elbaz-Poulichet, F., Morley, N.H., 2003. Metal geochemistry in a mine-polluted estuarine system in Spain. Appl. Geochem. 18 (11), 1757–1771.Brock, C.A., Hamill, P., Wilson, J.C., Jonsson, H.H., Chan, K.R., 1995. Particle formation in the upper tropical troposphere – a source of nuclei for the stratospheric aerosol. Science 270 (5242), 1650–1653.Brown, J.S., Gordon, T., Price, O., Asgharian, B., 2013. Thoracic and respirable particle definitions for human health risk assessment. Particle Fibre Toxicology 10 (1), 12. https://doi.org/10.1186/1743-8977-10-12.Brown Jr., G.E., Hochella Jr., M.F., Calas, G., 2017. Improving Mitigation of the LongTerm Legacy of Mining Activities: Nano- and Molecular-Level Concepts and Methods. Elements 13, 325–330.Buatier, M.D., Sobanska, S., Elsass, F., 2001. investigation on Zn-and Pbcontaminated soils. Appl. Geochem. 16 (9-10), 1165–1177.Buffle, J., Leppard, G.G., 1995. Characterization of aquatic colloids and macromolecules. 1. Structure and behavior of colloidal material. Environ. Sci. Technol. 29 (9), 2169–2175.Buzek, F., Sramek, J., 1985. Sulphur isotopes in the study of stone monument conservation. Stud. Conserv. 30, 171–176.Calas, G., 2017. Mineral resources and sustainable development. Elements 13, 301– 306.Caplette, J.N., Schindler, M., Kyser, T.K., Widory, D., 2015. The Black Rock Coatings in Rouyn-Noranda, Québec: Fingerprints of Historical Smelter Emissions and the Local Ore. Can. J. Earth Sci. 52 (11), 952–965.Caplette, J.N., Schindler, M., 2018. Black rock-coatings in Trail B.C. Canada: Records of past emissions of Lead, Zinc, Antimony, Arsenic, Tellurium, Tin, Selenium, Silver, Bismuth and Indium-bearing atmospheric contaminants. Can. Mineral. 56, 113–127.Casteel, S.W., Weis, C.P., Henningsen, G.M., Brattin, W.J., 2006. Estimation of relative bioavailability of lead in soil and soil-like materials using young swine. Environ. Health Perspect. 114 (8), 1162–1171Castillo, S., de la Rosa, J.D., Sánchez de la Campa, A.M., González-Castanedo, Y., Fernández-Caliani, J.C., Gonzalez, I., Romero, A., 2013. Contribution of mine wastes to atmospheric metal deposition in the surrounding area of an abandoned heavily polluted mining district (Rio Tinto mines, Spain). Sci. Total Environ. 449, 363–372.Cerqueira, B., Vega, F.A., Serra, C., Silva, L.F.O., Andrade, M.L., 2011. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy: a preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces. J. Hazard. Mater. 195, 422–431.Cerqueira, B., Vega, F.A., Silva, L.F.O., Andrade, L., 2012. Effects of vegetation on chemical and mineralogical characteristics of soils developed on a decantation bank from a copper mine. Sci. Total Environ. 421-422, 220–229.Chan, W.H., Vet, R.J., Skelton, G.B., Lusis, M.A., 1982a. Size distribution and emission rate measurements of particulates in the 93m Falconbridge smelter stack plume, 1979. Report ARBTDA- 57-80, Air Resources Branch, Ontario Ministry of the Environment.Chan, W.H., Vet, R.J., Lusis, M.A., Skelton, B.G., 1982b. Size distribution and emission rate measurements of particulates in the Inco 381 m chimney and iron ore recovery plant stack fumes, 1979–80. Report ARB-TDA-62-80, Air Resources Branch, Ontario Ministry of the Environment.Chan, W.H., Lusis, M.A., 1985. Post-superstack smelter emissions and their fate in the atmosphere: an overview of the Sudbury environment study results. Water Air Soil Pollut. 26, 43–58.Cheng, X. Tomas, Danek, T., Drozdova, J., Huang, O., Qi, W., Zou, L., Yang, S., Zhao, X., Xiang, Y., 2018. Soil heavy metal pollution and risk assessment associated with the Zn-Pb mining region in Yunnan, Southwest China. Environ. Monit. Assessment 190, 194.Choël, M., Deboudt, K., Flament, P., Lecornet, G., Perdrix, E., Sobanska, S., 2006. Fast evolution of tropospheric Pb- and Znrich particles in the vicinity of a lead smelter. Atmos. Environ. 40 (24), 4439–4449.Citeau, L., Lamy, I., van Oort, F., Elsass, F., 2003. Colloidal facilitated transfer of metals in soils under different land use. Colloids Surf. A 217 (1-3), 11–19.Cave, M.R., Wragg, J., Denys, S., Jondreville, C., Feidt, C., 2011. Oral bioavailability. In: Swartjes, F.A. (Ed.), Dealing with Contaminated Sites. Springer Sciene, Business Media B.V, Berlin, pp. 261–286.Corona Sánchez, Jesús Eulises, González Chávez, Ma del Carmen Angeles, Carrillo González, Rogelio, Scheckel, Kirk, Tapia Maruri, Daniel, García Cue, José L., 2021. Metal(loid) bioaccessibility of atmospheric particulate matter from mine tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. 28 (15), 19458–19472.Courtin-Nomade, Alexandra, Waltzing, Thomas, Evrard, Catherine, Soubrand, Marilyne, Lenain, Jean-François, Ducloux, Emmanuelle, Ghorbel, Sonda, Grosbois, Cécile, Bril, Hubert, 2016. Arsenic and lead mobility: From tailing materials to the aqueous compartment. Appl. Geochem. 64, 10–21.Courchesne, B., Schindler, M., Lussier, A.J., Mykytczuk, N., 2021. The mineralogy and geochemistry of Cobalt-bearing mine tailings in North-Eastern Ontario. Canadian Mineralogist (in press), Canada.Csavina, Janae, Landázuri, Andrea, Wonaschütz, Anna, Rine, Kyle, Rheinheimer, Paul, Barbaris, Brian, Conant, William, Sáez, Avelino Eduardo, Betterton, Eric A., 2011. Metal and metalloid contaminants in atmospheric aerosols from mining operations. Water Air Soil Pollut. 221 (1-4), 145–157.Csavina, Janae, Field, Jason, Taylor, Mark P., Gao, Song, Landázuri, Andrea, Betterton, Eric A., Sáez, A. Eduardo, 2012. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. The Sci. Total Environ. 433, 58–73.Dapul, Heda, Laraque, Danielle, 2014. Lead poisoning in children. Adv. Pediatrics 61 (1), 313–333.Davies, B.E., 1983. Heavy metal contamination from base metal mining and smelting: implications for man and his environment. In: Thornton, I. (Ed.), Applied Environmental Geochemistry. Academic Press London, pp. 425–462.Davis, Andy, Ruby, Michael V., Bergstrom, Paul D., 1992. Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environ. Sci. Technol. 26 (3), 461–468.Davis, A., Drexler, J.W., Ruby, M.V., Nicholson, A., 1993. Mineralogy of mine waste in relation to lead bioavailability. Environ. Sci. Technol. 27, 1415–1425. Denaix, L, Semlali, R.M, Douay, F, 2001. Dissolved and colloidal transport of Cd, Pb, and Zn in a silt loam soil affected by atmospheric industrial deposition. Environ. Pollut. 114 (1), 29–38.Deng, Wenbo, Li, Xuxiang, An, Zhisheng, Yang, Liu, 2016. Lead Contamination and Source Characterization in Soils Around a Lead-Zinc Smelting Plant in a NearUrban Environment in Baoji, China. Arch. Environ. Contam. Toxicol. 71 (4), 500– 508.De Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., Penn, R.L., Whitelam, S., Joester, D., Zhang, H., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Cölfen, H., Dove, P.M., 2015. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 349, 498.Dixon, S.L., Gaitens, J.M., Jacobs, D.E., Strauss, W., Nagaraja, J., Pivetz, T., Wilson, J.W., Ashley, P.J., 2009. Exposure of U.S. children to residential dust lead, 1999–2004: II. The contribution of lead contaminated dust to children’s blood lead levels. Environ. Health Perspect. 117, 468–474.Dorn, Ronald I., Oberlander, Theodore M., 1982. Rock varnish. Prog. Phys. Geogr. 6 (3), 317–367.Edwards, Marc, Dudi, Abhijeet, 2004. Role of chlorine and chloramine in corrosion of lead-bearing plumbing materials. J. – Am. Water Works Assoc. 96 (10), 69– 81.Entwistle, Jane A., Hursthouse, Andrew S., Marinho Reis, Paula A., Stewart, Alex G., 2019. Metalliferous mine dust: human health impacts and the potential determinants of disease inmining communities. Curr. Pollut. Rep. 5 (3), 67–83.Egli, M., Fitze, P., Oswald, M., 1999. Changes in heavy metal contents in an acidic forest soil affected by depletion of soil organic matter within the time span 1969–93. Environ. Pollut. 105 (3), 367–379.Equeenuddin, S.M., Akhtar, S., Bastia, F., Rout, S.S., Saika, P.I., 2020. Role of colloid in metal transport in river water around Jaduguda uranium mines, Singhbhum shear zone. J. Earth Syst. Sci. 129, 23.Ettler, V., Johan, Z., Barronnet, A., Jankovsky´ , F., Gilles, C., Mihaljevic, M., _Sebek, O., Strnad, L., Bezdicka, P., 2005a. Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environ. Sci. Technol., 39, 9309-9316.Ettler, Vojteˇch, Vaneˇk, Aleš, Mihaljevicˇ, Martin, Bezdicˇka, Petr, 2005b. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere 58 (10), 1449–1459.Ettler, V., Sebek, O., Grygar, T., Klementová, M., Bezdicka, P., Slavíková, H., 2008. Controls on metal leaching from secondary Pb smelter air-pollution-control residues. Environ. Sci. Technol. 42, 7878–7884.Ettler, V., Mihaljevic , M., S ebek, O., Grygar. T.M., Klementova´ M. 2012a. Experimental - transformation of Pb smelter fly ash in acidic soils. Environ. Sci. Technol. 46, 10539 10548.Ettler, Vojteˇch, Mihaljevicˇ, Martin, Šebek, Ondrˇej, Valigurová, Radka, Klementová, Mariana, 2012a. Differences in antimony and arsenic releases from lead smelter fly ash in soils. Chem. Erde 72, 15–22.Ettler, Vojteˇch, Krˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Mihaljevicˇ, Martin, 2012b. Differences in the bioaccessibility of metals/metalloids in soils from mining and smelting areas (Copperbelt, Zambia). J. Geochem. Explor. 113, 68– 75.Ettler, Vojteˇch, Cihlová, Markéta, Jarošíková, Alice, Mihaljevicˇ, Martin, Drahota, Petr, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Klementová, Mariana, Engel, Zbyneˇk, Kamona, Fred, Mapani, Ben, 2019. Oral bioaccessibility of metal (loid)s in dust materials from mining areas of northern Namibia. Environ. Int. 124, 205–215.Ettler, Vojteˇch, Šteˇpánek, David, Mihaljevicˇ, Martin, Drahota, Petr, Jedlicka, Radim, Krˇíbek, Bohdan, Vaneˇk, Aleš, Penízˇek, Vít, Sracek, Ondra, Nyambe, Imasiku, 2020. Slag dusts from Kabwe (Zambia): Contaminant mineralogy and oral bioaccessibility. Chemosphere 260, 127642. https://doi.org/10.1016/j. chemosphere.2020.127642.Ettler, Vojteˇch, 2016. Soil contamination near non-ferrous metal smelters: A review. Appl. Geochem. 64, 56–74.Freedman, B., Hutchinson, T.C., 1980. Pollutant inputs from the atmosphere and accumulations in soils and vegetation near a nickel–copper smelter at Sudbury, Ontario, Canada. Can. J. Bot. 58 (1), 108–132.Gee, C., Ramsey, M.H., Maskall, J., Thornton, I., 1997. Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization of lead. J. Geochem. Explor. 58, 249–257.Gelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., Keller, C., 2019. Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb-Ag smelter decommissioned 100 years ago. Sci. Total Environ. 665, 502–512.Glotov, Vladimir E., Chlachula, Jiri, Glotova, Ludmila P., Little, Edward, 2018. Causes and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East. Eng. Geol. 245, 236–247.Grolimund, D., Borkovec, M., Barmettler, K., Sticher, H., 1996. Colloid-facilitated transport of strongly sorbing contaminants in natural porous media: A laboratory column study. Environ. Sci. Technol. 30, 3118–3123.Gulson, Brian L., Mizon, Karen J., Korsch, Michael J., Palmer, Jacqueline M., Donnelly, John B., 2003. Mobilization of lead from human bone tissue during pregnancy and lactation - a summary of long-term research. Sci. Total Environ. 303 (1-2), 79–104.Hamill, Patrick, Jensen, Eric J., Russell, P.B., Bauman, Jill J., 1997. The life cycle of stratospheric aerosol particles. Bull. Am. Meteorol. Soc. 78 (7), 1395– 1410.Hassellov, M., von der Kammer, F., 2008. Iron oxides as geochemical nanovectors for metal transport in soil-river systems. Elements 4 (6), 401–406.Hashimoto, Yohey, Yamaguchi, Noriko, Takaoka, Masaki, Shiota, Kenji, 2011. EXAFS speciation and phytoavailability of Pb in a contaminated soil amended with compost and gypsum. Sci. Total Environ. 409 (5), 1001–1007.Hawa, T., Zachariah, M.R., 2006. Coalescence kinetics of unequal sized nanoparticles Aerosol. Science 37 (1), 1–15.Hayes, Sarah M., Webb, Sam M., Bargar, John R., O’Day, Peggy A., Maier, Raina M., Chorover, Jon, 2012. Geochemical weathering increases lead bioaccessibility in semi-arid mine tailings. Environ. Sci. Technol. 46 (11), 5834–5841.Henderson, P.J., McMartin, I., Hall, G.E., Percival, J.B., Walker, D.A., 1998. The chemical and physical characteristics of heavy metals in humus and till in the vicinity of the base metal smelter at Flin Flon, Manitoba, Canada. Environ. Geol. 34 (1), 39–58.Herms, U., Brümmer, G., 1984. Einflussgrössen der Schwermetalloslichkeit und - bindung in Böden. Zeitschrift für Pflanzenernährung und Bodenkunde 147, 400–424.Hernberg, Sven, 2000. Lead poisoning in a historical perspective. Am. J. Ind. Med. 38 (3), 244–254.Hochella Jr, M.F., Moore, J.N., Golla, U., Putnis, A., 1999. A TEM study of samples from acid mine drainage systems: metal-mineral association with implications for transport. Geochim. Cosmochim. Acta 63, 3395–3406.Hochella, Michael F., Moore, Johnnie N., Putnis, Christine V., Putnis, Andrew, Kasama, Takeshi, Eberl, Dennis D., 2005a. Direct observation of heavy metalmineral association from the Clark Fork River Superfund Complex: Implications for metal transport and bioavailability. Geochim. Cosmochim. Acta 69 (7), 1651–1663.Hochella Jr., M.F., Kasama, T., Putnis, A., Putnis, C., Moore, J.N., 2005b. Environmentally important, poorly crystalline Fe/Mn hydrous oxides: Ferrihydrite and a possibly new vernadite-like mineral from the Clark Fork River Superfund Complex. Am. Mineral. 90, 718–724.Hochella Jr., M.F. et al., 2008. Nanominerals, mineral nanoparticles, and earth systems. Science 319, 1631.Hochella Jr., M.F. et al., 2019. Natural, incidental, and engineered nanomaterials and their impacts on the Earth system. Science 363, 1414.Hogan, G.D., Wotton, D.L., 1984. Pollutant distribution and effects on forests adjacent to smelters. J. Environ. Qual. 13, 377–382.Hower, James C., O’Keefe, Jennifer M.K., Henke, Kevin R., Wagner, Nicola J., Copley, Gregory, Blake, Donald R., Garrison, Trent, Oliveira, Marcos L.S., Kautzmann, Rubens M., Silva, Luis F.O., 2013. Gaseous emissions and sublimates from the truman shepherd coal fire, floyd county, Kentucky: a re-investigation following attempted mitigation of the fire. Int. J. Coal Geol. 116-117, 63–74.Hudson-Edwards, K.A., Macklin, M.G., Curtis, C.D., Vaughan, D.J., 1996. Processes of formation and distribution of Pb-, Zn-, Cd-, and Cu-bearing minerals in the Tyne Basin, northeast England: Implications for metal-contaminated river systems. Environ. Sci. Technol. 30, 72–80.International Lead Association, 2021. https://ila-lead.org/.International Union of Pure and Applied Chemistry (IUPAC), 2001. Appendix II Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Ed. D. H. Everett &L. K. Koopal; pp 78.Jackson, Togwell A., 1978. The biogeochemistry of heavy metals in polluted lakes and streams at Flin Flon, Canada, and a proposed method for limiting heavymetal pollution of natural waters. Environ. Geol. 2 (3), 173–189.Jarošíková, Alice, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Drahota, Petr, Culka, Adam, Racek, Martin, 2018. Characterization and pH-dependent environmental stability of arsenic trioxide-containing copper smelter flue dust. J. Environ. Manage. 209, 71–80.Kastury, Farzana, Smith, Euan, Juhasz, Albert L., 2017. A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Sci. Total Environ. 574, 1054–1074.Keim, Maximilian F., Markl, Gregor, 2015. Weathering of galena: Mineralogical processes, hydrogeochemical fluid path modeling, and estimation of the growth rate of pyromorphite. Am. Mineral. 100 (7), 1584–1594.Kim, C.S., Wilson, K.M., Rytuba, J.J., 2011. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Appl. Geochem. 26 (4), 484–495.Kjøller, Claus, Postma, Dieke, Larsen, Flemming, 2004. Groundwater acidification and the mobilization of trace metals in a sandy aquifer. Environ. Sci. Technol. 38 (10), 2829–2835.Klitzke, S., Lang, F., Kaupenjohann, M., 2008. Increasing pH releases colloidal lead in a highly contaminated forest soil. Eur. J. Soil Sci. 59 (2), 265–273.Klitzke, Sondra, Lang, Friederike, Kirby, Jason, Lombi, Enzo, Hamon, Rebecca, 2012. Lead, antimony and arsenic in dissolved and colloidal fractions from an amended shooting-range soil as characterised by multi-stage tangential ultrafiltration and centrifugation. Environ. Chem. 9 (5), 462. https://doi.org/ 10.1071/EN12010.Kretzschmar, R., Borkovec, M., Grolimund, D., Elimelech, M., 1999. Mobile subsurface colloids and their role in contaminant transport. Adv. Agron. 66, 121–194.Kretzschmar, R., Schafer, T., 2005. Metal retention and transport on colloidal particles in the environment. Elements 1 (4), 205–210.Krˇíbek, Bohdan, Majer, Vladimír, Veselovsky´ , František, Nyambe, Imasiku, 2010. Discrimination of lithogenic and anthropogenic sources of metals and sulphur in soils of the central-northern part of the Zambian Copperbelt Mining District: A topsoil vs. subsurface soil concept. J. Geochem. Explor. 104 (3), 69–86.Krˇibek, B., Majer, V., Knesl, I., Nyambe, I., Mihaljevicˇ, M., Ettler, V., Sracek, O., 2014. Concentration of arsenic, copper, cobalt, lead and zinc in cassava (Manihot esculenta Crantz) growing on uncontaminated and contaminated soils of the Zambian Copperbelt. J. Afr. Earth Sc. 99, 713–723.Krˇíbek, Bohdan, Majer, Vladimír, Knésl, Ilja, Keder, Josef, Mapani, Benjamin, Kamona, Frederick, Mihaljevicˇ, Martin, Ettler, Vojteˇch, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2016. Contamination of soil and grass in the Tsumeb smelter area, Namibia: modeling of contaminants dispersion and ground geochemical verification. Appl. Geochem. 64, 75–91.Krˇíbek, Bohdan, Šípková, Adéla, Ettler, Vojteˇch, Mihaljevicˇ, Martin, Majer, Vladimír, Knésl, Ilja, Mapani, Benjamin, Penízˇek, Vít, Vaneˇk, Aleš, Sracek, Ondra, 2018. Variability of the copper isotopic composition in soil and grass affected by mining and smelting in Tsumeb, Namibia. Chem. Geol. 493, 121–135.Krinsley, David H., Dorn, Ronald I., DiGregorio, Barry E., Langworthy, Kurt A., Ditto, Jeffrey, 2012. Rock varnish in New York: an accelerated snapshot of accretionary processes. Geomorphology 138 (1), 339–351.Krinsley, David, Ditto, Jeffrey, Langworthy, Kurt, Dorn, Ronald I., Thompson, Tyler, 2013. Varnish microlaminations: new insights from focused ion beam preparation. Phys. Geogr. 34 (3), 159–173.Lanteigne, S., Schindler, M., McDonald, A., 2014. Distribution of metal(loid)s in smelter-derived particulate matter in soils, mineralogical insights into their retention and release in a low-T environment. Can. Mineral. 52, 453–471.Lenoble, Véronique, Bouras, Omar, Deluchat, Véronique, Serpaud, Bernard, Bollinger, Jean-Claude, 2002. Arsenic adsorption onto pillared clays and iron oxides. J. Colloid Interface Sci. 255 (1), 52–58.Li, Zhonggen, Feng, Xinbin, Bi, Xiangyang, Li, Guanghui, Lin, Yan, Sun, Guangyi, 2014. Probing the distribution and contamination levels of 10 trace metal/ metalloids in soils near a Pb/Zn smelter in Middle China. Environ. Sci. Pollut. Res. Int. 21 (6), 4149–4162.Li, Hong-Bo, Chen, Kai, Juhasz, Albert L., Huang, Lei, Ma, Lena Q., 2015. Childhood lead exposure in an industrial town in China: coupling stable isotope ratios with bioaccessible lead. Environ. Sci. Technol. 49 (8), 5080–5087.Löv, Åsa, Cornelis, Geert, Larsbo, Mats, Persson, Ingmar, Sjöstedt, Carin, Gustafsson, Jon Petter, Boye, Kristin, Kleja, Dan B., 2018. Particle- and colloid-facilitated Pb transport in four historically contaminated soils - Speciation and effect of irrigation intensity. Appl. Geochem. 96, 327–338.Lu, Hongjian, Qi, Chongchong, Chen, Qiusong, Gan, Deqing, Xue, Zhenlin, Hu, Yajun, 2018. A new procedure for recycling waste tailings as cemented paste backfill to underground stopes and open pits. J. Cleaner Prod. 188, 601–612.Lv, X., Gao, B., Sun, Y., Shi, X., Xu, H., Wu, J., 2014. Effects of humic acid and solution chemistry on the retention and transport of cerium dioxide nanoparticles in saturated porous media. Water Air Soil Pollut. 225, 1–9.Li, J., McDonald-Gillespie, K., 2020. Airborne Lead (Pb) From Abandoned Mine Waste in Northeastern Oklahoma, USA. GeoHealth, 4, e2020GH000273. Mai, F.M., 2006. Beethoven’s terminal illness and death. J. Royal College of Phys. Edinburgh 36, 258–263.Mason, P.M., 2013. Trace Metals in Aquatic Systems. Wiley, Chichester. McCarthy, J.F., McKay, L.D., 2004. Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J. 3 (2), 326–337.McKay, Larry D., Cherry, John A., Bales, Roger C., Yahya, Moyasar T., Gerba, Charles P., 1993. A field example of bacteriophage as tracers of fracture flow. Environ. Sci. Technol. 27 (6), 1075–1079.Mantha, Nathalie M., Schindler, Michael, Murayama, Mitsuhiro, Hochella, Michael F., 2012a. Silica- and sulfate-bearing rock coatings in smelter areas: Products of chemical weathering and atmospheric pollution I. Formation and mineralogical composition. Geochim. Cosmochim. Acta 85, 254–274.Mantha, N.M., Schindler, M., Kyser, T.K., 2012b. Silica- and sulfate-bearing rock coatings in smelter areas: II. Forensic tools for atmospheric metal(loid)- and sulfur-isotope compositions. Geochim. Cosmochim. Acta 90, 221–241.Marcotte, A., Anbar, A., Majestic, B., Herckes, P., 2020. Mineral dust and iron solubility: effects of composition, particle size, and surface area. Atmosphere. 11, 533. https://doi.org/10.3390/atmos11050533.Martin, Rachael, Dowling, Kim, Pearce, Dora, Sillitoe, James, Florentine, Singarayer, 2014. Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences 4 (3), 128–175.McCarthy, J.F., Zachara, J.M., 1989. Subsurface transport of contaminants. Environ. Sci. Technol. 23, 496–502.McCarthy, J.F., Degueldre, C., 1993. Sampling and characterization of colloids and particles in groundwater for studying their role in contaminant transport. In: Buffle, J., van Leeuwen, H.P. (Eds.), Environmental Particles, Vol. 2. Lewis Publishers, Boca Raton, pp. 247–315.McConnell, Joseph R., Wilson, Andrew I., Stohl, Andreas, Arienzo, Monica M., Chellman, Nathan J., Eckhardt, Sabine, Thompson, Elisabeth M., Pollard, A. Mark, Steffensen, Jørgen Peder, 2018. Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity. Proc. Natl. Acad. Sci. 115 (22), 5726–5731.Merill, J.C., Morton, J.J.P., Soileau, S.D., 2007. Metals. In: Hayes, A.W., Principles and Methods of Toxicology (5th ed.) CRC Press.Millward, Geoffrey E., 1995. Processes affecting trace element speciation in estuaries; a review. Analyst 120 (3), 609. https://doi.org/10.1039/ an9952000609. Mindat, 2021. https://www.mindat.orgMonaci, Fabrizio, Ancora, Stefania, Bianchi, Nicola, Bonini, Ilaria, Paoli, Luca, Loppi, Stefano, 2021. Combined use of native and transplanted moss for post-mining characterization of metal(loid) river contamination. Sci. Total Environ. 750, 141669. https://doi.org/10.1016/j.scitotenv.2020.141669.Morin, Guillaume, Ostergren, John D., Juillot, Farid, Ildefonse, Philippe, Calas, Georges, Brown, Gordon E., 1999. XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: importance of adsorption processes. Am. Mineral. 84 (3), 420–434.Morrison, Anthony L., Gulson, Brian L., 2007. Preliminary findings of chemistry and bioaccessibility in base metal smelter slags. Sci. Total Environ. 382 (1), 30–42.Morrison, Anthony L., Swierczek, Zofia, Gulson, Brian L., 2016. Visualisation and quantification of heavy metal accessibility in smelter slags: the influence of morphology on availability. Environ. Pollut. 210, 271–281.Natural Resources Canada, 2019. https://www.nrcan.gc.ca/science-data/scienceresearch/earth-sciences/earth-sciences-resources/earth-sciences-federalprograms/lead-facts/20518. Neubauer, Elisabeth, Schenkeveld, Walter D.C., Plathe, Kelly L., Rentenberger, Christian, von der Kammer, Frank, Kraemer, Stephan M., Hofmann, Thilo, 2013. The influence of pH on iron speciation in podzol extracts: iron complexes with natural organic matter, and iron mineral nanoparticles. Sci. Total Environ. 461- 462, 108–116.Ojelede, M.E., Annegarn, H.J., Kneen, M.A., 2012. Evaluation of Aeolian emissions from gold mine tailings on the Witwatersrand. Aeolian Res. 3 (4), 477–486.O’Reilly, S.E, Hochella, Michael F, 2003. Lead sorption efficiencies of natural and synthetic Mn and Fe-oxides. Geochim. Cosmochim. Acta 67 (23), 4471–4487.Ostergren, J.D., Brown, G.E., Parks, G.A., Tingle, T.N., 1999. Quantitative speciation of lead in selected mine tailings from Leadville. CO, Environmental Science Technology 33, 1627–1636.Ouattara, A.A., Yao, K.M., Soro, M.P., Diaco, T., Trokourey, A., 2018. Arsenic and trace metals in three west African rivers: concentrations, partitioning, and distribution in particle-size fractions. Arch. Environ. Contam. Toxicol. 75, 449–463.Pédrot, M., Dia, A., Davranche, M., Bouhnik-Le Coz, M., Henin, O., Gruau, G., 2008. Insights into colloid-mediated trace element release at the soil/water interface. J. Colloid Interface Sci. 325, 187–197.Perdrial, N., Perdrial, J.N., Delphin, J.-E., Elsass, F., Liewig, N., 2010. Temporal and spatial monitoring of mobile nanoparticles in a vineyard soil: evidence of nanoaggregate formation. Eur. J. Soil Sci. 61, 456–468.Pelfrêne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., Douay, F., 2011. Assessing Cd, Pb, Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environ. Geochem. Health 33, 477–493.Piña, A.A., Villaseñor, G.T., Jacinto, P.S., Fernández, M.M., 2002. Scanning and transmission electron microscope of suspended lead-rich particles in the air of San Luis Potosi, Mexico. Atmos. Environ. 36, 5235–5243.Plathe, K.L., von der Kammer, F., Hassellöv, M., Moore, J., Muruyama, M., Hofmann, T., Hochella Jr., M.F., 2010. Using FlFFF and aTEM to determine trace metal – nanoparticle associations in riverbed sediment. J. Environ. Chem. 7, 82–93.Plathe, K.L., von der Kammer, F., Hassellov, M., Moore, J.N., Murayama, M., Hofmann, T., Hochella Jr., M.F., 2013. The role of nanominerals and mineral nanoparticles in the transport of toxic trace metals: Field-flow fractionation and analytical TEM analyses after nanoparticle isolation and density separation. Geochim. Cosmochim. Acta 102, 213–225.Plumlee, G.S., Morman, S.A., 2011. Mine wastes and human health. Elements 7, 399–404.Pokrovsky, O.S., Schott, J., Dupre, B., 2006. Trace element fractionation and transport in boreal rivers and soil pore waters of permafrost-dominated basaltic terrain in Central Siberia. Geochem. Cosmochim. Acta 70, 3239–3260.Reed, W.R., Westman, E.C., 2005. A model for predicting the dispersion of dust from a haul truck. Int. J. Surf. Mining Reclamation and Environ. 19, 66–74.Ren, Z., Sivry, Y., Tharaud, M., Cordier, L., Li, Y., Dai, J., Benedetti, M.F., 2017. Speciation and reactivity of lead and zinc in heavily and poorly contaminated soils: stable isotope dilution, chemical extraction and model views. Environ. Pollut. 225, 654–662.Resongles, E., Casiot, C., Freydier, R., Le Gall, M., Elbaz-Poulichet, F., 2015. Variation of dissolved and particulate metal(loid) (As, Cd, Pb, Sb, Tl, Zn) concentrations under varying discharge during a Mediterranean flood in a former mining watershed, the Gardon River (France). J. Geochem. Explor. 158, 132–142.Rich, V., 1995. The International Lead Trade. Woodhead Publishing, Cambridge. Roelofs, F., Vogelsberger, W., 2004. Dissolution kinetics of synthetic amorphous silica in biological-like media and its theoretical description. J. Phys. Chem. B 108, 11308–11316.Romero, F.M., Villalobos, M., Aguirre, R., Gutierrez, M.E., 2008. Solid-phase control on lead bioaccessibility in smelter-impacted soils. Arch. Environ. Contam. Toxicol. 55, 566–575.Rossi, E., 2008. Low level environmental lead exposure–a continuing challenge. The Clin. Biochem. Rev. 29, 63–70.Roulier, S., Robinson, B., Kuster, E., Schulin, R., 2008. Analysing the preferential transport of lead in a vegetated roadside soil using lysimeter experiments and a dual porosity model. Eur. J. Soil Sci. 59, 61–70.Roussel, C., Neel, C., Bril, H., 2000. Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Sci. Total Environ. 263, 209–219.Ruby, M.V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D.E., Casteel, S.W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., Chappell, W., 1999. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ. Sci. Technol. 33, 3697–3705.Sánchez-Peña, N.E., Narváez-Semanate, J.L., Pabón-Patiño, D., Fernández-Mera, J.E., Oliveira, M.L., Da Boit, K., Tutikian, B., Crissien, T., Pinto, D., Serrano, I., Ayala, C., Duarte, A., Ruiz, J., Silva, L.F., 2018. Chemical and nano-mineralogical study for determining potential uses of legal Colombian gold mine sludge: Experimental evidence. Chemosphere 191, 1048–1055.Sauvé, S., McBride, M., Hendershot, W., 1998. Soil solution speciation of lead(II): effects of organic matter and pH. Soil Sci. Soc. Am. J. 62, 618–621.Schindler, M., Fayek, M., Hawthorne, F.C., 2010. Uranium in opaline rock-coatings at the Uranium Ore Deposit Nopal 1, Pena Blanca, Mexico: Indications for the uptake and retardation of radionuclides. Geochim. Cosmochim. 74, 187–202.Schindler, M., Mantha, N.M., Kyser, K.T., Murayama, M., Hochella Jr., M.F., 2012. Shining light on black rock-coatings in smelter-impacted areas. Geosci. Can. 39, 148–157.Schindler, M., Kamber, B.S., 2012. High-resolution lake sediment reconstruction of industrial impact in a world-class mining and smelting center, Sudbury, Ontario, Canada. Appl. Geochem. 37, 102–116.Schindler, M., Dorn, R., 2017. Coatings on rocks and minerals: The interface between lithosphere and the bio-, hydro- and atmosphere. Elements 13, 155–158.Schindler, M., Hochella Jr., M.F., 2017. Sequestration of Pb- Zn- Sb- and As-bearing incidental nanoparticles in mineral surface coatings and mineralized organic matter in soils. Environ. Sci.: Processes Impacts 19, 1016–1027.Schindler, M., Mantha, H., Hochella (Jr), M.F., 2019. The formation of spinel-group minerals in contaminated soils: the sequestration of metal(loid)s by unexpected incidental nanoparticles. Geochem. Trans. 20, 1–13.Scheckel, K.G., Ryan, J.A., 2002. Effects of aging and pH on dissolution kinetics and stability of chloropyromorphite. Environ. Sci. Technol. 36, 2198–2204.Schmidt, J., Vogelsberger, W., 2006. Dissolution kinetics of titanium dioxide nanoparticles: the observation of an unusual kinetic size effect. J. Phys. Chem. B 110, 3955–3963.Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018a. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 1: the damaging effects of air pollution. Chest S0012–3692, 32723–32725.Schraufnagel, D.E., Balmes, J.R., Cowl, C.T., De Matteis, S., Jung, S.H., Mortimer, K., Perez-Padilla, R., Rice, M.B., Riojas-Rodriguez, H., Sood, A., Thurston, G.D., To, T., Vanker, A., Wuebbles, D.J., 2018b. Air pollution and noncommunicable diseases: a review by the forum of international respiratory societies’ environmental committee, Part 2: air pollution and organ systems. Chest S0012–3692 (18), 32722–32723.Schroder, J.L., Basta, N.T., Casteel, S.W., Evans, T.J., Payton, M.E., Si, J., 2004. Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soils. J. Environ. Qual. 33, 513–521.Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M.K., Wang, Q., Zhang, Z., 2017. Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicol. Environ. Saf. 139, 254– 262.Shotyk, W., Weiss, D., Kramers, J.D., Frei, R., Cheburkin, A.K., Gloor, M., Reese, S., 2001. Geochemistry of the peat bog at Etang de la Gruère, Jura Mountains, Switzerland, and its record of atmospheric Pb and lithogenic trace metals (Sc, Ti, Y, Zr, and REE) since 12,370 14C yr BP. Geochim. Cosmochim. Acta 65, 2337– 2360.Siciliano, S.D., James, K., Zhang, G., Schafer, A.N., Peak, J.D., 2009. Adhesion and enrichment of metals on human hands from contaminated soil at an arctic urban brownfield. Environ. Sci. Technol. 43, 6385–6390.Simonetti, A., Gariepy, C., Banic, C., Tanabe, R., Wong, H.K.T., 2004. Pb isotopic investigation of emissions from the Horne smelter (Rouyn, Québec) – implications for atmospheric pollution in northeastern North America. Geochim. Cosmochim. Acta 68, 3285–3294.Skeaff, J.M., Thibault, Y., Hardy, D.J., 2011. A new method for the characterization and quantitative speciation of base metal smelter stack particulates. Environ. Monit. Assessment 177, 165–192.Small, C.C., Cho, S., Hashisho, Z., Ulrich, A.C., 2015. Emissions from oil sands tailings ponds: review of tailings pond parameters and emission estimates. J. Petrol. Sci. Eng. 127, 490–501.Schneider, A.R., Cancès, B., Ponthieu, M., Sobanska, S., Benedetti, M.F., Pourret, O., Conreux, A., Calandra, I., Martinet, B., Morvan, X., Gommeaux, M., Marin, B., 2016. Lead distribution in soils impacted by a secondary lead smelter: Experimental and modelling approaches. Sci. Total Environ. 568, 155–163.Sobanska, S., Ricq, N., Laboudigue, A., Guillermo, R., Bremard, C., Laureyns, J., Merlin, J.C., Wignacourt, J.P., 1999. Microchemical investigation of dust emitted by a lead smelter. Environ. Sci. Technol. 33, 1334–1339.Steckerman, T., Douay, F., Proix, N., Fourrier, H., 2000. Vertical distribution of Cd, Pb and Zn in soils near smelters in the North of France. Environ. Pollut. 107, 377– 389.Sun, H.M., Gao, B., Tian, Y., Yin, X., You, C., Wang, Y., Ma, L.Q., 2010. Kaolinite and lead in saturated porous media: facilitated and Impeded transport. J. Environ. Eng. 136, 1305–1308.Sun, J., Wang, F., Sui, Y., She, Z., Zhai, W., Wang, C., Deng, Y., 2012. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int. J. Nanomed. 7, 5733–5744.Telmer, K., Bonham-Carter, G.F., Kliza, D.A., Hall, G.A., 2004. The atmospheric transport and deposition of smelter emissions: Evidence from the multielement geochemistry of snow, Quebec, Canada. Geochim. Cosmochim. Acta 68, 2691–2980.Thiagarajan, N., Lee, C., 2004. Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition. Earth Planet. Sci. Lett. 224, 131–141.US EPA, 2007. Estimation of relative bioavailability of lead in soil and soil-like materials using in vivo and in vitro methods. Office of Solid Waste and Emergency Response, US EPA, Washington. OSWER 9285.7-77.USGS, 2021. https://www.usgs.gov/energy-and-minerals/mineral-resourcesprogram. Vítková, M., Ettler, V., Sebek, O., Mihaljevic, M., Grygar, T., Rohovec, J., 2009. The pHdependent leaching of inorganic contaminants from secondary lead smelter fly ash. J. Hazard. Mater. 167, 427–433.Wani, A.L., Ara, A., Usmani, J.A., 2015. Lead toxicity: a review. Interdisciplinary Toxicology 8, 55–64.Wang, Y., Yin, X., Sun, H., Wang, C., 2016. Transport of vanadium (V) in saturated porous media: effects of pH, ionic strength and clay mineral. Chem. Speciat. Bioavailab. 28, 7–12.Wen, J., Tang, C., Cao, Y., Li, X., Chen, Q., 2019. Assessment of trace metals in an aquifer with river-groundwater interaction: The influence of colloidal redistribution and porous matrix change on the migration of metals. Chemosphere 223, 588–598.Wong, H.K., Banic, C.M., Robert, S., Nejedly, Z., J.L. Campbell, J.L., 2006. In-stack and in-plume characterization of particulate metals emitted from a copper smelter. Geochem.: Exploration Environ. Anal., 6, 131–137.Yabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam, N., Oroszlany, B., Muzandu, K., Choongo, K., Kabalo, A.N., Ntapisha, J., Mweene, A., Umemura,T., Ishizuka, M., 2021. Lead poisoning in children from townships in the vicinity of a lead-zinc mine in Kabwe, Zambia. Chemosphere 119, 941–947.Yabe, J., Nakayama, S.M.M., Ikenaka, Y., Yohannes, Y.B., Bortey-Sam Kabalo, A.N., Ntapisha, J., Mizukawa, H., Umemura, T., Ishizuka, M., 2018. Lead and cadmium excretion in feces and urine of children from polluted townships near a leadzinc mine in Kabwe, Zambia. Chemosphere 202, 48–55.Yabe, J., Nakayama, S.M., Nakata, H., Toyomaki, H., Yohannes, Y.B., Muzandu, K., Kataba, A., Zyambo, G., Hiwatari, M., Narita, D., Yamada, D., Hangoma, P., Munyinda, N.S., Mufune, T., Ikenaka, Y., Choongo, K., Ishizuka, M., 2020. Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe. Zambia. Chemosphere 243, 125412.Yamamoto, N., Takahashi, Y., Yoshinaga, J., Tanaka, A., Shibata, Y., 2006. Size distributions of soil particles adhered to children’s hands. Arch. Environ. Contam. Toxicol. 51, 157–163.Yedjou, C.G., Tchounwou, H.M., Tchounwou, P.B., 2015. DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. Int. J. Environ. Res. Public Health 13 (1).Yin, S., Shao, Y.,Wu, A., Liu, X.,Wang, Y., 2020. A systematic review of paste technology in metal mines for cleaner production in China. J. Cleaner Prod. 247, 119590.Yin, X., Gao, B., Ma, L.Q., Saha, U.K., Sun, H., Wang, G., 2010. Colloid-facilitated Pb transport in two shooting-range soils in Florida. J. Hazard. Mater. 177, 620–625.Zänker, H., Moll, H., Richter, W., Brendler, V., Hennig, C., Reich, T., Kluge, A., Hüttig, G., 2002. The colloid chemistry of acid rock drainage solution from an abandoned Zn-Pb-Ag mine. Appl. Geochem. 17, 633–648.Zdanowicz, C.M., Banic, C.M., Paktunc, D.A., Kliza-Petelle, D.A., 2006. Metal emissions from a Cu smelter, Rouyn-Noranda, Québec: characterization of particles sampled in air and snow. Geochem.: Exploration Environ. Anal. 6, 147– 162.Zahran, S., Laidlaw, M.A., McElmurry, S.P., Filippelli, G.M., Taylor, M., 2013. Linking source and effect: resuspended soil lead, air lead, and children’s blood lead levels in Detroit, Michigan. Environ. Sci. Technol. 47, 2839–2845.Zhang, H., De Yoreo, J.J., Banfield, J.F., 2014. A unified description of attachmentbased crystal growth. ACS Nano 8 (7), 6526–6530.Zhang, M., Shao, L., Jones, T., Hu, Y., Adams, R., BéruBé, K., 2021. Hemolysis of PM10 on RBCs in vitro: An indoor air study in a coal-burning lung cancer epidemic area. Geosci. Frontiers, 101176.Zoltai, S., 1988. Distribution of base metals in peat near a smelter at Flin Flon, Manitoba. Water Air and Soil Pollution 37, 217–228.Zupancˇicˇ, N., Miler, M., Ašler, A., Pompe, N., Jarc, S., 2021. Contamination of children’s sandboxes with potentially toxic elements in historically polluted industrial city. J. Hazard. Mater. 412, 125275.PublicationORIGINALA review on Pb.pdfA review on Pb.pdfapplication/pdf423412https://repositorio.cuc.edu.co/bitstreams/23bc42c5-db1b-43a6-91de-9b3ceb1e4142/download7980aa146288fe9fa2c3c80a2c9c8a4cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/17c63c92-f42c-4999-9aec-c5128e42710e/downloade30e9215131d99561d40d6b0abbe9badMD52THUMBNAILA review on Pb.pdf.jpgA review on Pb.pdf.jpgimage/jpeg49755https://repositorio.cuc.edu.co/bitstreams/02dd5cac-3de9-4f58-9a6c-845476166d6f/downloadc7cc47b7b9696319a146a4cc000dd4acMD53THUMBNAILA review on Pb.pdf.jpgA review on Pb.pdf.jpgimage/jpeg49755https://repositorio.cuc.edu.co/bitstreams/102c2a4d-19e1-46a8-be87-f9a335777595/downloadc7cc47b7b9696319a146a4cc000dd4acMD53TEXTA review on Pb.pdf.txtA review on Pb.pdf.txttext/plain2300https://repositorio.cuc.edu.co/bitstreams/1e96f386-d5de-4c71-8bd9-5bc00d37ef16/downloadcee987e3bde2a8242df55eb319b8ac0dMD5411323/8788oai:repositorio.cuc.edu.co:11323/87882024-09-17 10:45:52.942open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |