Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods
The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Par...
- Autores:
-
ghiasvand, amir
Mahdi Yavari, Mohammad
Tomków, Jacek
Grimaldo Guerrero, John William
Kheradmandan, Hasan
Dorofeev, Aleksei
Memon, Shabbir
Aghajani Derazkola, Hesamoddin
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8976
- Acceso en línea:
- https://hdl.handle.net/11323/8976
https://doi.org/10.3390/ma14206003
https://repositorio.cuc.edu.co/
- Palabra clave:
- Parallel-friction stir welding
Tool offset
Mechanical properties
Aluminum alloy
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a24f24200da1fba92e43b7b000a39ba0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8976 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
title |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
spellingShingle |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods Parallel-friction stir welding Tool offset Mechanical properties Aluminum alloy |
title_short |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
title_full |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
title_fullStr |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
title_full_unstemmed |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
title_sort |
Investigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods |
dc.creator.fl_str_mv |
ghiasvand, amir Mahdi Yavari, Mohammad Tomków, Jacek Grimaldo Guerrero, John William Kheradmandan, Hasan Dorofeev, Aleksei Memon, Shabbir Aghajani Derazkola, Hesamoddin |
dc.contributor.author.spa.fl_str_mv |
ghiasvand, amir Mahdi Yavari, Mohammad Tomków, Jacek Grimaldo Guerrero, John William Kheradmandan, Hasan Dorofeev, Aleksei Memon, Shabbir Aghajani Derazkola, Hesamoddin |
dc.subject.spa.fl_str_mv |
Parallel-friction stir welding Tool offset Mechanical properties Aluminum alloy |
topic |
Parallel-friction stir welding Tool offset Mechanical properties Aluminum alloy |
description |
The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. Based on the results, it was found that the mechanical properties of welded specimens with AP-FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The best mechanical and microstructural properties were observed in the samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better mechanical properties than other specimens due to the concentration of material flow in the weld nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increasing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage (E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW specimens had smaller average grain size and higher hardness values than AP-FSW specimens. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-10-12 |
dc.date.accessioned.none.fl_str_mv |
2022-01-16T20:35:33Z |
dc.date.available.none.fl_str_mv |
2022-01-16T20:35:33Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1996-1944 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8976 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/ma14206003 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1996-1944 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8976 https://doi.org/10.3390/ma14206003 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
1. Derazkola, H.A.; Khodabakhshi, F.; Gerlich, A. Friction-forging tubular additive manufacturing (FFTAM): A new route of solidstate layer-upon-layer metal deposition. J. Mater. Res. Technol. 2020, 9, 15273–15285, doi:10.1016/j.jmrt.2020.10.105. 2. Derazkola, H.A.; Simchi, A. A new procedure for the fabrication of dissimilar joints through injection of colloidal nanoparticles during friction stir processing: Proof concept for AA6062/PMMA joints. J. Manuf. Process. 2020, 49, 335–343, doi:10.1016/j.jmapro.2019.12.008. 3. Derazkola, H.A.; Simchi, A. Processing and characterizations of polycarbonate/alumina nanocomposites by additive powder fed friction stir processing. Thin-Walled Struct. 2020, 157, 107086, doi:10.1016/j.tws.2020.107086. 4. Derazkola, H.A.; Khodabakhshi, F. Development of fed friction-stir (FFS) process for dissimilar nanocomposite welding between AA2024 aluminum alloy and polycarbonate (PC). J. Manuf. Process. 2020, 54, 262–273, doi:10.1016/j.jmapro.2020.03.020. 5. Babu, S.D.D.; Sevvel, P.; Kumar, R.S.; Vijayan, V.; Subramani, J. Development of Thermo Mechanical Model for Prediction of Temperature Diffusion in Different FSW Tool Pin Geometries During Joining of AZ80A Mg Alloys. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1–17, doi:10.1007/s10904-021-01931-4. 6. Babu, S.D.D.; Sevvel, P.; Kumar, R.S. Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding of AZ80A Mg alloy plates. J. Mech. Sci. Technol. 2020, 34, 4239–4250, doi:10.1007/s12206-020-0916-7. 7. Sevvel, P.; Babu, S.D.; Kumar, R.S. Peak Temperature Correlation and Temperature Distribution during Joining of AZ80A Mg Alloy by FSW – A Numerical and Experimental Investigation. Stroj. Vestn. J. Mech. Eng. 2020, 66, 395–407, doi:10.5545/svjme.2020.6566. 8. Satheesh, C.; Sevvel, P.; Senthil Kumar, R. Experimental Identification of Optimized Process Parameters for FSW of AZ91C Mg Alloy Using Quadratic Regression Models. Stroj. Vestn. J. Mech. Eng. 2020, 66, 736–751, doi:10.5545/sv-jme.2020.6929. 9. Ghiasvand, A.; Kazemi, M.; Jalilian, M.M.; Rashid, H.A. Effects of tool offset, pin offset, and alloys position on maximum temperature in dissimilar FSW of AA6061 and AA5086. Int. J. Mech. Mater. Eng. 2020, 15, 1–14, doi:10.1186/s40712-020-00118-y. 10. Akbari, M.; Aliha, M.; Keshavarz, S.; Bonyadi, A. Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 2019, 233, 1033–1043, doi:10.1177/1464420716681591. 11. Paidar, M.; Mehrez, S.; Babaei, B.; Memon, S.; Ojo, O.; Lankarani, H. Dissimilar welding of AA5083 to AZ31 Mg alloys using modified friction stir clinching brazing. Mater. Lett. 2021, 301, 129764, doi:10.1016/j.matlet.2021.129764. 12. Mehta, K.P.; Patel, R.; Vyas, H.; Memon, S.; Vilaça, P. Repairing of exit-hole in dissimilar Al-Mg friction stir welding: Process and microstructural pattern. Manuf. Lett. 2020, 23, 67–70, https://doi.org/10.1016/j.mfglet.2020.01.002. 13. Paidar, M.; Memon, S.; Samusenkov, V.O.; Babaei, B.; Ojo, O.O. Friction spot extrusion welding-brazing of copper to aluminum alloy. Mater. Lett. 2021, 285, 129160, https://doi.org/10.1016/j.matlet.2020.129160. 14. Memon, S.; Paidar, M.; Mehta, K.P.; Babaei, B.; Lankarani, H.M. Friction Spot Extrusion Welding on Dissimilar Materials AA2024-T3 to AA5754-O: Effect of Shoulder Plunge Depth. J. Mater. Eng. Perform. 2021, 30, 334–345, 10.1007/s11665-020-05387- 4. 15. Memon, S.; Paidar, M.; Mehrez, S.; Cooke, K.; Ojo, O.O.; Lankarani, H.M. Effects of materials positioning and tool rotational speed on metallurgical and mechanical properties of dissimilar modified friction stir clinching of AA5754-O and AA2024-T3 sheets. Results Phys. 2021, 22, 103962, https://doi.org/10.1016/j.rinp.2021.103962. 16. Memon, S.; Fydrych, D.; Fernandez, A.C.; Derazkola, H.A.; Derazkola, H.A. Effects of FSW Tool Plunge Depth on Properties of an Al-Mg-Si Alloy T-Joint: Thermomechanical Modeling and Experimental Evaluation. Materials 2021, 14, 4754. 17. Memon, S.; Tomków, J.; Derazkola, H.A. Thermo-Mechanical Simulation of Underwater Friction Stir Welding of Low Carbon Steel. Materials. 2021, 14, 4953. 18. Memon, S.; Murillo-Marrodán, A.; Lankarani, H.M.; Aghajani Derazkola, H. Analysis of Friction Stir Welding Tool Offset on the Bonding and Properties of Al–Mg–Si Alloy T-Joints. Materials. 2021, 14, 3604. 19. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the Tool Tilt Angle on the Heat Generation and the Material Flow in Friction Stir Welding. Metals. 2019, 9, 28. 20. Derazkola, H.A.; Simchi, A. An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate). Thin-Walled Struct. 2019, 135, 376–384, https://doi.org/10.1016/j.tws.2018.11.027. 21. Zhao, Z.; Liang, H.; Zhao, Y.; Yan, K. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints. J. Mater. Eng. Perform. 2018, 27, 1777–1783, https://doi.org/10.1007/s11665-018-3253-6. 22. Aghajani Derazkola, H.; Garcia, E.; Elyasi, M. Underwater friction stir welding of PC: Experimental study and thermo-mechanical modelling. J. Manuf. Process. 2021, 65, 161–173, https://doi.org/10.1016/j.jmapro.2021.03.034. 23. Derazkola, H.A.; Elyasi, M. The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. J. Manuf. Process. 2018, 35, 88–98, https://doi.org/10.1016/j.jmapro.2018.07.021. 24. Guerra, M.; Schmidt, C.; McClure, J.C.; Murr, L.E.; Nunes, A.C. Flow patterns during friction stir welding. Mater. Charact. 2002, 49, 95–101, https://doi.org/10.1016/S1044-5803(02)00362-5. 25. Elyasi, M.; Derazkola, H.A.; Hosseinzadeh, M. Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proceed. Inst. Mech. Part B. 2016, 320, 1234–1241, https://doi.org/ 10.1177/0954405416645986. 26. Derazkola, H.A.; Eyvazian, A.; Simchi, A. Modeling and experimental validation of material flow during FSW of polycarbonate. Mater. Today Commun. 2020, 22, https://doi.org/10.1016/j.mtcomm.2019.100796. 27. Alebizadehsardari, P.; Musharavati, F.; Khan, F.; Sebaey, T.A.; Eyvaziana, A.; Derazkola, H.A. Underwater friction stir welding of Al-Mg alloy: Thermo-mechanical modeling and validation. J. Mater. Today. Commun. 2021, 26, 101965, https://doi.org/10.1016/j.mtcomm.2020.101965. 28. Aghajani Derazkola, H.; Simchi, A. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing. J. Mech. Behav. Biomed. Mater. 2018, 79, https://doi.org/10.1016/j.jmbbm.2018.01.007. 29. Xu, X.; Zhang, C.; Derazkola, H.A.; Demiral, M.; Zain, A.M.; Khan, A. UFSW tool pin profile effects on properties of aluminiumsteel joint. Vacuum 2021, 192, 110460, https://doi.org/10.1016/j.vacuum.2021.110460. 30. Sharma, A.; Morisada, Y.; Fujii, H. Influence of aluminium-rich intermetallics on microstructure evolution and mechanical properties of friction stir alloyed AlFe alloy system. J. Manuf. Process. 2021, 68, 668–682, https://doi.org/10.1016/j.jmapro.2021.05.073. 31. Wang, Q.; Zhao, Z.; Zhao, Y.; Yan, K.; Zhang, H. The adjustment strategy of welding parameters for spray formed 7055 aluminum alloy underwater friction stir welding joint. Mater. Des. 2015, 88, 1366–1376, https://doi.org/10.1016/j.matdes.2015.09.038. 32. Li, J.Q.; Liu, H.J. Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy. Mater. Des. 2013, 45, 148–154, https://doi.org/10.1016/j.matdes.2012.08.068. 33. Li, J.Q.; Liu, H.J. Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-rotation Friction Stir Welding. J. Mater. Sci. Technol. 2015, 31, 375–383, https://doi.org/10.1016/j.jmst.2014.07.020. 34. Wang, J.; Cheng, Y.; Li, B.; Chen, C. Effects of Multi-Pass Friction Stir Processing on Microstructures and Mechanical Properties of the 1060Al/Q235 Composite Plate. Metals. 2020, 10, 298. 35. Ghangas, G.; Singhal, S. Investigations of Multi-pass Friction Stir Welding for Al-Zn-Mg Alloy. Mater. Today Proc. 2018, 5, 17107– 17113, https://doi.org/10.1016/j.matpr.2018.04.118. 36. Brown, R.; Tang, W.; Reynolds, A.P. Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties. Mater. Sci. Eng. A 2009, 513–514, 115–121, https://doi.org/10.1016/j.msea.2009.01.041. 37. Su, H.; Wu, C. Numerical Simulation for the Optimization of Polygonal Pin Profiles in Friction Stir Welding of Aluminum. Acta Metall. Sin. English Lett. 2021, https://doi.org/10.1007/s40195-021-01198-1. 38. Shi, L.; Wu, C.S.; Liu, H.J. The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int. J. Mach. Tools Manuf. 2015, 91, 1–11, https://doi.org/10.1016/j.ijmachtools.2015.01.004. 39. Liu, H.; Zhang, H. Repair welding process of friction stir welding groove defect. Trans. Nonferrous Met. Soc. China 2009, 19, 563– 567, https://doi.org/10.1016/S1003-6326(08)60313-1. 40. Kumari, K.; Pal, S.K.; Singh, S.B. Friction stir welding by using counter-rotating twin tool. J. Mater. Process. Technol. 2015, 215, 132–141, https://doi.org/10.1016/j.jmatprotec.2014.07.031. 41. Jain, R.; Kumari, K.; Pal, S.K.; Singh, S.B. Counter rotating twin-tool system in friction stir welding process: A simulation study. J. Mater. Process. Technol. 2018, 255, 121–128, https://doi.org/10.1016/j.jmatprotec.2017.11.043. 42. Ghiasvand, A.; Hassanifard, S.; Jalilian, M.M.; Kheradmandan, H. Investigation of tool offset on mechanical properties of dissimilar AA6061-T6 and AA7075-T6 joint in parallel FSW process. Weld. World 2021, 65, 441–450, https://doi.org/10.1007/s40194-020-01037-4. 43. Jesus, J.S.; Costa, J.M.; Loureiro, A.; Ferreira, J.M. Assessment of friction stir welding aluminium T-joints. J. Mater. Process. Technol. 2018, 255, 387–399, https://doi.org/10.1016/j.jmatprotec.2017.12.036. 44. Tiwari, A.; Pankaj, P.; Suman, S.; Biswas, P. CFD Modelling of Temperature Distribution and Material Flow Investigation During FSW of DH36 Shipbuilding Grade Steel. Trans. Indian Inst. Met. 2020, 73, 2291–2307, https://doi.org/10.1007/s12666-020-02030-7. 45. Kesharwani, R.; Imam, M.; Sarkar, C. Clarification on the choice of sheet positioning in friction stir welding of dissimilar materials. Manuf. Lett. 2020, 24, 100–104, https://doi.org/10.1016/j.mfglet.2020.04.008. 46. Zhang, Y.N.; Cao, X.; Larose, S.; Wanjara, P. Review of tools for friction stir welding and processing. Can. Metall. Q. 2012, 51, 250–261, https://doi.org/10.1179/1879139512Y.0000000015. 47. Gadakh, V.S.; Kumar, A. Friction stir welding window for AA6061-T6 aluminium alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 228, 1172–1181, https://doi.org/10.1177/0954405413510289. 48. Aghajani Derazkola, H.; Kordani, N.; Aghajani Derazkola, H. Effects of friction stir welding tool tilt angle on properties of AlMg-Si alloy T-joint. CIRP J. Manuf. Sci. Technol. 2021, 33, 264–276, https://doi.org/10.1016/j.cirpj.2021.03.015. 49. Aghajani Derazkola, H.; Simchi, A. Experimental and thermomechanical analysis of friction stir welding of poly(methyl methacrylate) sheets. Sci. Technol. Weld. Join. 2017, https://doi.org/10.1080/13621718.2017.1364896. 50. Ajri, A.; Shin, Y.C. Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments. J. Manuf. Sci. Eng. 2017, 139, https://doi.org/10.1115/1.4037240. 51. Ranjan, R.; Khan, A.R.; Parikh, C.; Jain, R.; Mahto, R.P.; Pal, S.; Pal, S.K.; Chakravarty, D. Classification and identification of surface defects in friction stir welding: An image processing approach. J. Manuf. Process. 2016, 22, 237–253, https://doi.org/10.1016/j.jmapro.2016.03.009. 52. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-Based Anatomy of Bobbin Friction-Stirred Weld; AA6082-T6 Aluminium Plate and Analogue Plasticine Model. Appl. Mech. 2020, 1, 3–19. 53. Tamadon, A.; Pons, D.J.; Clucas, D. AFM Characterization of Stir-Induced Micro-Flow Features within the AA6082-T6 BFSW Welds. Technol. 2019, 7, 80. 54. Aghajani Derazkola, H.; Simchi, A.; Lambiase, F. Friction stir welding of polycarbonate lap joints: Relationship between processing parameters and mechanical properties. Polym. Test. 2019, 79, 105999, https://doi.org/10.1016/j.polymertesting.2019.105999. 55. Mirzaei, M.; Asadi, P.; Fazli, A. Effect of Tool Pin Profile on Material Flow in Double Shoulder Friction Stir Welding of AZ91 Magnesium Alloy. Int. J. Mech. Sci. 2020, 183, 105775, https://doi.org/10.1016/j.ijmecsci.2020.105775. 56. Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 2021, 115, 100706, https://doi.org/10.1016/j.pmatsci.2020.100706. 57. Guan, M.; Wang, Y.; Huang, Y.; Liu, X.; Meng, X.; Xie, Y.; Li, J. Non-weld-thinning friction stir welding. Mater. Lett. 2019, 255, 126506, https://doi.org/10.1016/j.matlet.2019.126506. 58. Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1824– 1835, https://doi.org/10.1016/S1003-6326(19)65090-9. 59. Wang, Z.; Wang, X.; Zhu, Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J. Alloys Compd. 2017, 692, 149–154, https://doi.org/10.1016/j.jallcom.2016.09.012. 60. Vigneshkumar, M.; Padmanaban, G.; Balasubramanian, V. Influence of Tool Tilt Angle on the Formation of Friction Stir Processing Zone in Cast Magnesium Alloy ZK60/SiCp Surface Composites. Metallogr. Microstruct. Anal. 2019, 8, 58–66, https://doi.org/10.1007/s13632-018-0507-5. 61. Long, L.; Chen, G.; Zhang, S.; Liu, T.; Shi, Q. Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds. J. Manuf. Process. 2017, 30, 562–569, https://doi.org/10.1016/j.jmapro.2017.10.023. 62. Donati, L.; Tomesani, L.; Morri, A. Structural T-joint produced by means of friction stir welding (FSW) with filling material. Int. J. Mater. Form. 2009, 2, 295, https://doi.org/10.1007/s12289-009-0439-3. 63. Amini, S.; Amiri, M.R.; Barani, A. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy. Int. J. Adv. Manuf. Technol. 2015, 76, 255–261, https://doi.org/10.1007/s00170-014-6277-6. 64. Sabari, S.S.; Malarvizhi, S.; Balasubramanian, V. The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy. Int. J. Mech. Mater. Eng. 2016, 11, 5, https://doi.org/10.1186/s40712- 016-0058-y. 65. Sun, T.; Roy, M.J.; Strong, D.; Simpson, C.; Withers, P.J.; Prangnell, P.B. Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld. J. Mater. Process. Technol. 2019, 263, 256–265, https://doi.org/10.1016/j.jmatprotec.2018.08.022. 66. Zeng, S.; Chen, G.; Dinaharan, I.; Liu, Q.; Zhang, S.; Sahu, P.K.; Wu, J.; Zhang, G.; Shi, Q. Microstructure and Tensile Strength of AA6082 T-joints by Corner Stationary Shoulder Friction Stir Welding: Effect of Tool Rotation Speed. J. Mater. Eng. Perform. 2020, 29, 7094–7103, https://doi.org/10.1007/s11665-020-05179-w. 67. Derazkola, H.A.; Aval, H.J.; Elyasi, M. Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Sci. Technol. Weld. Join. 2015, 20, https://doi.org/10.1179/1362171815Y.0000000038. 68. Khodabakhshi, F.; Derazkola, H.A.; Gerlich, A.P. Monte Carlo simulation of grain refinement during friction stir processing. J. Mater. Sci. 2020, 55, 13438–13456, https://doi.org/10.1007/s10853-020-04963-2. 69. Elyasi, M.; Derazkola, H.A. Experimental and thermomechanical study on FSW of PMMA polymer T-joint. Int. J. Adv. Manuf. Technol. 2018, https://doi.org/10.1007/s00170-018-1847-7. 70. Hassanifard, S.; Nabavi-Kivi, A.; Ghiasvand, A.; Varvani-Farahani, A. Monotonic and Fatigue Response of Heat-Treated Friction Stir Welded Al 6061-T6 Joints: Testing and Characterization. Mater. Perform. Charact. 2021, 10, 353–369, https://doi.org/10.1520/MPC20200076. 71. Fu, R.; Zhang, J.; Li, Y.; Kang, J.; Liu, H.; Zhang, F. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Mater. Sci. Eng. A 2013, 559, 319–324, https://doi.org/10.1016/j.msea.2012.08.105. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Materials |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.mdpi.com/1996-1944/14/20/6003 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/a154fba3-bef3-4e83-becd-44ded6ae88e1/download https://repositorio.cuc.edu.co/bitstreams/6ca81dc1-19b6-4ab5-afdb-82138c97ec59/download https://repositorio.cuc.edu.co/bitstreams/0c025dc0-b004-48d9-988c-605cc1833a75/download https://repositorio.cuc.edu.co/bitstreams/9ca811d7-3845-43d4-8840-d9e85ed4b1aa/download https://repositorio.cuc.edu.co/bitstreams/b93fc8ea-ea48-4541-adc0-4b1ff51a52b5/download |
bitstream.checksum.fl_str_mv |
2ed6141bc59ebaae9b5c4ca4299c7060 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 49e03e901493362dd000f7f88c23d9c8 0afcd2f4568c226a5de843cf5549c9aa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760707522265088 |
spelling |
ghiasvand, amirMahdi Yavari, MohammadTomków, JacekGrimaldo Guerrero, John WilliamKheradmandan, HasanDorofeev, AlekseiMemon, ShabbirAghajani Derazkola, Hesamoddin2022-01-16T20:35:33Z2022-01-16T20:35:33Z2021-10-121996-1944https://hdl.handle.net/11323/8976https://doi.org/10.3390/ma14206003Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present study investigates the effect of two parameters of process type and tool offset on tensile, microhardness, and microstructure properties of AA6061-T6 aluminum alloy joints. Three methods of Friction Stir Welding (FSW), Advancing Parallel-Friction Stir Welding (AP-FSW), and Retreating Parallel-Friction Stir Welding (RP-FSW) were used. In addition, four modes of 0.5, 1, 1.5, and 2 mm of tool offset were used in two welding passes in AP-FSW and RP-FSW processes. Based on the results, it was found that the mechanical properties of welded specimens with AP-FSW and RP-FSW techniques experience significant increments compared to FSW specimens. The best mechanical and microstructural properties were observed in the samples welded by RP-FSW, AP-FSW, and FSW methods, respectively. Welded specimens with the RP-FSW technique had better mechanical properties than other specimens due to the concentration of material flow in the weld nugget and proper microstructure refinement. In both AP-FSW and RP-FSW processes, by increasing the tool offset to 1.5 mm, joint efficiency increased significantly. The highest weld strength was found for welded specimens by RP-FSW and AP-FSW processes with a 1.5 mm tool offset. The peak sample of the RP-FSW process (1.5 mm offset) had the closest mechanical properties to the base metal, in which the Yield Stress (YS), ultimate tensile strength (UTS), and elongation percentage (E%) were 76.4%, 86.5%, and 70% of base metal, respectively. In the welding area, RP-FSW specimens had smaller average grain size and higher hardness values than AP-FSW specimens.ghiasvand, amir-will be generated-orcid-0000-0001-5587-001X-600Mahdi Yavari, MohammadTomków, Jacek-will be generated-orcid-0000-0003-1096-7779-600Grimaldo Guerrero, John William-will be generated-orcid-0000-0002-1632-5374-600Kheradmandan, HasanDorofeev, AlekseiMemon, Shabbir-will be generated-orcid-0000-0002-8742-6439-600Aghajani Derazkola, Hesamoddinapplication/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Materialshttps://www.mdpi.com/1996-1944/14/20/6003Parallel-friction stir weldingTool offsetMechanical propertiesAluminum alloyInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methodsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Derazkola, H.A.; Khodabakhshi, F.; Gerlich, A. Friction-forging tubular additive manufacturing (FFTAM): A new route of solidstate layer-upon-layer metal deposition. J. Mater. Res. Technol. 2020, 9, 15273–15285, doi:10.1016/j.jmrt.2020.10.105.2. Derazkola, H.A.; Simchi, A. A new procedure for the fabrication of dissimilar joints through injection of colloidal nanoparticles during friction stir processing: Proof concept for AA6062/PMMA joints. J. Manuf. Process. 2020, 49, 335–343, doi:10.1016/j.jmapro.2019.12.008.3. Derazkola, H.A.; Simchi, A. Processing and characterizations of polycarbonate/alumina nanocomposites by additive powder fed friction stir processing. Thin-Walled Struct. 2020, 157, 107086, doi:10.1016/j.tws.2020.107086.4. Derazkola, H.A.; Khodabakhshi, F. Development of fed friction-stir (FFS) process for dissimilar nanocomposite welding between AA2024 aluminum alloy and polycarbonate (PC). J. Manuf. Process. 2020, 54, 262–273, doi:10.1016/j.jmapro.2020.03.020.5. Babu, S.D.D.; Sevvel, P.; Kumar, R.S.; Vijayan, V.; Subramani, J. Development of Thermo Mechanical Model for Prediction of Temperature Diffusion in Different FSW Tool Pin Geometries During Joining of AZ80A Mg Alloys. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1–17, doi:10.1007/s10904-021-01931-4.6. Babu, S.D.D.; Sevvel, P.; Kumar, R.S. Simulation of heat transfer and analysis of impact of tool pin geometry and tool speed during friction stir welding of AZ80A Mg alloy plates. J. Mech. Sci. Technol. 2020, 34, 4239–4250, doi:10.1007/s12206-020-0916-7.7. Sevvel, P.; Babu, S.D.; Kumar, R.S. Peak Temperature Correlation and Temperature Distribution during Joining of AZ80A Mg Alloy by FSW – A Numerical and Experimental Investigation. Stroj. Vestn. J. Mech. Eng. 2020, 66, 395–407, doi:10.5545/svjme.2020.6566.8. Satheesh, C.; Sevvel, P.; Senthil Kumar, R. Experimental Identification of Optimized Process Parameters for FSW of AZ91C Mg Alloy Using Quadratic Regression Models. Stroj. Vestn. J. Mech. Eng. 2020, 66, 736–751, doi:10.5545/sv-jme.2020.6929.9. Ghiasvand, A.; Kazemi, M.; Jalilian, M.M.; Rashid, H.A. Effects of tool offset, pin offset, and alloys position on maximum temperature in dissimilar FSW of AA6061 and AA5086. Int. J. Mech. Mater. Eng. 2020, 15, 1–14, doi:10.1186/s40712-020-00118-y.10. Akbari, M.; Aliha, M.; Keshavarz, S.; Bonyadi, A. Effect of tool parameters on mechanical properties, temperature, and force generation during FSW. Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl. 2019, 233, 1033–1043, doi:10.1177/1464420716681591.11. Paidar, M.; Mehrez, S.; Babaei, B.; Memon, S.; Ojo, O.; Lankarani, H. Dissimilar welding of AA5083 to AZ31 Mg alloys using modified friction stir clinching brazing. Mater. Lett. 2021, 301, 129764, doi:10.1016/j.matlet.2021.129764.12. Mehta, K.P.; Patel, R.; Vyas, H.; Memon, S.; Vilaça, P. Repairing of exit-hole in dissimilar Al-Mg friction stir welding: Process and microstructural pattern. Manuf. Lett. 2020, 23, 67–70, https://doi.org/10.1016/j.mfglet.2020.01.002.13. Paidar, M.; Memon, S.; Samusenkov, V.O.; Babaei, B.; Ojo, O.O. Friction spot extrusion welding-brazing of copper to aluminum alloy. Mater. Lett. 2021, 285, 129160, https://doi.org/10.1016/j.matlet.2020.129160.14. Memon, S.; Paidar, M.; Mehta, K.P.; Babaei, B.; Lankarani, H.M. Friction Spot Extrusion Welding on Dissimilar Materials AA2024-T3 to AA5754-O: Effect of Shoulder Plunge Depth. J. Mater. Eng. Perform. 2021, 30, 334–345, 10.1007/s11665-020-05387- 4.15. Memon, S.; Paidar, M.; Mehrez, S.; Cooke, K.; Ojo, O.O.; Lankarani, H.M. Effects of materials positioning and tool rotational speed on metallurgical and mechanical properties of dissimilar modified friction stir clinching of AA5754-O and AA2024-T3 sheets. Results Phys. 2021, 22, 103962, https://doi.org/10.1016/j.rinp.2021.103962.16. Memon, S.; Fydrych, D.; Fernandez, A.C.; Derazkola, H.A.; Derazkola, H.A. Effects of FSW Tool Plunge Depth on Properties of an Al-Mg-Si Alloy T-Joint: Thermomechanical Modeling and Experimental Evaluation. Materials 2021, 14, 4754.17. Memon, S.; Tomków, J.; Derazkola, H.A. Thermo-Mechanical Simulation of Underwater Friction Stir Welding of Low Carbon Steel. Materials. 2021, 14, 4953.18. Memon, S.; Murillo-Marrodán, A.; Lankarani, H.M.; Aghajani Derazkola, H. Analysis of Friction Stir Welding Tool Offset on the Bonding and Properties of Al–Mg–Si Alloy T-Joints. Materials. 2021, 14, 3604.19. Dialami, N.; Cervera, M.; Chiumenti, M. Effect of the Tool Tilt Angle on the Heat Generation and the Material Flow in Friction Stir Welding. Metals. 2019, 9, 28.20. Derazkola, H.A.; Simchi, A. An investigation on the dissimilar friction stir welding of T-joints between AA5754 aluminum alloy and poly(methyl methacrylate). Thin-Walled Struct. 2019, 135, 376–384, https://doi.org/10.1016/j.tws.2018.11.027.21. Zhao, Z.; Liang, H.; Zhao, Y.; Yan, K. Effect of Exchanging Advancing and Retreating Side Materials on Mechanical Properties and Electrochemical Corrosion Resistance of Dissimilar 6013-T4 and 7003 Aluminum Alloys FSW Joints. J. Mater. Eng. Perform. 2018, 27, 1777–1783, https://doi.org/10.1007/s11665-018-3253-6.22. Aghajani Derazkola, H.; Garcia, E.; Elyasi, M. Underwater friction stir welding of PC: Experimental study and thermo-mechanical modelling. J. Manuf. Process. 2021, 65, 161–173, https://doi.org/10.1016/j.jmapro.2021.03.034.23. Derazkola, H.A.; Elyasi, M. The influence of process parameters in friction stir welding of Al-Mg alloy and polycarbonate. J. Manuf. Process. 2018, 35, 88–98, https://doi.org/10.1016/j.jmapro.2018.07.021.24. Guerra, M.; Schmidt, C.; McClure, J.C.; Murr, L.E.; Nunes, A.C. Flow patterns during friction stir welding. Mater. Charact. 2002, 49, 95–101, https://doi.org/10.1016/S1044-5803(02)00362-5.25. Elyasi, M.; Derazkola, H.A.; Hosseinzadeh, M. Investigations of tool tilt angle on properties friction stir welding of A441 AISI to AA1100 aluminium. Proceed. Inst. Mech. Part B. 2016, 320, 1234–1241, https://doi.org/ 10.1177/0954405416645986.26. Derazkola, H.A.; Eyvazian, A.; Simchi, A. Modeling and experimental validation of material flow during FSW of polycarbonate. Mater. Today Commun. 2020, 22, https://doi.org/10.1016/j.mtcomm.2019.100796.27. Alebizadehsardari, P.; Musharavati, F.; Khan, F.; Sebaey, T.A.; Eyvaziana, A.; Derazkola, H.A. Underwater friction stir welding of Al-Mg alloy: Thermo-mechanical modeling and validation. J. Mater. Today. Commun. 2021, 26, 101965, https://doi.org/10.1016/j.mtcomm.2020.101965.28. Aghajani Derazkola, H.; Simchi, A. Effects of alumina nanoparticles on the microstructure, strength and wear resistance of poly(methyl methacrylate)-based nanocomposites prepared by friction stir processing. J. Mech. Behav. Biomed. Mater. 2018, 79, https://doi.org/10.1016/j.jmbbm.2018.01.007.29. Xu, X.; Zhang, C.; Derazkola, H.A.; Demiral, M.; Zain, A.M.; Khan, A. UFSW tool pin profile effects on properties of aluminiumsteel joint. Vacuum 2021, 192, 110460, https://doi.org/10.1016/j.vacuum.2021.110460.30. Sharma, A.; Morisada, Y.; Fujii, H. Influence of aluminium-rich intermetallics on microstructure evolution and mechanical properties of friction stir alloyed AlFe alloy system. J. Manuf. Process. 2021, 68, 668–682, https://doi.org/10.1016/j.jmapro.2021.05.073.31. Wang, Q.; Zhao, Z.; Zhao, Y.; Yan, K.; Zhang, H. The adjustment strategy of welding parameters for spray formed 7055 aluminum alloy underwater friction stir welding joint. Mater. Des. 2015, 88, 1366–1376, https://doi.org/10.1016/j.matdes.2015.09.038.32. Li, J.Q.; Liu, H.J. Characteristics of the reverse dual-rotation friction stir welding conducted on 2219-T6 aluminum alloy. Mater. Des. 2013, 45, 148–154, https://doi.org/10.1016/j.matdes.2012.08.068.33. Li, J.Q.; Liu, H.J. Effects of the Reversely Rotating Assisted Shoulder on Microstructures During the Reverse Dual-rotation Friction Stir Welding. J. Mater. Sci. Technol. 2015, 31, 375–383, https://doi.org/10.1016/j.jmst.2014.07.020.34. Wang, J.; Cheng, Y.; Li, B.; Chen, C. Effects of Multi-Pass Friction Stir Processing on Microstructures and Mechanical Properties of the 1060Al/Q235 Composite Plate. Metals. 2020, 10, 298.35. Ghangas, G.; Singhal, S. Investigations of Multi-pass Friction Stir Welding for Al-Zn-Mg Alloy. Mater. Today Proc. 2018, 5, 17107– 17113, https://doi.org/10.1016/j.matpr.2018.04.118.36. Brown, R.; Tang, W.; Reynolds, A.P. Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties. Mater. Sci. Eng. A 2009, 513–514, 115–121, https://doi.org/10.1016/j.msea.2009.01.041.37. Su, H.; Wu, C. Numerical Simulation for the Optimization of Polygonal Pin Profiles in Friction Stir Welding of Aluminum. Acta Metall. Sin. English Lett. 2021, https://doi.org/10.1007/s40195-021-01198-1.38. Shi, L.; Wu, C.S.; Liu, H.J. The effect of the welding parameters and tool size on the thermal process and tool torque in reverse dual-rotation friction stir welding. Int. J. Mach. Tools Manuf. 2015, 91, 1–11, https://doi.org/10.1016/j.ijmachtools.2015.01.004.39. Liu, H.; Zhang, H. Repair welding process of friction stir welding groove defect. Trans. Nonferrous Met. Soc. China 2009, 19, 563– 567, https://doi.org/10.1016/S1003-6326(08)60313-1.40. Kumari, K.; Pal, S.K.; Singh, S.B. Friction stir welding by using counter-rotating twin tool. J. Mater. Process. Technol. 2015, 215, 132–141, https://doi.org/10.1016/j.jmatprotec.2014.07.031.41. Jain, R.; Kumari, K.; Pal, S.K.; Singh, S.B. Counter rotating twin-tool system in friction stir welding process: A simulation study. J. Mater. Process. Technol. 2018, 255, 121–128, https://doi.org/10.1016/j.jmatprotec.2017.11.043.42. Ghiasvand, A.; Hassanifard, S.; Jalilian, M.M.; Kheradmandan, H. Investigation of tool offset on mechanical properties of dissimilar AA6061-T6 and AA7075-T6 joint in parallel FSW process. Weld. World 2021, 65, 441–450, https://doi.org/10.1007/s40194-020-01037-4.43. Jesus, J.S.; Costa, J.M.; Loureiro, A.; Ferreira, J.M. Assessment of friction stir welding aluminium T-joints. J. Mater. Process. Technol. 2018, 255, 387–399, https://doi.org/10.1016/j.jmatprotec.2017.12.036.44. Tiwari, A.; Pankaj, P.; Suman, S.; Biswas, P. CFD Modelling of Temperature Distribution and Material Flow Investigation During FSW of DH36 Shipbuilding Grade Steel. Trans. Indian Inst. Met. 2020, 73, 2291–2307, https://doi.org/10.1007/s12666-020-02030-7.45. Kesharwani, R.; Imam, M.; Sarkar, C. Clarification on the choice of sheet positioning in friction stir welding of dissimilar materials. Manuf. Lett. 2020, 24, 100–104, https://doi.org/10.1016/j.mfglet.2020.04.008.46. Zhang, Y.N.; Cao, X.; Larose, S.; Wanjara, P. Review of tools for friction stir welding and processing. Can. Metall. Q. 2012, 51, 250–261, https://doi.org/10.1179/1879139512Y.0000000015.47. Gadakh, V.S.; Kumar, A. Friction stir welding window for AA6061-T6 aluminium alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2013, 228, 1172–1181, https://doi.org/10.1177/0954405413510289.48. Aghajani Derazkola, H.; Kordani, N.; Aghajani Derazkola, H. Effects of friction stir welding tool tilt angle on properties of AlMg-Si alloy T-joint. CIRP J. Manuf. Sci. Technol. 2021, 33, 264–276, https://doi.org/10.1016/j.cirpj.2021.03.015.49. Aghajani Derazkola, H.; Simchi, A. Experimental and thermomechanical analysis of friction stir welding of poly(methyl methacrylate) sheets. Sci. Technol. Weld. Join. 2017, https://doi.org/10.1080/13621718.2017.1364896.50. Ajri, A.; Shin, Y.C. Investigation on the Effects of Process Parameters on Defect Formation in Friction Stir Welded Samples Via Predictive Numerical Modeling and Experiments. J. Manuf. Sci. Eng. 2017, 139, https://doi.org/10.1115/1.4037240.51. Ranjan, R.; Khan, A.R.; Parikh, C.; Jain, R.; Mahto, R.P.; Pal, S.; Pal, S.K.; Chakravarty, D. Classification and identification of surface defects in friction stir welding: An image processing approach. J. Manuf. Process. 2016, 22, 237–253, https://doi.org/10.1016/j.jmapro.2016.03.009.52. Tamadon, A.; Pons, D.J.; Clucas, D. Flow-Based Anatomy of Bobbin Friction-Stirred Weld; AA6082-T6 Aluminium Plate and Analogue Plasticine Model. Appl. Mech. 2020, 1, 3–19.53. Tamadon, A.; Pons, D.J.; Clucas, D. AFM Characterization of Stir-Induced Micro-Flow Features within the AA6082-T6 BFSW Welds. Technol. 2019, 7, 80.54. Aghajani Derazkola, H.; Simchi, A.; Lambiase, F. Friction stir welding of polycarbonate lap joints: Relationship between processing parameters and mechanical properties. Polym. Test. 2019, 79, 105999, https://doi.org/10.1016/j.polymertesting.2019.105999.55. Mirzaei, M.; Asadi, P.; Fazli, A. Effect of Tool Pin Profile on Material Flow in Double Shoulder Friction Stir Welding of AZ91 Magnesium Alloy. Int. J. Mech. Sci. 2020, 183, 105775, https://doi.org/10.1016/j.ijmecsci.2020.105775.56. Meng, X.; Huang, Y.; Cao, J.; Shen, J.; dos Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 2021, 115, 100706, https://doi.org/10.1016/j.pmatsci.2020.100706.57. Guan, M.; Wang, Y.; Huang, Y.; Liu, X.; Meng, X.; Xie, Y.; Li, J. Non-weld-thinning friction stir welding. Mater. Lett. 2019, 255, 126506, https://doi.org/10.1016/j.matlet.2019.126506.58. Rajendran, C.; Srinivasan, K.; Balasubramanian, V.; Balaji, H.; Selvaraj, P. Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy. Trans. Nonferrous Met. Soc. China 2019, 29, 1824– 1835, https://doi.org/10.1016/S1003-6326(19)65090-9.59. Wang, Z.; Wang, X.; Zhu, Z. Characterization of high-temperature deformation behavior and processing map of TB17 titanium alloy. J. Alloys Compd. 2017, 692, 149–154, https://doi.org/10.1016/j.jallcom.2016.09.012.60. Vigneshkumar, M.; Padmanaban, G.; Balasubramanian, V. Influence of Tool Tilt Angle on the Formation of Friction Stir Processing Zone in Cast Magnesium Alloy ZK60/SiCp Surface Composites. Metallogr. Microstruct. Anal. 2019, 8, 58–66, https://doi.org/10.1007/s13632-018-0507-5.61. Long, L.; Chen, G.; Zhang, S.; Liu, T.; Shi, Q. Finite-element analysis of the tool tilt angle effect on the formation of friction stir welds. J. Manuf. Process. 2017, 30, 562–569, https://doi.org/10.1016/j.jmapro.2017.10.023.62. Donati, L.; Tomesani, L.; Morri, A. Structural T-joint produced by means of friction stir welding (FSW) with filling material. Int. J. Mater. Form. 2009, 2, 295, https://doi.org/10.1007/s12289-009-0439-3.63. Amini, S.; Amiri, M.R.; Barani, A. Investigation of the effect of tool geometry on friction stir welding of 5083-O aluminum alloy. Int. J. Adv. Manuf. Technol. 2015, 76, 255–261, https://doi.org/10.1007/s00170-014-6277-6.64. Sabari, S.S.; Malarvizhi, S.; Balasubramanian, V. The effect of pin profiles on the microstructure and mechanical properties of underwater friction stir welded AA2519-T87 aluminium alloy. Int. J. Mech. Mater. Eng. 2016, 11, 5, https://doi.org/10.1186/s40712- 016-0058-y.65. Sun, T.; Roy, M.J.; Strong, D.; Simpson, C.; Withers, P.J.; Prangnell, P.B. Weld zone and residual stress development in AA7050 stationary shoulder friction stir T-joint weld. J. Mater. Process. Technol. 2019, 263, 256–265, https://doi.org/10.1016/j.jmatprotec.2018.08.022.66. Zeng, S.; Chen, G.; Dinaharan, I.; Liu, Q.; Zhang, S.; Sahu, P.K.; Wu, J.; Zhang, G.; Shi, Q. Microstructure and Tensile Strength of AA6082 T-joints by Corner Stationary Shoulder Friction Stir Welding: Effect of Tool Rotation Speed. J. Mater. Eng. Perform. 2020, 29, 7094–7103, https://doi.org/10.1007/s11665-020-05179-w.67. Derazkola, H.A.; Aval, H.J.; Elyasi, M. Analysis of process parameters effects on dissimilar friction stir welding of AA1100 and A441 AISI steel. Sci. Technol. Weld. Join. 2015, 20, https://doi.org/10.1179/1362171815Y.0000000038.68. Khodabakhshi, F.; Derazkola, H.A.; Gerlich, A.P. Monte Carlo simulation of grain refinement during friction stir processing. J. Mater. Sci. 2020, 55, 13438–13456, https://doi.org/10.1007/s10853-020-04963-2.69. Elyasi, M.; Derazkola, H.A. Experimental and thermomechanical study on FSW of PMMA polymer T-joint. Int. J. Adv. Manuf. Technol. 2018, https://doi.org/10.1007/s00170-018-1847-7.70. Hassanifard, S.; Nabavi-Kivi, A.; Ghiasvand, A.; Varvani-Farahani, A. Monotonic and Fatigue Response of Heat-Treated Friction Stir Welded Al 6061-T6 Joints: Testing and Characterization. Mater. Perform. Charact. 2021, 10, 353–369, https://doi.org/10.1520/MPC20200076.71. Fu, R.; Zhang, J.; Li, Y.; Kang, J.; Liu, H.; Zhang, F. Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Mater. Sci. Eng. A 2013, 559, 319–324, https://doi.org/10.1016/j.msea.2012.08.105.PublicationORIGINALInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdfInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdfapplication/pdf2361619https://repositorio.cuc.edu.co/bitstreams/a154fba3-bef3-4e83-becd-44ded6ae88e1/download2ed6141bc59ebaae9b5c4ca4299c7060MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/6ca81dc1-19b6-4ab5-afdb-82138c97ec59/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/0c025dc0-b004-48d9-988c-605cc1833a75/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdf.jpgInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdf.jpgimage/jpeg75665https://repositorio.cuc.edu.co/bitstreams/9ca811d7-3845-43d4-8840-d9e85ed4b1aa/download49e03e901493362dd000f7f88c23d9c8MD54TEXTInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdf.txtInvestigation of mechanical and microstructural properties of welded specimens of AA6061-T6 alloy with friction stir welding and parallel-friction stir welding methods.pdf.txttext/plain54293https://repositorio.cuc.edu.co/bitstreams/b93fc8ea-ea48-4541-adc0-4b1ff51a52b5/download0afcd2f4568c226a5de843cf5549c9aaMD5511323/8976oai:repositorio.cuc.edu.co:11323/89762024-09-17 10:43:56.628http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |