Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica
Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evalu...
- Autores:
-
Flórez Marulanda, Juan Fernando
Ortega Alegría, Daniel Rodrigo
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12276
- Palabra clave:
- biodiesel
efficiency
incidence factor
mixing temperature
ultrasound
biodiesel
eficiencia
factor de incidencia
temperatura de mezcla
ultrasonido
- Rights
- openAccess
- License
- INGE CUC - 2021
id |
RCUC2_a2da09fa216fda4cd825745579c4b571 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12276 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
dc.title.translated.eng.fl_str_mv |
Performance of biodiesel production by means of Ultrasonic Transesterification |
title |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
spellingShingle |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica biodiesel efficiency incidence factor mixing temperature ultrasound biodiesel eficiencia factor de incidencia temperatura de mezcla ultrasonido |
title_short |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
title_full |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
title_fullStr |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
title_full_unstemmed |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
title_sort |
Desempeño de producción de biodiesel por medio de Transesterificación Ultrasónica |
dc.creator.fl_str_mv |
Flórez Marulanda, Juan Fernando Ortega Alegría, Daniel Rodrigo |
dc.contributor.author.spa.fl_str_mv |
Flórez Marulanda, Juan Fernando Ortega Alegría, Daniel Rodrigo |
dc.subject.eng.fl_str_mv |
biodiesel efficiency incidence factor mixing temperature ultrasound |
topic |
biodiesel efficiency incidence factor mixing temperature ultrasound biodiesel eficiencia factor de incidencia temperatura de mezcla ultrasonido |
dc.subject.spa.fl_str_mv |
biodiesel eficiencia factor de incidencia temperatura de mezcla ultrasonido |
description |
Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura. Metodología- En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables. Resultados- En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido. Conclusiones- La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-03-18 00:00:00 2024-04-09T20:17:53Z |
dc.date.available.none.fl_str_mv |
2021-03-18 00:00:00 2024-04-09T20:17:53Z |
dc.date.issued.none.fl_str_mv |
2021-03-18 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.eng.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.eng.fl_str_mv |
Text |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.eng.fl_str_mv |
Journal article |
dc.type.redcol.eng.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.eng.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.eng.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.none.fl_str_mv |
0122-6517 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12276 |
dc.identifier.url.none.fl_str_mv |
https://doi.org/10.17981/ingecuc.17.2.2021.06 |
dc.identifier.doi.none.fl_str_mv |
10.17981/ingecuc.17.2.2021.06 |
dc.identifier.eissn.none.fl_str_mv |
2382-4700 |
identifier_str_mv |
0122-6517 10.17981/ingecuc.17.2.2021.06 2382-4700 |
url |
https://hdl.handle.net/11323/12276 https://doi.org/10.17981/ingecuc.17.2.2021.06 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Inge Cuc |
dc.relation.references.eng.fl_str_mv |
F. C. De Oliveira & S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” RSER, vol. 75, pp. 168–179, Aug. 2017. https://doi.org/10.1016/j.rser.2016.10.060 M. Mubarak, A. Shaija & T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res, vol. 7, pp. 117–123, Jan. 2015. https://doi.org/10.1016/j.algal.2014.10.008 H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” RSER, vol. 67, pp. 1225–1236, Jan. 2017. https://doi.org/10.1016/j.rser.2016.09.036 P. Verma, M. P. Sharma & G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” RSER, vol. 56, pp. 319–333, Apr. 2016. https://doi.org/10.1016/j.rser.2015.11.048 B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar & S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” RSER, vol. 38, pp. 368–382, Oct. 2014. https://doi.org/10.1016/j.rser.2014.05.084 I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt J Pet, vol. 25, no. 1, pp. 21–31, Mar. 2016. https://doi.org/10.1016/j.ejpe.2015.06.007 A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges & N. T. Machado, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind Crops Prod, vol. 91, pp. 32–43, 30 Nov. 2016. https://doi.org/10.1016/j.indcrop.2016.06.033 A. H. M. Fauzi, N. A. S. Amin & R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl Energy, vol. 114, pp. 809–818, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.10.011 O. Farobie & Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bior Tech, vol. 191, pp. 306–311, Sep. 2015. https://doi.org/10.1016/j.biortech.2015.04.102 P. Verma & M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” RSER, vol. 62, pp. 1063–1071, 2016. https://doi.org/10.1016/j.rser.2016.04.054 V. K. Aniya, R. K. Muktham, K. Alka & B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 1 Dec. 2015. https://doi.org/10.1016/j.fuel.2015.08.042 L. S. Keong, D. S. Patle, S. R. Shukor & Z. Ahmad, “IOP Conference Series: Materials Science and Engineering, 2016,” IOP Conf Ser: Mater Sci Eng, vol. 121, no. 1, pp. 1–7, 2007. https://doi.org/10.1088/1757-899X/121/1/012007 H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int J Eng Innov Res, vol. 5, no. 3, pp. 217–219, 2016. Available from https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_2043_FINAL.pdf M. del C. Ortiz, P. García, L. M. Lagunes, M. I. Arregoitia, R. García & M. A. León, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ, vol. 26, no. 5, pp. 3–10, 2016. https://doi.org/10.15174/au.2016.910.ccba.uady.mx/ojs/index.php/TSA/article/view/1469 K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ, vol. 61, no. 6, pp. 494–, 1984. https://doi.org/10.1021/ed061p494 H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila & H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop Subtrop Agroecosyst, vol. 16, no. 3, pp. 325–339, Sep.-Dic. 2013. Available: https://www.revista M. Kouzu & J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.09.015 pp. 5431–5436, 2017. https://doi.org/10.1021/jacs.7b00689 N. Sharma, U. K. Sharma & E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech Org Synth Med Chem, vol. 17, pp. 441–468, Jan. 2018. https://doi.org/10.1002/9781119288152.ch17 M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz & D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J Am Chem Soc, vol. 139, no. 15, J. M. Berrío, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev CITECSA, vol. 8, no. 13, pp. 15–23, 2017. Available: https://revistas.unipaz.edu.co/index.php/revcitecsa/article/view/135 H. Hamze, M. Akia & F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf Environ Prot, vol. 94, pp. 1–10, Mar. 2015. https://doi.org/10.1016/j.psep.2014.12.005 J. M. Marchetti, V. U. Miguel & A. F. Errazu, “Possible methods for biodiesel production,” RSER, vol. 11, no. 6, pp. 1300–1311, Aug. 2007. https://doi.org/10.1016/j.rser.2005.08.006 V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng & N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain Chem Process, vol. 1, no. 5, pp. 1–31, 2013. https://doi.org/10.1186/2043-7129-1-5 J. Luo, Z. Fang & R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog Energy Combust Sci, vol. 41, pp. 56–93, Apr. 2014. https://doi.org/10.1016/j.pecs.2013.11.001 T. Issariyakul & A. K. Dalai, “Biodiesel from vegetable oils,” RSER, vol. 31, pp. 446–471, Mar. 2014. https://doi.org/10.1016/j.rser.2013.11.001 V. B. Veljković, I. B. Banković-Ilić & O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” RSER, vol. 49, pp. 500–516, Sep. 2015. https://doi.org/10.1016/j.rser.2015.04.097 U. Schuchardt, R. Sercheli & R. M. Vargas, “Transesterification of vegetable oils: a review,” J Braz Chem Soc, vol. 9, no. 3, pp. 199–210, May. 1998. https://doi.org/10.1590/S0103-50531998000300002 https://doi.org/10.1016/j.enconman.2014.12.009 C. A. G. Quispe, C. J. R. Coronado & J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” RSER, vol. 27, pp. 475–493, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.017 S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah & A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers Manag, vol. 91, pp. 149–157, Feb. 2015. J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues & M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl Catal A Gen, vol. 490, pp. 50–56, Jan. 2015. https://doi.org/10.1016/j.apcata.2014.10.050 A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma & M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew Sustain Energy Rev, vol. 43, pp. 331–351, Mar. 2015. https://doi.org/10.1016/j.rser.2014.11.047 A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki & S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” RSER, vol. 16, no. 4, pp. 2070–2093, May. 2012. https://doi.org/10.1016/j.rser.2012.01.003 J. F. Florez Marulanda & D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019. https://doi.org/10.15446/dyna.v86n211.78518 K. S. Suslick, “The chemical effects of ultrasound,” Sci Am, vol. 260, no. 2, pp. 80–86, Feb. 1989. Available: https://suslick.scs.illinois.edu/documents/sciamer8980.pdf D. C. Montgomery,Diseño y análisis de experimentos, CDMX.: Limusa Wiley, 2008. W. M. Mendenhall, T. L. Sincich & N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual, 6th Edition. BR., CL., USA.: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19628 M. Berrios, M. C. Gutiérrez, M. A. Martín & A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process Technol, vol. 90, no. 12, pp. 1447–1451, Dec. 2009. https://doi.org/10.1016/j.fuproc.2009.06.026 G. Vicente, A. Coteron, M. Martinez & J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind Crops Prod, vol. 8, no. 1, pp. 29–35, Mar. 1998. https://doi.org/10.1016/S0926-6690(97)10003-6 A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira & E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Braz J Chem Eng, vol. 35, no. 3, pp. 1005–1018, 2018. https://doi.org/10.1590/0104-6632.20180353s20170001 S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed & A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J Chem Eng, vol. 37, pp. 1351–368, Jun. 2020. https://doi.org/10.1007/s43153-020-00027-9 M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f |
dc.relation.citationendpage.none.fl_str_mv |
64 |
dc.relation.citationstartpage.none.fl_str_mv |
51 |
dc.relation.citationissue.spa.fl_str_mv |
2 |
dc.relation.citationvolume.spa.fl_str_mv |
17 |
dc.relation.bitstream.none.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/3355 https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/4668 |
dc.relation.citationedition.spa.fl_str_mv |
Núm. 2 , Año 2021 : (Julio-Diciembre) |
dc.rights.eng.fl_str_mv |
INGE CUC - 2021 |
dc.rights.uri.eng.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.eng.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
INGE CUC - 2021 http://creativecommons.org/licenses/by-nc-nd/4.0 http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
application/pdf text/html |
dc.publisher.spa.fl_str_mv |
Universidad de la Costa |
dc.source.eng.fl_str_mv |
https://revistascientificas.cuc.edu.co/ingecuc/article/view/2896 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7fd58da9-ed1b-4120-ac9a-38e93078235b/download |
bitstream.checksum.fl_str_mv |
89ca3742ad972ef38d830a0aa6529bb3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760813168394240 |
spelling |
Flórez Marulanda, Juan FernandoOrtega Alegría, Daniel Rodrigo2021-03-18 00:00:002024-04-09T20:17:53Z2021-03-18 00:00:002024-04-09T20:17:53Z2021-03-180122-6517https://hdl.handle.net/11323/12276https://doi.org/10.17981/ingecuc.17.2.2021.0610.17981/ingecuc.17.2.2021.062382-4700Introducción- En los últimos años, el uso de energías renovables y combustibles ecológicos ha aumentado, entre los cuales uno de los mejores resultados es el biodiesel, el artículo presenta una mejora en la eficiencia y la eficacia en la obtención de biodiesel a nivel de laboratorio. Objetivo- Evaluar la producción de biodiesel por medio de ultrasonido, lo que lleva a mejorar el tiempo de respuesta y la eficiencia de la reacción, con respecto al método convencional que usa solo temperatura. Metodología- En el proceso de transesterificación, se utilizan aceite de ricino, metanol e hidróxido de potasio; obteniendo biodiesel y glicerina. Se aplicó un diseño factorial con dos niveles de tiempo de tránsito, temperatura de mezcla e intensidad de ultrasonido en un reactor a escala instrumentado para controlar dichas variables. Resultados- En las pruebas, se obtuvieron valores cercanos al valor estequiométrico de referencia de la reacción. La estadística indica un comportamiento normal de los datos y lo identifica como un factor de incidencia en la eficiencia de la reacción a la intensidad del ultrasonido; con respecto al tiempo de respuesta de la reacción, la temperatura de mezcla y la intensidad del ultrasonido. Conclusiones- La eficiencia de la reacción con respecto a los factores estudiados, solo depende de que el ultrasonido obteniendo hasta el 95.7% del valor estequiométrico; y el tiempo de respuesta de la reacción depende de la temperatura y el ultrasonido, obteniendo tiempos de formación del producto cuatro veces más rápidos.Introduction- In recent years, the use of renewable energies and eco-friendly fuels has increased, among which one of the best performance is biodiesel, the paper shows an upgrade in the efficiency and effectiveness laboratory level's biodiesel obtaining. Objective- Evaluating the production of biodiesel employing ultrasound is presented, leading to improve the response time and efficiency of the reaction, concerning the conventional method using only temperature. Methodology-. In the transesterification process, castor oil, methanol, and potassium hydroxide are used, obtaining biodiesel and glycerin. A factorial design with two levels for transit time, mixing temperature, and ultrasound intensity were applied in an instrumented scale reactor to control these variables. Results- In the tests, values close to the reference stoichiometric value of the reaction were obtained. The statistic indicates a normal behavior of data, and identifies it as a factor of incidence in the efficiency of the reaction to the intensity of the ultrasound, concerning the response time of the reaction, the mixing temperature and the intensity of ultrasound. Conclusions- The efficiency of the reaction concerning the studied factors, it only depends on the ultrasound obtaining up to 95.7% of the stoichiometric value; and the response time of the reaction depends on the temperature and ultrasound, obtaining times of formation of product four times faster.application/pdftext/htmlengUniversidad de la CostaINGE CUC - 2021http://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessEsta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.http://purl.org/coar/access_right/c_abf2https://revistascientificas.cuc.edu.co/ingecuc/article/view/2896biodieselefficiencyincidence factormixing temperatureultrasoundbiodieseleficienciafactor de incidenciatemperatura de mezclaultrasonidoDesempeño de producción de biodiesel por medio de Transesterificación UltrasónicaPerformance of biodiesel production by means of Ultrasonic TransesterificationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articleJournal articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Inge Cuc F. C. De Oliveira & S. T. Coelho, “History, evolution, and environmental impact of biodiesel in Brazil: A review,” RSER, vol. 75, pp. 168–179, Aug. 2017. https://doi.org/10.1016/j.rser.2016.10.060 M. Mubarak, A. Shaija & T. V Suchithra, “A review on the extraction of lipid from microalgae for biodiesel production,” Algal Res, vol. 7, pp. 117–123, Jan. 2015. https://doi.org/10.1016/j.algal.2014.10.008 H. H. Mardhiah, H. C. Ong, H. H. Masjuki, S. Lim & H. V Lee, “A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils,” RSER, vol. 67, pp. 1225–1236, Jan. 2017. https://doi.org/10.1016/j.rser.2016.09.036 P. Verma, M. P. Sharma & G. Dwivedi, “Impact of alcohol on biodiesel production and properties,” RSER, vol. 56, pp. 319–333, Apr. 2016. https://doi.org/10.1016/j.rser.2015.11.048 B. Bharathiraja, M. Chakravarthy, R. R. Kumar, D. Yuvaraj, J. Jayamuthunagai, R. P. Kumar & S. Palani, “Biodiesel production using chemical and biological methods--A review of process, catalyst, acyl acceptor, source and process variables,” RSER, vol. 38, pp. 368–382, Oct. 2014. https://doi.org/10.1016/j.rser.2014.05.084 I. A. Musa, “The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process,” Egypt J Pet, vol. 25, no. 1, pp. 21–31, Mar. 2016. https://doi.org/10.1016/j.ejpe.2015.06.007 A. A. Mancio, K. M. B. da Costa, C. C. Ferreira, M. C. Santos, D. E. L. Lhamas, S. A. P. da Mota, R. A. C. Leão, R. de Souza, M. E. Araújo, L. E. P. Borges & N. T. Machado, “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind Crops Prod, vol. 91, pp. 32–43, 30 Nov. 2016. https://doi.org/10.1016/j.indcrop.2016.06.033 A. H. M. Fauzi, N. A. S. Amin & R. Mat, “Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study,” Appl Energy, vol. 114, pp. 809–818, Feb. 2014. https://doi.org/10.1016/j.apenergy.2013.10.011 O. Farobie & Y. Matsumura, “A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions,” Bior Tech, vol. 191, pp. 306–311, Sep. 2015. https://doi.org/10.1016/j.biortech.2015.04.102 P. Verma & M. P. Sharma, “Review of process parameters for biodiesel production from different feedstocks,” RSER, vol. 62, pp. 1063–1071, 2016. https://doi.org/10.1016/j.rser.2016.04.054 V. K. Aniya, R. K. Muktham, K. Alka & B. Satyavathi, “Modeling and simulation of batch kinetics of non-edible karanja oil for biodiesel production: a mass transfer study,” Fuel, vol. 161, pp. 137–145, 1 Dec. 2015. https://doi.org/10.1016/j.fuel.2015.08.042 L. S. Keong, D. S. Patle, S. R. Shukor & Z. Ahmad, “IOP Conference Series: Materials Science and Engineering, 2016,” IOP Conf Ser: Mater Sci Eng, vol. 121, no. 1, pp. 1–7, 2007. https://doi.org/10.1088/1757-899X/121/1/012007 H. Saroso, “Study On Reaction Kinetics Transesterification Coconut Oil By Using The Catalyst NaOH PLUG Flow Reactor (PFR),” Int J Eng Innov Res, vol. 5, no. 3, pp. 217–219, 2016. Available from https://ijeir.org/administrator/components/com_jresearch/files/publications/IJEIR_2043_FINAL.pdf M. del C. Ortiz, P. García, L. M. Lagunes, M. I. Arregoitia, R. García & M. A. León, “Obtención de biodiesel a partir de aceite crudo de palma (Elaeis guineensis Jacq.). Aplicación del método de ruta ascendente,” Acta Univ, vol. 26, no. 5, pp. 3–10, 2016. https://doi.org/10.15174/au.2016.910.ccba.uady.mx/ojs/index.php/TSA/article/view/1469 K. J. Laidler, “The development of the Arrhenius equation,” J. Chem. Educ, vol. 61, no. 6, pp. 494–, 1984. https://doi.org/10.1021/ed061p494 H. D. Inurreta Aguirre, E. García Pérez, J. Uresti Gil, J. P. Martínez Dávila & H. Ortiz Laurel, “Potencial para producir Jatropha curcas L. como materia prima para biodiésel en el estado de Veracruz,” Trop Subtrop Agroecosyst, vol. 16, no. 3, pp. 325–339, Sep.-Dic. 2013. Available: https://www.revista M. Kouzu & J. Hidaka, “Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review,” Fuel, vol. 93, pp. 1–12, Mar. 2012. https://doi.org/10.1016/j.fuel.2011.09.015 pp. 5431–5436, 2017. https://doi.org/10.1021/jacs.7b00689 N. Sharma, U. K. Sharma & E. V der Eycken, “Microwave-Assisted Organic Synthesis: Overview of Recent Applications,” Green Tech Org Synth Med Chem, vol. 17, pp. 441–468, Jan. 2018. https://doi.org/10.1002/9781119288152.ch17 M. De Bruyn, V. L. Budarin, G. S. J. Sturm, G. D. Stefanidis, M. Radoiu, A. Stankiewicz & D. J. Macquarrie, “Subtle Microwave-Induced Overheating Effects in an Industrial Demethylation Reaction and Their Direct Use in the Development of an Innovative Microwave Reactor,” J Am Chem Soc, vol. 139, no. 15, J. M. Berrío, “Efecto del Hexano y la concentración de metanol sobre la transesterificación de aceite crudo de palma utilizando Na2CO3 como catalizador,” Rev CITECSA, vol. 8, no. 13, pp. 15–23, 2017. Available: https://revistas.unipaz.edu.co/index.php/revcitecsa/article/view/135 H. Hamze, M. Akia & F. Yazdani, “Optimization of biodiesel production from the waste cooking oil using response surface methodology,” Process Saf Environ Prot, vol. 94, pp. 1–10, Mar. 2015. https://doi.org/10.1016/j.psep.2014.12.005 J. M. Marchetti, V. U. Miguel & A. F. Errazu, “Possible methods for biodiesel production,” RSER, vol. 11, no. 6, pp. 1300–1311, Aug. 2007. https://doi.org/10.1016/j.rser.2005.08.006 V. G. Gude, P. Patil, E. Martinez-Guerra, S. Deng & N. Nirmalakhandan, “Microwave energy potential for biodiesel production,” Sustain Chem Process, vol. 1, no. 5, pp. 1–31, 2013. https://doi.org/10.1186/2043-7129-1-5 J. Luo, Z. Fang & R. L. Smith Jr, “Ultrasound-enhanced conversion of biomass to biofuels,” Prog Energy Combust Sci, vol. 41, pp. 56–93, Apr. 2014. https://doi.org/10.1016/j.pecs.2013.11.001 T. Issariyakul & A. K. Dalai, “Biodiesel from vegetable oils,” RSER, vol. 31, pp. 446–471, Mar. 2014. https://doi.org/10.1016/j.rser.2013.11.001 V. B. Veljković, I. B. Banković-Ilić & O. S. Stamenković, “Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification,” RSER, vol. 49, pp. 500–516, Sep. 2015. https://doi.org/10.1016/j.rser.2015.04.097 U. Schuchardt, R. Sercheli & R. M. Vargas, “Transesterification of vegetable oils: a review,” J Braz Chem Soc, vol. 9, no. 3, pp. 199–210, May. 1998. https://doi.org/10.1590/S0103-50531998000300002 https://doi.org/10.1016/j.enconman.2014.12.009 C. A. G. Quispe, C. J. R. Coronado & J. A. Carvalho Jr, “Glycerol: production, consumption, prices, characterization and new trends in combustion,” RSER, vol. 27, pp. 475–493, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.017 S. M. Palash, H. H. Masjuki, M. A. Kalam, A. E. Atabani, I. M. R. Fattah & A. Sanjid, “Biodiesel production, characterization, diesel engine performance, and emission characteristics of methyl esters from Aphanamixis polystachya oil of Bangladesh,” Energy Convers Manag, vol. 91, pp. 149–157, Feb. 2015. J. K. Poppe, C. R. Matte, M. do C. R. Peralba, R. Fernandez-Lafuente, R. C. Rodrigues & M. A. Z. Ayub, “Optimization of ethyl ester production from olive and palm oils using mixtures of immobilized lipases,” Appl Catal A Gen, vol. 490, pp. 50–56, Jan. 2015. https://doi.org/10.1016/j.apcata.2014.10.050 A. K. Azad, M. G. Rasul, M. M. K. Khan, S. C. Sharma & M. A. Hazrat, “Prospect of biofuels as an alternative transport fuel in Australia,” Renew Sustain Energy Rev, vol. 43, pp. 331–351, Mar. 2015. https://doi.org/10.1016/j.rser.2014.11.047 A. E. Atabani, A. S. Silitonga, I. A. Badruddin, T. M. I. Mahlia, H. H. Masjuki & S. Mekhilef, “A comprehensive review on biodiesel as an alternative energy resource and its characteristics,” RSER, vol. 16, no. 4, pp. 2070–2093, May. 2012. https://doi.org/10.1016/j.rser.2012.01.003J. F. Florez Marulanda & D. R. Ortega Alegria, “Design and manufacturing of an ultrasonic reactor for biodiesel obtaining by transesterification,” Dyna, vol. 86, no. 211, pp. 75–83, 2019. https://doi.org/10.15446/dyna.v86n211.78518K. S. Suslick, “The chemical effects of ultrasound,” Sci Am, vol. 260, no. 2, pp. 80–86, Feb. 1989. Available: https://suslick.scs.illinois.edu/documents/sciamer8980.pdfD. C. Montgomery,Diseño y análisis de experimentos, CDMX.: Limusa Wiley, 2008.W. M. Mendenhall, T. L. Sincich & N. S. Boudreau, Statistics for Engineering and the Sciences, Student Solutions Manual, 6th Edition. BR., CL., USA.: Chapman and Hall/CRC, 2016. https://doi.org/10.1201/b19628M. Berrios, M. C. Gutiérrez, M. A. Martín & A. Martín, “Application of the factorial design of experiments to biodiesel production from lard,” Fuel Process Technol, vol. 90, no. 12, pp. 1447–1451, Dec. 2009. https://doi.org/10.1016/j.fuproc.2009.06.026G. Vicente, A. Coteron, M. Martinez & J. Aracil, “Application of the factorial design of experiments and response surface methodology to optimize biodiesel production,” Ind Crops Prod, vol. 8, no. 1, pp. 29–35, Mar. 1998. https://doi.org/10.1016/S0926-6690(97)10003-6A. M. Medeiros, Ê. R. M. Santos, S. H. G. Azevedo, A. A. Jesus, H. N. M. Oliveira & E. M. B. D. Sousa, “Chemical interesterification of cotton oil with methyl acetate assisted by ultrasound for biodiesel production,” Braz J Chem Eng, vol. 35, no. 3, pp. 1005–1018, 2018. https://doi.org/10.1590/0104-6632.20180353s20170001S. B. A. V. S. Lakshmi, N. S. Pillai, M. S. B. K. Mohamed & A. Narayanan, “Biodiesel production from rubber seed oil using calcined eggshells impregnated with Al 2 O 3 as heterogeneous catalyst: A comparative study of RSM and ANN optimization,” Brazilian J Chem Eng, vol. 37, pp. 1351–368, Jun. 2020. https://doi.org/10.1007/s43153-020-00027-9M. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725fM. L. Pisarello, B. O. Dalla Costa, N. S. Veizaga & C. A. Querini, “Volumetric method for free and total glycerin determination in biodiesel,” Ind Eng Chem Res, vol. 49, no. 19, pp. 8935–8941, 2010. https://doi.org/10.1021/ie100725f6451217https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/3355https://revistascientificas.cuc.edu.co/ingecuc/article/download/2896/4668Núm. 2 , Año 2021 : (Julio-Diciembre)PublicationOREORE.xmltext/xml2605https://repositorio.cuc.edu.co/bitstreams/7fd58da9-ed1b-4120-ac9a-38e93078235b/download89ca3742ad972ef38d830a0aa6529bb3MD5111323/12276oai:repositorio.cuc.edu.co:11323/122762024-09-17 12:48:40.818http://creativecommons.org/licenses/by-nc-nd/4.0INGE CUC - 2021metadata.onlyhttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.co |