Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica

Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evalu...

Full description

Autores:
Flórez Marulanda, Juan Fernando
Ortega Alegría, Daniel Rodrigo
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12276
Acceso en línea:
https://hdl.handle.net/11323/12276
https://doi.org/10.17981/ingecuc.17.2.2021.06
Palabra clave:
biodiesel
efficiency
incidence factor
mixing temperature
ultrasound
biodiesel
eficiencia
factor de incidencia
temperatura de mezcla
ultrasonido
Rights
openAccess
License
INGE CUC - 2021
id RCUC2_a2da09fa216fda4cd825745579c4b571
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12276
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
dc.title.translated.eng.fl_str_mv Performance of biodiesel production by means of Ultrasonic Transesterification
title Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
spellingShingle Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
biodiesel
efficiency
incidence factor
mixing temperature
ultrasound
biodiesel
eficiencia
factor de incidencia
temperatura de mezcla
ultrasonido
title_short Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
title_full Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
title_fullStr Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
title_full_unstemmed Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
title_sort Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
dc.creator.fl_str_mv Flórez Marulanda, Juan Fernando
Ortega Alegría, Daniel Rodrigo
dc.contributor.author.spa.fl_str_mv Flórez Marulanda, Juan Fernando
Ortega Alegría, Daniel Rodrigo
dc.subject.eng.fl_str_mv biodiesel
efficiency
incidence factor
mixing temperature
ultrasound
topic biodiesel
efficiency
incidence factor
mixing temperature
ultrasound
biodiesel
eficiencia
factor de incidencia
temperatura de mezcla
ultrasonido
dc.subject.spa.fl_str_mv biodiesel
eficiencia
factor de incidencia
temperatura de mezcla
ultrasonido
description Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura. Metodología- En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables. Resultados- En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido. Conclusiones- La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-18 00:00:00
2024-04-09T20:17:53Z
dc.date.available.none.fl_str_mv 2021-03-18 00:00:00
2024-04-09T20:17:53Z
dc.date.issued.none.fl_str_mv 2021-03-18
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.eng.fl_str_mv http://purl.org/coar/resource_type/c_6501
http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.eng.fl_str_mv Text
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.local.eng.fl_str_mv Journal article
dc.type.redcol.eng.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.eng.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.eng.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.issn.none.fl_str_mv 0122-6517
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12276
dc.identifier.url.none.fl_str_mv https://doi.org/10.17981/ingecuc.17.2.2021.06
dc.identifier.doi.none.fl_str_mv 10.17981/ingecuc.17.2.2021.06
dc.identifier.eissn.none.fl_str_mv 2382-4700
identifier_str_mv 0122-6517
10.17981/ingecuc.17.2.2021.06
2382-4700
url https://hdl.handle.net/11323/12276
https://doi.org/10.17981/ingecuc.17.2.2021.06
dc.language.iso.eng.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Inge Cuc
dc.relation.references.eng.fl_str_mv  F. C. De Oliveira & S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” RSER, vol. 75, pp. 168–179, Aug. 2017. https://doi.org/10.1016/j.rser.2016.10.060
 M. Mubarak, A. Shaija & T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res, vol. 7, pp. 117–123, Jan. 2015. https://doi.org/10.1016/j.algal.2014.10.008
 H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” RSER, vol. 67, pp. 1225–1236, Jan. 2017. https://doi.org/10.1016/j.rser.2016.09.036
 P. Verma, M. P. Sharma & G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” RSER, vol. 56, pp. 319–333, Apr. 2016. https://doi.org/10.1016/j.rser.2015.11.048
 B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar & S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” RSER, vol. 38, pp. 368–382, Oct. 2014. https://doi.org/10.1016/j.rser.2014.05.084
 I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt J Pet, vol. 25, no. 1, pp. 21–31, Mar. 2016. https://doi.org/10.1016/j.ejpe.2015.06.007
 A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges & N. T. Machado, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind Crops Prod, vol. 91, pp. 32–43, 30 Nov. 2016. https://doi.org/10.1016/j.indcrop.2016.06.033
 A. H. M. Fauzi, N. A. S. Amin & R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl Energy, vol. 114, pp. 809–818, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.10.011
 O. Farobie & Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bior Tech, vol. 191, pp. 306–311, Sep. 2015. https://doi.org/10.1016/j.biortech.2015.04.102
 P. Verma & M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” RSER, vol. 62, pp. 1063–1071, 2016. https://doi.org/10.1016/j.rser.2016.04.054
 V. K. Aniya, R. K. Muktham, K. Alka & B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 1 Dec. 2015. https://doi.org/10.1016/j.fuel.2015.08.042
 L. S. Keong, D. S. Patle, S. R. Shukor & Z. Ahmad, “IOP Conference Series: Materials Science and Engineering, 2016,” IOP Conf Ser: Mater Sci Eng, vol. 121, no. 1, pp. 1–7, 2007. https://doi.org/10.1088/1757-899X/121/1/012007
 H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int J Eng Innov Res, vol. 5, no. 3, pp. 217–219, 2016. Available from https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_2043_FINAL.pdf
 M. del C. Ortiz, P. García, L. M. Lagunes, M. I. Arregoitia, R. García & M. A. León, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ, vol. 26, no. 5, pp. 3–10, 2016. https://doi.org/10.15174/au.2016.910.ccba.uady.mx/ojs/index.php/TSA/article/view/1469
 K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ, vol. 61, no. 6, pp. 494–, 1984. https://doi.org/10.1021/ed061p494
 H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila & H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop Subtrop Agroecosyst, vol. 16, no. 3, pp. 325–339, Sep.-Dic. 2013. Available: https://www.revista
 M. Kouzu & J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.09.015 pp. 5431–5436, 2017. https://doi.org/10.1021/jacs.7b00689
 N. Sharma, U. K. Sharma & E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech Org Synth Med Chem, vol. 17, pp. 441–468, Jan. 2018. https://doi.org/10.1002/9781119288152.ch17
 M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz & D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J Am Chem Soc, vol. 139, no. 15,
 J. M. Berrío, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev CITECSA, vol. 8, no. 13, pp. 15–23, 2017. Available: https://revistas.unipaz.edu.co/index.php/revcitecsa/article/view/135
 H. Hamze, M. Akia & F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf Environ Prot, vol. 94, pp. 1–10, Mar. 2015. https://doi.org/10.1016/j.psep.2014.12.005
 J. M. Marchetti, V. U. Miguel & A. F. Errazu, “Possible methods for biodiesel production,” RSER, vol. 11, no. 6, pp. 1300–1311, Aug. 2007. https://doi.org/10.1016/j.rser.2005.08.006
 V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng & N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain Chem Process, vol. 1, no. 5, pp. 1–31, 2013. https://doi.org/10.1186/2043-7129-1-5
 J. Luo, Z. Fang & R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog Energy Combust Sci, vol. 41, pp. 56–93, Apr. 2014. https://doi.org/10.1016/j.pecs.2013.11.001
 T. Issariyakul & A. K. Dalai, “Biodiesel from vegetable oils,” RSER, vol. 31, pp. 446–471, Mar. 2014. https://doi.org/10.1016/j.rser.2013.11.001
 V. B. Veljković, I. B. Banković-Ilić & O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” RSER, vol. 49, pp. 500–516, Sep. 2015. https://doi.org/10.1016/j.rser.2015.04.097
 U. Schuchardt, R. Sercheli & R. M. Vargas, “Transesterification of vegetable oils: a review,” J Braz Chem Soc, vol. 9, no. 3, pp. 199–210, May. 1998. https://doi.org/10.1590/S0103-50531998000300002  https://doi.org/10.1016/j.enconman.2014.12.009
 C. A. G. Quispe, C. J. R. Coronado & J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” RSER, vol. 27, pp. 475–493, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.017
 S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah & A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers Manag, vol. 91, pp. 149–157, Feb. 2015.
 J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues & M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl Catal A Gen, vol. 490, pp. 50–56, Jan. 2015. https://doi.org/10.1016/j.apcata.2014.10.050
 A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma & M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew Sustain Energy Rev, vol. 43, pp. 331–351, Mar. 2015. https://doi.org/10.1016/j.rser.2014.11.047
 A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki & S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” RSER, vol. 16, no. 4, pp. 2070–2093, May. 2012. https://doi.org/10.1016/j.rser.2012.01.003
J. F. Florez Marulanda & D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019. https://doi.org/10.15446/dyna.v86n211.78518
K. S. Suslick, “The chemical effects of ultrasound,” Sci Am, vol. 260, no. 2, pp. 80–86, Feb. 1989. Available: https://suslick.scs.illinois.edu/documents/sciamer8980.pdf
D. C. Montgomery,Diseño y análisis de experimentos, CDMX.: Limusa Wiley, 2008.
W. M. Mendenhall, T. L. Sincich & N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual, 6th Edition. BR., CL., USA.: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19628
M. Berrios, M. C. Gutiérrez, M. A. Martín & A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process Technol, vol. 90, no. 12, pp. 1447–1451, Dec. 2009. https://doi.org/10.1016/j.fuproc.2009.06.026
G. Vicente, A. Coteron, M. Martinez & J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind Crops Prod, vol. 8, no. 1, pp. 29–35, Mar. 1998. https://doi.org/10.1016/S0926-6690(97)10003-6
A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira & E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Braz J Chem Eng, vol. 35, no. 3, pp. 1005–1018, 2018. https://doi.org/10.1590/0104-6632.20180353s20170001
S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed & A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J Chem Eng, vol. 37, pp. 1351–368, Jun. 2020. https://doi.org/10.1007/s43153-020-00027-9
M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f
M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f
dc.relation.citationendpage.none.fl_str_mv 64
dc.relation.citationstartpage.none.fl_str_mv 51
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 17
dc.relation.bitstream.none.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/3355
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/4668
dc.relation.citationedition.spa.fl_str_mv Núm. 2 , Año 2021 : (Julio-Diciembre)
dc.rights.eng.fl_str_mv INGE CUC - 2021
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.eng.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv INGE CUC - 2021
http://creativecommons.org/licenses/by-nc-nd/4.0
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv application/pdf
text/html
dc.publisher.spa.fl_str_mv Universidad de la Costa
dc.source.eng.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/2896
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7fd58da9-ed1b-4120-ac9a-38e93078235b/download
bitstream.checksum.fl_str_mv 89ca3742ad972ef38d830a0aa6529bb3
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760813168394240
spelling Flórez Marulanda, Juan FernandoOrtega Alegría, Daniel Rodrigo2021-03-18 00:00:002024-04-09T20:17:53Z2021-03-18 00:00:002024-04-09T20:17:53Z2021-03-180122-6517https://hdl.handle.net/11323/12276https://doi.org/10.17981/ingecuc.17.2.2021.0610.17981/ingecuc.17.2.2021.062382-4700Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura. Metodología- En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables. Resultados- En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido. Conclusiones- La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos.Introduction- In recent years, the use of renewable energies and eco-friendly fuels has increased, among which one of the best performance is biodiesel, the paper shows an upgrade in the efficiency and effectiveness laboratory level's biodiesel obtaining. Objective- Evaluating the production of biodiesel employing ultrasound is presented, leading to improve the response time and efficiency of the reaction, concerning the conventional method using only temperature. Methodology-. In the transesterification process, castor oil, methanol, and potassium hydroxide are used, obtaining biodiesel and glycerin. A factorial design with two levels for transit time, mixing temperature, and ultrasound intensity were applied in an instrumented scale reactor to control these variables. Results- In the tests, values close to the reference stoichiometric value of the reaction were obtained. The statistic indicates a normal behavior of data, and identifies it as a factor of incidence in the efficiency of the reaction to the intensity of the ultrasound, concerning the response time of the reaction, the mixing temperature and the intensity of ultrasound. Conclusions- The efficiency of the reaction concerning the studied factors, it only depends on the ultrasound obtaining up to 95.7% of the stoichiometric value; and the response time of the reaction depends on the temperature and ultrasound, obtaining times of formation of product four times faster.application/pdftext/htmlengUniversidad de la CostaINGE CUC - 2021http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2896biodieselefficiencyincidence factormixing temperatureultrasoundbiodieseleficienciafactor de incidenciatemperatura de mezclaultrasonidoDesempeño de producción de biodiesel por medio de Transesterificación UltrasónicaPerformance of biodiesel production by means of Ultrasonic TransesterificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc F. C. De Oliveira & S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” RSER, vol. 75, pp. 168–179, Aug. 2017. https://doi.org/10.1016/j.rser.2016.10.060 M. Mubarak, A. Shaija & T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res, vol. 7, pp. 117–123, Jan. 2015. https://doi.org/10.1016/j.algal.2014.10.008 H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” RSER, vol. 67, pp. 1225–1236, Jan. 2017. https://doi.org/10.1016/j.rser.2016.09.036 P. Verma, M. P. Sharma & G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” RSER, vol. 56, pp. 319–333, Apr. 2016. https://doi.org/10.1016/j.rser.2015.11.048 B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar & S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” RSER, vol. 38, pp. 368–382, Oct. 2014. https://doi.org/10.1016/j.rser.2014.05.084 I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt J Pet, vol. 25, no. 1, pp. 21–31, Mar. 2016. https://doi.org/10.1016/j.ejpe.2015.06.007 A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges & N. T. Machado, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind Crops Prod, vol. 91, pp. 32–43, 30 Nov. 2016. https://doi.org/10.1016/j.indcrop.2016.06.033 A. H. M. Fauzi, N. A. S. Amin & R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl Energy, vol. 114, pp. 809–818, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.10.011 O. Farobie & Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bior Tech, vol. 191, pp. 306–311, Sep. 2015. https://doi.org/10.1016/j.biortech.2015.04.102 P. Verma & M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” RSER, vol. 62, pp. 1063–1071, 2016. https://doi.org/10.1016/j.rser.2016.04.054 V. K. Aniya, R. K. Muktham, K. Alka & B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 1 Dec. 2015. https://doi.org/10.1016/j.fuel.2015.08.042 L. S. Keong, D. S. Patle, S. R. Shukor & Z. Ahmad, “IOP Conference Series: Materials Science and Engineering, 2016,” IOP Conf Ser: Mater Sci Eng, vol. 121, no. 1, pp. 1–7, 2007. https://doi.org/10.1088/1757-899X/121/1/012007 H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int J Eng Innov Res, vol. 5, no. 3, pp. 217–219, 2016. Available from https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_2043_FINAL.pdf M. del C. Ortiz, P. García, L. M. Lagunes, M. I. Arregoitia, R. García & M. A. León, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ, vol. 26, no. 5, pp. 3–10, 2016. https://doi.org/10.15174/au.2016.910.ccba.uady.mx/ojs/index.php/TSA/article/view/1469 K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ, vol. 61, no. 6, pp. 494–, 1984. https://doi.org/10.1021/ed061p494 H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila & H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop Subtrop Agroecosyst, vol. 16, no. 3, pp. 325–339, Sep.-Dic. 2013. Available: https://www.revista M. Kouzu & J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.09.015 pp. 5431–5436, 2017. https://doi.org/10.1021/jacs.7b00689 N. Sharma, U. K. Sharma & E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech Org Synth Med Chem, vol. 17, pp. 441–468, Jan. 2018. https://doi.org/10.1002/9781119288152.ch17 M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz & D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J Am Chem Soc, vol. 139, no. 15, J. M. Berrío, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev CITECSA, vol. 8, no. 13, pp. 15–23, 2017. Available: https://revistas.unipaz.edu.co/index.php/revcitecsa/article/view/135 H. Hamze, M. Akia & F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf Environ Prot, vol. 94, pp. 1–10, Mar. 2015. https://doi.org/10.1016/j.psep.2014.12.005 J. M. Marchetti, V. U. Miguel & A. F. Errazu, “Possible methods for biodiesel production,” RSER, vol. 11, no. 6, pp. 1300–1311, Aug. 2007. https://doi.org/10.1016/j.rser.2005.08.006 V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng & N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain Chem Process, vol. 1, no. 5, pp. 1–31, 2013. https://doi.org/10.1186/2043-7129-1-5 J. Luo, Z. Fang & R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog Energy Combust Sci, vol. 41, pp. 56–93, Apr. 2014. https://doi.org/10.1016/j.pecs.2013.11.001 T. Issariyakul & A. K. Dalai, “Biodiesel from vegetable oils,” RSER, vol. 31, pp. 446–471, Mar. 2014. https://doi.org/10.1016/j.rser.2013.11.001 V. B. Veljković, I. B. Banković-Ilić & O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” RSER, vol. 49, pp. 500–516, Sep. 2015. https://doi.org/10.1016/j.rser.2015.04.097 U. Schuchardt, R. Sercheli & R. M. Vargas, “Transesterification of vegetable oils: a review,” J Braz Chem Soc, vol. 9, no. 3, pp. 199–210, May. 1998. https://doi.org/10.1590/S0103-50531998000300002  https://doi.org/10.1016/j.enconman.2014.12.009 C. A. G. Quispe, C. J. R. Coronado & J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” RSER, vol. 27, pp. 475–493, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.017 S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah & A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers Manag, vol. 91, pp. 149–157, Feb. 2015. J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues & M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl Catal A Gen, vol. 490, pp. 50–56, Jan. 2015. https://doi.org/10.1016/j.apcata.2014.10.050 A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma & M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew Sustain Energy Rev, vol. 43, pp. 331–351, Mar. 2015. https://doi.org/10.1016/j.rser.2014.11.047 A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki & S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” RSER, vol. 16, no. 4, pp. 2070–2093, May. 2012. https://doi.org/10.1016/j.rser.2012.01.003J. F. Florez Marulanda & D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019. https://doi.org/10.15446/dyna.v86n211.78518K. S. Suslick, “The chemical effects of ultrasound,” Sci Am, vol. 260, no. 2, pp. 80–86, Feb. 1989. Available: https://suslick.scs.illinois.edu/documents/sciamer8980.pdfD. C. Montgomery,Diseño y análisis de experimentos, CDMX.: Limusa Wiley, 2008.W. M. Mendenhall, T. L. Sincich & N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual, 6th Edition. BR., CL., USA.: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19628M. Berrios, M. C. Gutiérrez, M. A. Martín & A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process Technol, vol. 90, no. 12, pp. 1447–1451, Dec. 2009. https://doi.org/10.1016/j.fuproc.2009.06.026G. Vicente, A. Coteron, M. Martinez & J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind Crops Prod, vol. 8, no. 1, pp. 29–35, Mar. 1998. https://doi.org/10.1016/S0926-6690(97)10003-6A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira & E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Braz J Chem Eng, vol. 35, no. 3, pp. 1005–1018, 2018. https://doi.org/10.1590/0104-6632.20180353s20170001S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed & A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J Chem Eng, vol. 37, pp. 1351–368, Jun. 2020. https://doi.org/10.1007/s43153-020-00027-9M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725fM. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f6451217https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/3355https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/4668Núm. 2 , Año 2021 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2605https://repositorio.cuc.edu.co/bitstreams/7fd58da9-ed1b-4120-ac9a-38e93078235b/download89ca3742ad972ef38d830a0aa6529bb3MD5111323/12276oai:repositorio.cuc.edu.co:11323/122762024-09-17 12:48:40.818http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co