Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies

Air pollution has become an important issue, especially in Caribbean urban areas, and, particulate matter (PM) emitted by different natural and anthropogenic sources causes environmental and health issues. In this work, we studied the concentrations of PM10 and PM2.5 sources in an industrial and por...

Full description

Autores:
Silva Oliveira, Luis Felipe
Schneider, Ismael
Artaxo, Paulo
Núñez-Blanco, Yuleisy
Pinto, Diana
Flores, Érico M. M.
Gómez Plata, leandro
Ramírez, Omar
Dotto, Guilherme Luiz
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7614
Acceso en línea:
https://hdl.handle.net/11323/7614
https://doi.org/10.1016/j.gsf.2020.11.012
https://repositorio.cuc.edu.co/
Palabra clave:
Urban air pollution
Particulate matter
Geochemical composition
Aerosol source apportionment
Receptor models
PMF
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a24e493b2c2d551c06408026a8c8a77e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7614
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
title Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
spellingShingle Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
Urban air pollution
Particulate matter
Geochemical composition
Aerosol source apportionment
Receptor models
PMF
title_short Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
title_full Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
title_fullStr Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
title_full_unstemmed Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
title_sort Particulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studies
dc.creator.fl_str_mv Silva Oliveira, Luis Felipe
Schneider, Ismael
Artaxo, Paulo
Núñez-Blanco, Yuleisy
Pinto, Diana
Flores, Érico M. M.
Gómez Plata, leandro
Ramírez, Omar
Dotto, Guilherme Luiz
dc.contributor.author.spa.fl_str_mv Silva Oliveira, Luis Felipe
Schneider, Ismael
Artaxo, Paulo
Núñez-Blanco, Yuleisy
Pinto, Diana
Flores, Érico M. M.
Gómez Plata, leandro
Ramírez, Omar
Dotto, Guilherme Luiz
dc.subject.spa.fl_str_mv Urban air pollution
Particulate matter
Geochemical composition
Aerosol source apportionment
Receptor models
PMF
topic Urban air pollution
Particulate matter
Geochemical composition
Aerosol source apportionment
Receptor models
PMF
description Air pollution has become an important issue, especially in Caribbean urban areas, and, particulate matter (PM) emitted by different natural and anthropogenic sources causes environmental and health issues. In this work, we studied the concentrations of PM10 and PM2.5 sources in an industrial and port urban area in the Caribbean region of Colombia. PM samples were collected within 48-h periods between April and October 2018 by using a Partisol 2000i-D sampler. Elemental geochemical characterization was performed by X-ray fluorescence (XRF) analysis. Further, ionic species and black carbon (BC) were quantified by ion chromatography and reflectance spectroscopy, respectively. Using the Positive Matrix Factorization (PMF) receptor model, the contributions of PM sources were quantified. The average concentration of PM10 was 46.6 ± 16.2 μg/m3, with high concentrations of Cl and Ca. For PM2.5, the average concentration was 12.0 ± 3.2 μg/m3, and the most abundant components were BC, S, and Cl. The receptor model identified five sources for PM10 and PM2.5. For both fractions, the contributions of marine sea spray, re-suspended soil, and vehicular traffic were observed. In addition, PM2.5 included two mixed sources were found to be fuel oil combustion with fertilizer industry emissions, and secondary aerosol sources with building construction emissions. Further, PM10 was found to also include building construction emissions with re-suspended soil, and metallurgical industry emissions. These obtained geochemical atmospheric results are important for the implementation of strategies for the continuous improvement of the air quality of the Caribbean region.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-18T18:58:42Z
dc.date.available.none.fl_str_mv 2020-12-18T18:58:42Z
dc.date.issued.none.fl_str_mv 2020-12-17
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1674-9871
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7614
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.gsf.2020.11.012
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1674-9871
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7614
https://doi.org/10.1016/j.gsf.2020.11.012
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543(A), 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030.
Alcaldía de Barranquilla, 2020. Conoce a Barranquilla. https://www.barranquilla.gov.co/descubre/conoce-a-barranquilla
Aldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102(1–2), 191–205. https://doi.org/10.1016/j.atmosres.2011.07.003.
Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J.A.G., Bonnaire, N., Le Priol, T., Petit, J.F., Sciare, J., 2016. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022.
Arana, A., Artaxo, P., 2014. Elementary composition of atmospheric aerosol in the central region of the Amazon basin. Quim. Nova. 37(2), 268–276. https://doi.org/10.5935/01004042.20140046.
Archanjo, B.S., Araujo, J.R., Silva, A.M., Capaz, R.B., Falcão, N.P.S., Jorio, A., Achete, C.A., 2014. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils. Environ. Sci. Technol. 48(13), 7445–7452. https://doi.org/10.1021/es501046b.
Arick, D.Q., Choi, Y.H., Kim, H.C., Won, Y.Y., 2015. Effects of nanoparticles on the mechanical functioning of the lung. Adv. Colloid Interf. Advances in Colloid & Interface ence 225 , 218-228.
Argumedo, C.D., Castillo, J.F., 2016. Chemical characterization of particulated atmospheric matter PM10 in Guajira, Colombia. Rev. Colomb. Quim. 45(2), 19–29. https://doi.org/10.15446/rev.colomb.quim.v45n2.56991.
Badillo-Castañeda, C.T., Garza-Ocañas, L., Garza-Ulloa, M.H., Zanatta-Calderón, M.T., Caballero-Quintero, A., 2015. Heavy metal content in PM2. 5 air samples collected in the Metropolitan Area of Monterrey, México. Hum. Ecol. Risk Assess. 21 (8), 20222035.
Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., Hoque, R.R., 2018. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ. Pollut. 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009.
Blanco-Becerra, L.C., Gáfaro-Rojas, A.I., Rojas-Roa, N.Y., 2015. Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Rev. Fac. Ing. 76, 58–65. https://doi.org/10.17533/udea.redin.n76a07.
Bourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634-642.
Brito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.C., Caumo, S.E.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13(24), 12199–12213. https://doi.org/10.5194/acp-13-12199-2013.
Cáceres, J.O., Sanz-Mangas, D., Manzoor, S., Pérez-Arribas, L.V., Anzano, J., 2019. Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Sci. Total Environ. 665, 125–132. https://doi.org/10.1016/j.scitotenv.2019.02.116.
Canales-Rodríguez, M.A., Quintero-Núñez, M., Castro-Romero, T.G., García-Cuento, R.O., 2014. Chemical Composition of Inhalable Particles PM10 in the Urban and Rural Area of Mexicali, Baja California in México. Inf. Tecnol. 25(6), 13–22. https://doi.org/10.4067/S0718-07642014000600003.
Castillo-Ramírez, M.C., Berdejo, J., Saltarín, M., 2018. Informe anual de Calidad de Aire de Barranquilla (in Spanish). http://barranquillaverde.gov.co/calidad-del-aire
Cereceda-Balic F., Toledo M., Vidal V., Guerrero F., Diaz-Robles L.A., Petit-Breuilh X., Lapuerta M., 2017. Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE. Sci. Total Environ. 584, 901-910.
Cesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A., Contini, D., 2018. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230.
Chen, C., Liu, S., Dong, W., Zhao, B., Deng, F., 2021. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Science of the Total Environment 751,141726.
Cheung, K.L., Ntziachristos, L., Tzamkiozis, T., Schauer, J.J., Samaras, Z., Moore, K.F., Sioutas, C., 2010. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Tech. 44(7), 500–513. https://doi.org/10.1080/02786821003758294.
CIOH - Centro de Investigaciones Oceanográficas e Hidrográficas, 2007. Climatologia de los principales puertos del Caribe Colombiano – Barranquilla (in Spanish). https://www.cioh.org.co/derrotero/images/PDFExternos/Climatologia_Barranquilla.pdf
Cui, X.X., Li, F., Xiang, J.B., Fang, L., Chung, M.K., Day, D.B., Mo, J.H., Weschler, C.J., Gong, J.C., He, L.C., Zhu, D., Lu, C.J., Han, H.L., Zhang, Y.P., Zhang, J.F., 2018. Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: a double-blind randomized crossover study. Environ. Int. 114, 27-36,
Contini, D., Cesari, D., Conte, M., Donateo, A., 2016. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 560–561, 131–140. https://doi.org/10.1016/j.scitotenv.2016.04.031.
Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., Guascito, M.R., 2010. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 95(1), 40–54. https://doi.org/10.1016/j.atmosres.2009.07.010.
Delicado, P., 2008. Curso de Modelos no Paramétricos. http://www- eio.upc.es/~delicado/docencia/Apuntes_Models_No_Parametrics.pdf (in Portugues)
Duarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers 10, 927-939.
Farahmandkia, Z., Moattar, F., Zayeri, F., Sekhavatjou, M.S., Mansouri, N., 2017. Contribution of point and small-scaled sources to the PM10 emission using positive matrix factorization model. J. Environ. Health Sci. Engineer. 15, 2. https://doi.org/10.1186/s40201-016-0265-8.
Gao, J., Peng, X., Chen, G., Xu, J., Shi, G.L., Zhang, Y.C., Feng, Y.C., 2016. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. Sci. Total Environ. 542(A), 162–171. https://doi.org/10.1016/j.scitotenv.2015.10.082.
Gautam, S., Patra, A.K., Sahu, S.P., Hitch, M., 2018. Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. Int. J. Min. Reclam. Env. 32(2), 75–92. https://doi.org/10.1080/17480930.2016.1218110.
Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., Liu, G., Han, B., Yang, G., Bai, Z.P., 2014. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Qual. Atmos. Health 7, 251–262. https://doi.org/10.1007/s11869-0130232-9.
Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., Yang, W., Zhang, S., Xie, S., 2018. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 213, 550–561. https://doi.org/10.1016/j.atmosres.2018.07.006.
Hopke, P.K., 2003. A guide to Positive Matrix Factorization. http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdf
IDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales, 2018. Informe del Estado de la Calidad del Aire en Colombia 2017 (in Spanish). http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estadode-la-calidad-del-aire-en-colombia.
Jain, S., Sharma, S.K., Mandal, T.K., Saxena, M., 2018. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009.
Jaiprakash, H. G., 2017. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci. Total Environ. 586, 900–916. https://doi.org/10.1016/j.scitotenv.2017.02.070.
Kholod, N., Evans, M., 2016. Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environ. Sci. Policy. 56, 1–8. https://doi.org/10.1016/j.envsci.2015.10.017.
Kubesch, N.J., Nazelle, A. de, Westerdahl, D., Martinez, D., Carrasco-Turigas, G., Bouso, L., Guerra, S., Nieuwenhuijsen, M.J., 2015. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup. Environ. Med. 72, 284-293.
Kumar, R., Chauhan, M., Sharma, N., Chaudhary, G.R., 2018. Toxic effects of nanomaterials on environment. Environmental Toxicity of Nanomaterials, CRC Press, 1- 20.
Li, T.C., Yuan, C.S., Huang, H.C., Lee, C.L., Wu, S.P., Tong, C., 2016. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci. Rep. 6, 22956. https://doi.org/10.1038/srep22956.
Liu, Y., Xing, J., Wang, S., Fu, X., Zheng, H., 2018. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 239, 544–553. https://doi.org/10.1016/j.envpol.2018.04.047.
Liu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., Feng, Y., 2016. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmos. Res. 170, 23–33. https://doi.org/10.1016/j.atmosres.2015.11.002.
López, M.L., Ceppi, S., Palancar, G.G., Olcese, L.E., Tirao, G., Toselli, B.M., 2011. Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos. Environ. 45(31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003.
Maldonado-Arízaga, M.J., 2012. Caracterización del material particulado suspendido PM10 de la red de monitoreo de aire de la ciudad de Quito de los años 2009 y 2010 por Espectroscopía de Absorción Atómica (in Spanish). http://repositorio.puce.edu.ec/handle/22000/7112.
Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., Santamaría, J.M., 2018. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmos. Environ. 192, 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058.
Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., Alcántara, E., 2009. PM composition and source reconciliation in Mexico City. Atmos. Environ. 43(32), 5068–5074. https://doi.org/10.1016/j.atmosenv.2009.06.051.
Murillo, J.H., Roman, S.R., Marin, J.F.R., Ramos, A.C., Jimenez, S. B., Gonzalez, B.C., Baumgardner, D.G., 2013. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 4(2), 181–190. https://doi.org/10.5094/APR.2013.018.
Ordóñez-Aquino, C., Sánchez-Ccoyllo, O., 2017. Characterization of the PM2,5 chemical - morphological in Lima metropolitan with scanning electronic microscopy (SEM). Rev. Acta. Nova. 8(3), 397–420.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non–negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. https://doi.org/10.1002/env.3170050203.
Palomino, G., 2016. Motores lineales de imanes permanentes: Principios de funcionamiento y optimización, Programa Editorial Universidad Autónoma de Occidente, Santiago de Cali.(in Spanish),
Park, M., Joo, H.S., Lee, K., Jang, M., Kim, S.D., Kim, I., Borlaza, L.J.S., Lim, H., Shin, H., Chung, K.H., Choi, Y.H., Park, S.G., Bae, M.S., Lee, J., Song, H., Park, K., 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8, 17007. https://doi.org/10.1038/s41598-018-35398-0.
Peters, A., Hampel, R., Cyrys, J., Breitner, S., Geruschkat, U., Kraus, U., Zareba, W., Schneider, A., 2015. Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Part. Fibre. Toxicol. 12, 7.
Perrone, M.G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., Osán, J., Bešlić, I., Kertész, Z., Pernigotti, D., Eleftheriadis, K., Belis, C.A., 2018. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092.
Pillai, P.S., Babu, S.S., Moorthy, K.K., 2002. A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmos. Res. 61(2), 149–167. https://doi.org/10.1016/S0169-8095(01)00136-3.
Police, S., Sahu, S.K., Tiwari, M., Pandit, G.G., 2018. Chemical composition and source apportionment of PM2.5 and PM2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology. 37, 143–153. https://doi.org/10.1016/j.partic.2017.09.006.
Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, R., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursoc, J., Viana, M., Wiedensohler, A., Raes, F., 2010. A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44(10), 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011.
Querol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A., Plana, F., Ruiz, C.R., 2002. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 36(19), 3113–3125. https://doi.org/10.1016/S1352-2310(02)00257-1.
Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419. https://doi.org/10.1016/S1352-2310(01)00361-2.
Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Catacolí, R.A., Rojas, N., de la Rosa, J., 2018a. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045.
Reff, A., Eberly, S.I., Bhave, P. V., 2007. Receptor modeling of ambient particulate matter data using Positive Matrix Factorization: review of existing methods. J. Air Waste Manage. 57(2), 146–154. https://doi.org/10.1080/10473289.2007.10465319.
Riojas-Rodríguez, H., da Silva, A.S., Texcalac-Sangrador, J.L., Moreno-Banda, G.L., 2016. Air pollution management and control in Latin America and the Caribbean: implications for climate change. Rev. Panam. Salud Publica 40(3), 150–159. https://www.scielosp.org/article/rpsp/2016.v40n3/150-159/en/.
Rojano, R., Arregoces, H., Restrepo, G., 2014. Elemental Composition and Sources of Inhalable Particles (PM10) and Suspended Total Particles (TSP) in the Urban Area of the City of Riohacha׳ Colombia. Inf. Tecnol. 25(6), 3–12. https://doi.org/10.4067/S071807642014000600002.
Saldarriaga-Molina, J.C., Echeverri-Londoño, C.A., Molina-Pérez, F.J., 2004. Partículas suspendidas (PST) y partículas respirables (PM10) en el Valle de Aburrá, Colombia. Rev. Fac. Ing. Univ. Antioquia. 32, 7–16 (in Spanish). https://www.redalyc.org/articulo.oa?id=430/43003201.
Salvador, P., Artíñano, B., Querol, X., Alastuey, A., Costoya, M., 2007. Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos. Environ. 41(1), 1–17. https://doi.org/10.1016/j.atmosenv.2006.08.007.
Salvo, A., Brito, J., Artaxo, P., Geiger, F.M., 2017. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nat. Commun. 8, 77. https://doi.org/10.1038/s41467-017-00041-5.
Santos Junior, D.A.M., 2009. Emissões veiculares em São Paulo: Quantificação de fontes com modelos receptores e caracterização do material carbonáceo. São Paulo: Instituto de Física, Universidade de São Paulo, 2015. Dissertação de Mestrado em Física.(in Portuguese) https://doi.org/10.11606/D.43.2015.tde-17072015-135624.
Saraga, D.E., Tolis, E.I., Maggos, T., Vasilakos, C., Bartzis, J.G., 2019. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 650(2), 2337–2354. https://doi.org/10.1016/j.scitotenv.2018.09.250.
Scerri, M.M., Kandler, K., Weinbruch, S., 2016. Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean. Atmos. Environ. 147, 395–408. https://doi.org/10.1016/j.atmosenv.2016.10.028.
Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6(5), 877–885. https://doi.org/10.5094/APR.2015.097.
Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.
Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.
Soleimani, M., Amini, N., Sadeghian, B., Wang, D., Fang, L., 2018. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002.
Song, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j.scitotenv.2016.07.115.
Souza, I.C., Mendes, V.A.S., Duarte, I.D., Rocha, L.D., Azevedo, V.C., Matsumoto, S.T., Elliott, M., Wunderlin, D.A., Monferrán, M.V., Fernandes, M.N., 2019. Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Sci. Total Environ. 658, 798-808.
Taiwo, A.M., 2016. Source apportionment of urban background particulate matter in Birmingham, United Kingdom using a mass closure model. Aerosol and Air Qual. Res. 16(5), 1244–1252. https://doi.org/10.4209/aaqr.2015.09.0537.
Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., Hsu, S.C., 2014. PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmos. Chem. Phys. 14(16), 8679–8699. https://doi.org/10.5194/acp14-8679-2014.
Tasić, M., Mijić, Z., Rajšić, S., Stojić, A., Radenković, M., Joksić, J., 2009. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization. J. Phys.: Conf. Se. 162, 012018. https://doi.org/10.1088/17426596/162/1/012018.
Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., Samara, C., 2010. Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019.
Tiwary A., Williams I., 2018. Air Pollution: Measurement, Modelling and Mitigation. CRC Press,696 pp.
Tsyro, S.G., 2005. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmos. Chem. Phys. 5(2), 515–532. https://doi.org/10.5194/acp-5-515-2005.
Tomasi, C., Fuzzi, S., Kokhanovsky, A., 2017. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Remote Sensing of Atmospheric Aerosol, 341-436.
USEPA – United States Environmental Protection Agency, 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide – EPA/600/R-14/108. https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdf
Vallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., Pekkanen, J., 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmos. Environ. 37(5), 615–623. https://doi.org/10.1016/S1352-2310(02)00925-1.
Vargas, F.A., Rojas, N.Y., Pachon, J.E., Russell, A.G., 2011. PM10 characterization and source apportionment at two residential areas in Bogota. Atmos. Pollut. Res. 3(1), 72– 80. https://doi.org/10.5094/APR.2012.006.
Vélez-Pereira, A.M., Vergara-Vasquez, E., 2013. Caracterización de emisiones atmosféricas por fuentes fijas industriales del distrito de Barranquilla, Colombia. In: 4th Colombian Meeting and International Conference on Air Quality and Public Health 1176–1183. https://doi.org/ 10.13140/RG.2.1.1941.1047.
Vengoechea, A.M., Rojano, R.E., Arregoces, H.A., 2018. Dispersion and Concentration of PM10 Particles in a Caribbean Coastal City. Inf. Tecnol. 29(6), 123–130. https://doi.org/10.4067/s0718-07642018000600123.
Viana, M., Querol, X., Alastuey, A., Gil, J.I., Menéndez, M., 2006. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65(11), 2411–2418. https://doi.org/10.1016/j.chemosphere.2006.04.060.
Wang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., Ying, H., Gao, W., Yan, Y., Hu, B., Xin, J., Wang, L., Liu, Z., Sun, Y., Dongsheng, J., Wang, Y., 2018. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos. Res. 203, 105–117. https://doi.org/10.1016/j.atmosres.2017.11.033.
Wang, Y., Zhuang, G., Sun, Y., An, Z., 2006. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 40(34), 6579–6591. https://doi.org/10.1016/j.atmosenv.2006.05.066.
Weichenthal, S., Hatzopoulou, M., Goldberg, M.S., 2014. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part. Fibre. Toxicol. 11, 70.
WHO – World Health Organization, 2005. Air quality guidelines - global update 2005. https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/.
WHO – World Health Organization, 2018. Ambient (outdoor) air pollution. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealth
Wu, X., Vu, T.V., Shi, Z., Harrison, R.M., Liu, D., Cen, K., 2018. Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmos. Environ. 189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025.
Xue, F., Kikumoto, H., Li, X., Ooka, R., 2018. Bayesian source term estimation of atmospheric releases in urban areas using LES approach. J. Hazard. Mater. 349, 68–78. https://doi.org/10.1016/j.jhazmat.2018.01.050.
Yan, S., Subramanian, S.B., Tyagi, R.D., Surampalli, R.Y., Zhang, T.C., 2010. Emerging contaminants of environmental concern: source, transport, fate, and treatment. Pract. Period. Hazard Toxic Radioact. Waste Manag. 14 (1), 2-20.
Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Sui, X., Yang, F., Lu, Y., Wang, W., 2016. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 541, 590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123.
Zhong, Z., Zheng, J., Zhu, M., Huang, Z., Zhang, Z., Jia, G., Wang, X., Bian, Y., Wang, Y., Li, N., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 627, 1080–1092. https://doi.org/10.1016/j.scitotenv.2018.01.268.
Zhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., Zhao, J., Canonaco, F., Prévôt, A.S.H., Fu, P., Wang, Z., Worsnop, D.R., Sun, Y., 2018. Characterization and source
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Geoscience Frontiers
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1674987120302553
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4109b6eb-c171-4534-9bbe-1c8a57563444/download
https://repositorio.cuc.edu.co/bitstreams/6103d8fd-2bd3-4a3f-b71f-382584fa6559/download
https://repositorio.cuc.edu.co/bitstreams/d97fe132-3509-4fcb-86e1-c78abd8d9bda/download
https://repositorio.cuc.edu.co/bitstreams/2d176861-d2ac-4a19-9540-fd8dd45532c0/download
https://repositorio.cuc.edu.co/bitstreams/d141ba45-4005-4601-b267-01d3854cc17a/download
bitstream.checksum.fl_str_mv 71a433dc8d5845eafbcdafdf7655c2e2
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
5919d4e2242c9f63d2aef92aafd2e1bf
c840d11d11baa536e74ce1f2420e05bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166910625185792
spelling Silva Oliveira, Luis FelipeSchneider, IsmaelArtaxo, PauloNúñez-Blanco, YuleisyPinto, DianaFlores, Érico M. M.Gómez Plata, leandroRamírez, OmarDotto, Guilherme Luiz2020-12-18T18:58:42Z2020-12-18T18:58:42Z2020-12-171674-9871https://hdl.handle.net/11323/7614https://doi.org/10.1016/j.gsf.2020.11.012Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Air pollution has become an important issue, especially in Caribbean urban areas, and, particulate matter (PM) emitted by different natural and anthropogenic sources causes environmental and health issues. In this work, we studied the concentrations of PM10 and PM2.5 sources in an industrial and port urban area in the Caribbean region of Colombia. PM samples were collected within 48-h periods between April and October 2018 by using a Partisol 2000i-D sampler. Elemental geochemical characterization was performed by X-ray fluorescence (XRF) analysis. Further, ionic species and black carbon (BC) were quantified by ion chromatography and reflectance spectroscopy, respectively. Using the Positive Matrix Factorization (PMF) receptor model, the contributions of PM sources were quantified. The average concentration of PM10 was 46.6 ± 16.2 μg/m3, with high concentrations of Cl and Ca. For PM2.5, the average concentration was 12.0 ± 3.2 μg/m3, and the most abundant components were BC, S, and Cl. The receptor model identified five sources for PM10 and PM2.5. For both fractions, the contributions of marine sea spray, re-suspended soil, and vehicular traffic were observed. In addition, PM2.5 included two mixed sources were found to be fuel oil combustion with fertilizer industry emissions, and secondary aerosol sources with building construction emissions. Further, PM10 was found to also include building construction emissions with re-suspended soil, and metallurgical industry emissions. These obtained geochemical atmospheric results are important for the implementation of strategies for the continuous improvement of the air quality of the Caribbean region.Silva Oliveira, Luis FelipeSchneider, Ismael-will be generated-orcid-0000-0002-6217-4183-600Artaxo, PauloNúñez-Blanco, YuleisyPinto, DianaFlores, Érico M. M.Gómez Plata, leandro-will be generated-orcid-0000-0002-2944-4479-600Ramírez, OmarDotto, Guilherme Luiz-will be generated-orcid-0000-0002-4413-8138-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Geoscience Frontiershttps://www.sciencedirect.com/science/article/pii/S1674987120302553Urban air pollutionParticulate matterGeochemical compositionAerosol source apportionmentReceptor modelsPMFParticulate matter geochemistry of a highly industrialized region in the Caribbean: basis for future toxicological studiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionAgudelo-Castañeda, D.M., Teixeira, E.C., Schneider, I., Pereira, F.N., Oliveira, M.L.S., Taffarel, S.R., Sehn, J.L., Ramos, C.G., Silva, L.F.O., 2016. Potential utilization for the evaluation of particulate and gaseous pollutants at an urban site near a major highway. Sci. Total Environ. 543(A), 161–170. https://doi.org/10.1016/j.scitotenv.2015.11.030.Alcaldía de Barranquilla, 2020. Conoce a Barranquilla. https://www.barranquilla.gov.co/descubre/conoce-a-barranquillaAldabe, J., Elustondo, D., Santamaría, C., Lasheras, E., Pandolfi, M., Alastuey, A., Querol, X., Santamaría, J.M., 2011. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain). Atmos. Res. 102(1–2), 191–205. https://doi.org/10.1016/j.atmosres.2011.07.003.Amato, F., Favez, O., Pandolfi, M., Alastuey, A., Querol, X., Moukhtar, S., Bruge, B., Verlhac, S., Orza, J.A.G., Bonnaire, N., Le Priol, T., Petit, J.F., Sciare, J., 2016. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 129, 114–124. https://doi.org/10.1016/j.atmosenv.2016.01.022.Arana, A., Artaxo, P., 2014. Elementary composition of atmospheric aerosol in the central region of the Amazon basin. Quim. Nova. 37(2), 268–276. https://doi.org/10.5935/01004042.20140046.Archanjo, B.S., Araujo, J.R., Silva, A.M., Capaz, R.B., Falcão, N.P.S., Jorio, A., Achete, C.A., 2014. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian anthrosoils. Environ. Sci. Technol. 48(13), 7445–7452. https://doi.org/10.1021/es501046b.Arick, D.Q., Choi, Y.H., Kim, H.C., Won, Y.Y., 2015. Effects of nanoparticles on the mechanical functioning of the lung. Adv. Colloid Interf. Advances in Colloid & Interface ence 225 , 218-228.Argumedo, C.D., Castillo, J.F., 2016. Chemical characterization of particulated atmospheric matter PM10 in Guajira, Colombia. Rev. Colomb. Quim. 45(2), 19–29. https://doi.org/10.15446/rev.colomb.quim.v45n2.56991.Badillo-Castañeda, C.T., Garza-Ocañas, L., Garza-Ulloa, M.H., Zanatta-Calderón, M.T., Caballero-Quintero, A., 2015. Heavy metal content in PM2. 5 air samples collected in the Metropolitan Area of Monterrey, México. Hum. Ecol. Risk Assess. 21 (8), 20222035.Bhuyan, P., Deka, P., Prakash, A., Balachandran, S., Hoque, R.R., 2018. Chemical characterization and source apportionment of aerosol over mid Brahmaputra Valley, India. Environ. Pollut. 234, 997–1010. https://doi.org/10.1016/j.envpol.2017.12.009.Blanco-Becerra, L.C., Gáfaro-Rojas, A.I., Rojas-Roa, N.Y., 2015. Influence of precipitation scavenging on the PM2.5/PM10 ratio at the Kennedy locality of Bogotá, Colombia. Rev. Fac. Ing. 76, 58–65. https://doi.org/10.17533/udea.redin.n76a07.Bourdrel, T., Bind, M.A., Béjot, Y., Morel, O., Argacha, J.F., 2017. Cardiovascular effects of air pollution. Arch. Cardiovasc. Dis. 110 (11), 634-642.Brito, J., Rizzo, L.V., Herckes, P., Vasconcellos, P.C., Caumo, S.E.S., Fornaro, A., Ynoue, R.Y., Artaxo, P., Andrade, M.F., 2013. Physical–chemical characterisation of the particulate matter inside two road tunnels in the São Paulo Metropolitan Area. Atmos. Chem. Phys. 13(24), 12199–12213. https://doi.org/10.5194/acp-13-12199-2013.Cáceres, J.O., Sanz-Mangas, D., Manzoor, S., Pérez-Arribas, L.V., Anzano, J., 2019. Quantification of particulate matter, tracking the origin and relationship between elements for the environmental monitoring of the Antarctic region. Sci. Total Environ. 665, 125–132. https://doi.org/10.1016/j.scitotenv.2019.02.116.Canales-Rodríguez, M.A., Quintero-Núñez, M., Castro-Romero, T.G., García-Cuento, R.O., 2014. Chemical Composition of Inhalable Particles PM10 in the Urban and Rural Area of Mexicali, Baja California in México. Inf. Tecnol. 25(6), 13–22. https://doi.org/10.4067/S0718-07642014000600003.Castillo-Ramírez, M.C., Berdejo, J., Saltarín, M., 2018. Informe anual de Calidad de Aire de Barranquilla (in Spanish). http://barranquillaverde.gov.co/calidad-del-aireCereceda-Balic F., Toledo M., Vidal V., Guerrero F., Diaz-Robles L.A., Petit-Breuilh X., Lapuerta M., 2017. Emission factors for PM2. 5, CO, CO2, NOx, SO2 and particle size distributions from the combustion of wood species using a new controlled combustion chamber 3CE. Sci. Total Environ. 584, 901-910.Cesari, D., De Benedetto, G.E., Bonasoni, P., Busetto, M., Dinoi, A., Merico, E., Chirizzi, D., Cristofanelli, P., Donateo, A., Grasso, F.M., Marinoni, A., Pennetta, A., Contini, D., 2018. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 612, 202–213. https://doi.org/10.1016/j.scitotenv.2017.08.230.Chen, C., Liu, S., Dong, W., Zhao, B., Deng, F., 2021. Increasing cardiopulmonary effects of ultrafine particles at relatively low fine particle concentrations. Science of the Total Environment 751,141726.Cheung, K.L., Ntziachristos, L., Tzamkiozis, T., Schauer, J.J., Samaras, Z., Moore, K.F., Sioutas, C., 2010. Emissions of particulate trace elements, metals and organic species from gasoline, diesel, and biodiesel passenger vehicles and their relation to oxidative potential. Aerosol Sci. Tech. 44(7), 500–513. https://doi.org/10.1080/02786821003758294.CIOH - Centro de Investigaciones Oceanográficas e Hidrográficas, 2007. Climatologia de los principales puertos del Caribe Colombiano – Barranquilla (in Spanish). https://www.cioh.org.co/derrotero/images/PDFExternos/Climatologia_Barranquilla.pdfCui, X.X., Li, F., Xiang, J.B., Fang, L., Chung, M.K., Day, D.B., Mo, J.H., Weschler, C.J., Gong, J.C., He, L.C., Zhu, D., Lu, C.J., Han, H.L., Zhang, Y.P., Zhang, J.F., 2018. Cardiopulmonary effects of overnight indoor air filtration in healthy non-smoking adults: a double-blind randomized crossover study. Environ. Int. 114, 27-36,Contini, D., Cesari, D., Conte, M., Donateo, A., 2016. Application of PMF and CMB receptor models for the evaluation of the contribution of a large coal-fired power plant to PM10 concentrations. Sci. Total Environ. 560–561, 131–140. https://doi.org/10.1016/j.scitotenv.2016.04.031.Contini, D., Genga, A., Cesari, D., Siciliano, M., Donateo, A., Bove, M.C., Guascito, M.R., 2010. Characterisation and source apportionment of PM10 in an urban background site in Lecce. Atmos. Res. 95(1), 40–54. https://doi.org/10.1016/j.atmosres.2009.07.010.Delicado, P., 2008. Curso de Modelos no Paramétricos. http://www- eio.upc.es/~delicado/docencia/Apuntes_Models_No_Parametrics.pdf (in Portugues)Duarte, A.L., DaBoit, K., Oliveira, M.L.S., Teixeira, E.C., Schneider, I.L., Silva, L.F.O., 2019. Hazardous elements and amorphous nanoparticles in historical estuary coal mining area. Geoscience Frontiers 10, 927-939.Farahmandkia, Z., Moattar, F., Zayeri, F., Sekhavatjou, M.S., Mansouri, N., 2017. Contribution of point and small-scaled sources to the PM10 emission using positive matrix factorization model. J. Environ. Health Sci. Engineer. 15, 2. https://doi.org/10.1186/s40201-016-0265-8.Gao, J., Peng, X., Chen, G., Xu, J., Shi, G.L., Zhang, Y.C., Feng, Y.C., 2016. Insights into the chemical characterization and sources of PM2.5 in Beijing at a 1-h time resolution. Sci. Total Environ. 542(A), 162–171. https://doi.org/10.1016/j.scitotenv.2015.10.082.Gautam, S., Patra, A.K., Sahu, S.P., Hitch, M., 2018. Particulate matter pollution in opencast coal mining areas: a threat to human health and environment. Int. J. Min. Reclam. Env. 32(2), 75–92. https://doi.org/10.1080/17480930.2016.1218110.Gu, J., Du, S., Han, D., Hou, L., Yi, J., Xu, J., Liu, G., Han, B., Yang, G., Bai, Z.P., 2014. Major chemical compositions, possible sources, and mass closure analysis of PM2.5 in Jinan, China. Air Qual. Atmos. Health 7, 251–262. https://doi.org/10.1007/s11869-0130232-9.Hao, Y., Meng, X., Yu, X., Lei, M., Li, W., Shi, F., Yang, W., Zhang, S., Xie, S., 2018. Characteristics of trace elements in PM2.5 and PM10 of Chifeng, northeast China: Insights into spatiotemporal variations and sources. Atmos. Res. 213, 550–561. https://doi.org/10.1016/j.atmosres.2018.07.006.Hopke, P.K., 2003. A guide to Positive Matrix Factorization. http://www.epa.gov/ttnamti1/files/ambient/pm25/workshop/laymen.pdfIDEAM - Instituto de Hidrología, Meteorología y Estudios Ambientales, 2018. Informe del Estado de la Calidad del Aire en Colombia 2017 (in Spanish). http://www.ideam.gov.co/web/contaminacion-y-calidad-ambiental/informes-del-estadode-la-calidad-del-aire-en-colombia.Jain, S., Sharma, S.K., Mandal, T.K., Saxena, M., 2018. Source apportionment of PM10 in Delhi, India using PCA/APCS, UNMIX and PMF. Particuology 37, 107–118. https://doi.org/10.1016/j.partic.2017.05.009.Jaiprakash, H. G., 2017. Chemical and optical properties of PM2.5 from on-road operation of light duty vehicles in Delhi city. Sci. Total Environ. 586, 900–916. https://doi.org/10.1016/j.scitotenv.2017.02.070.Kholod, N., Evans, M., 2016. Reducing black carbon emissions from diesel vehicles in Russia: An assessment and policy recommendations. Environ. Sci. Policy. 56, 1–8. https://doi.org/10.1016/j.envsci.2015.10.017.Kubesch, N.J., Nazelle, A. de, Westerdahl, D., Martinez, D., Carrasco-Turigas, G., Bouso, L., Guerra, S., Nieuwenhuijsen, M.J., 2015. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup. Environ. Med. 72, 284-293.Kumar, R., Chauhan, M., Sharma, N., Chaudhary, G.R., 2018. Toxic effects of nanomaterials on environment. Environmental Toxicity of Nanomaterials, CRC Press, 1- 20.Li, T.C., Yuan, C.S., Huang, H.C., Lee, C.L., Wu, S.P., Tong, C., 2016. Inter-comparison of Seasonal Variation, Chemical Characteristics, and Source Identification of Atmospheric Fine Particles on Both Sides of the Taiwan Strait. Sci. Rep. 6, 22956. https://doi.org/10.1038/srep22956.Liu, Y., Xing, J., Wang, S., Fu, X., Zheng, H., 2018. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China. Environ. Pollut. 239, 544–553. https://doi.org/10.1016/j.envpol.2018.04.047.Liu, B., Song, N., Dai, Q., Mei, R., Sui, B., Bi, X., Feng, Y., 2016. Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmos. Res. 170, 23–33. https://doi.org/10.1016/j.atmosres.2015.11.002.López, M.L., Ceppi, S., Palancar, G.G., Olcese, L.E., Tirao, G., Toselli, B.M., 2011. Elemental concentration and source identification of PM10 and PM2.5 by SR-XRF in Córdoba City, Argentina. Atmos. Environ. 45(31), 5450–5457. https://doi.org/10.1016/j.atmosenv.2011.07.003.Maldonado-Arízaga, M.J., 2012. Caracterización del material particulado suspendido PM10 de la red de monitoreo de aire de la ciudad de Quito de los años 2009 y 2010 por Espectroscopía de Absorción Atómica (in Spanish). http://repositorio.puce.edu.ec/handle/22000/7112.Morera-Gómez, Y., Elustondo, D., Lasheras, E., Alonso-Hernández, C. M., Santamaría, J.M., 2018. Chemical characterization of PM10 samples collected simultaneously at a rural and an urban site in the Caribbean coast: Local and long-range source apportionment. Atmos. Environ. 192, 182–192. https://doi.org/10.1016/j.atmosenv.2018.08.058.Mugica, V., Ortiz, E., Molina, L., De Vizcaya-Ruiz, A., Nebot, A., Quintana, R., Aguilar, J., Alcántara, E., 2009. PM composition and source reconciliation in Mexico City. Atmos. Environ. 43(32), 5068–5074. https://doi.org/10.1016/j.atmosenv.2009.06.051.Murillo, J.H., Roman, S.R., Marin, J.F.R., Ramos, A.C., Jimenez, S. B., Gonzalez, B.C., Baumgardner, D.G., 2013. Chemical characterization and source apportionment of PM10 and PM2.5 in the metropolitan area of Costa Rica, Central America. Atmos. Pollut. Res. 4(2), 181–190. https://doi.org/10.5094/APR.2013.018.Ordóñez-Aquino, C., Sánchez-Ccoyllo, O., 2017. Characterization of the PM2,5 chemical - morphological in Lima metropolitan with scanning electronic microscopy (SEM). Rev. Acta. Nova. 8(3), 397–420.Paatero, P., Tapper, U., 1994. Positive matrix factorization: a non–negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111–126. https://doi.org/10.1002/env.3170050203.Palomino, G., 2016. Motores lineales de imanes permanentes: Principios de funcionamiento y optimización, Programa Editorial Universidad Autónoma de Occidente, Santiago de Cali.(in Spanish),Park, M., Joo, H.S., Lee, K., Jang, M., Kim, S.D., Kim, I., Borlaza, L.J.S., Lim, H., Shin, H., Chung, K.H., Choi, Y.H., Park, S.G., Bae, M.S., Lee, J., Song, H., Park, K., 2018. Differential toxicities of fine particulate matters from various sources. Sci. Rep. 8, 17007. https://doi.org/10.1038/s41598-018-35398-0.Peters, A., Hampel, R., Cyrys, J., Breitner, S., Geruschkat, U., Kraus, U., Zareba, W., Schneider, A., 2015. Elevated particle number concentrations induce immediate changes in heart rate variability: a panel study in individuals with impaired glucose metabolism or diabetes. Part. Fibre. Toxicol. 12, 7.Perrone, M.G., Vratolis, S., Georgieva, E., Török, S., Šega, K., Veleva, B., Osán, J., Bešlić, I., Kertész, Z., Pernigotti, D., Eleftheriadis, K., Belis, C.A., 2018. Sources and geographic origin of particulate matter in urban areas of the Danube macro-region: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 619–620, 1515–1529. https://doi.org/10.1016/j.scitotenv.2017.11.092.Pillai, P.S., Babu, S.S., Moorthy, K.K., 2002. A study of PM, PM10 and PM2.5 concentration at a tropical coastal station. Atmos. Res. 61(2), 149–167. https://doi.org/10.1016/S0169-8095(01)00136-3.Police, S., Sahu, S.K., Tiwari, M., Pandit, G.G., 2018. Chemical composition and source apportionment of PM2.5 and PM2.5–10 in Trombay (Mumbai, India), a coastal industrial area. Particuology. 37, 143–153. https://doi.org/10.1016/j.partic.2017.09.006.Putaud, J.P., Van Dingenen, R., Alastuey, A., Bauer, H., Birmili, W., Cyrys, J., Flentje, H., Fuzzi, S., Gehrig, R., Hansson, H.C., Harrison, R.M., Herrmann, H., Hitzenberger, R., Hüglin, C., Jones, A.M., Kasper-Giebl, A., Kiss, G., Kousa, A., Kuhlbusch, T.A.J., Löschau, G., Maenhaut, W., Molnar, A., Moreno, R., Pekkanen, J., Perrino, C., Pitz, M., Puxbaum, H., Querol, X., Rodriguez, S., Salma, I., Schwarz, J., Smolik, J., Schneider, J., Spindler, G., ten Brink, H., Tursoc, J., Viana, M., Wiedensohler, A., Raes, F., 2010. A European aerosol phenomenology - 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmos. Environ. 44(10), 1308–1320. https://doi.org/10.1016/j.atmosenv.2009.12.011.Querol, X., Alastuey, A., de la Rosa, J., Sánchez de la Campa, A., Plana, F., Ruiz, C.R., 2002. Source apportionment analysis of atmospheric particulates in an industrialised urban site in southwestern Spain. Atmos. Environ. 36(19), 3113–3125. https://doi.org/10.1016/S1352-2310(02)00257-1.Querol, X., Alastuey, A., Rodriguez, S., Plana, F., Ruiz, C.R., Cots, N., Massagué, G., Puig, O., 2001. PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain. Atmos. Environ. 35(36), 6407–6419. https://doi.org/10.1016/S1352-2310(01)00361-2.Ramírez, O., Sánchez de la Campa, A.M., Amato, F., Catacolí, R.A., Rojas, N., de la Rosa, J., 2018a. Chemical composition and source apportionment of PM10 at an urban background site in a high–altitude Latin American megacity (Bogota, Colombia). Environ. Pollut. 233, 142–155. https://doi.org/10.1016/j.envpol.2017.10.045.Reff, A., Eberly, S.I., Bhave, P. V., 2007. Receptor modeling of ambient particulate matter data using Positive Matrix Factorization: review of existing methods. J. Air Waste Manage. 57(2), 146–154. https://doi.org/10.1080/10473289.2007.10465319.Riojas-Rodríguez, H., da Silva, A.S., Texcalac-Sangrador, J.L., Moreno-Banda, G.L., 2016. Air pollution management and control in Latin America and the Caribbean: implications for climate change. Rev. Panam. Salud Publica 40(3), 150–159. https://www.scielosp.org/article/rpsp/2016.v40n3/150-159/en/.Rojano, R., Arregoces, H., Restrepo, G., 2014. Elemental Composition and Sources of Inhalable Particles (PM10) and Suspended Total Particles (TSP) in the Urban Area of the City of Riohacha׳ Colombia. Inf. Tecnol. 25(6), 3–12. https://doi.org/10.4067/S071807642014000600002.Saldarriaga-Molina, J.C., Echeverri-Londoño, C.A., Molina-Pérez, F.J., 2004. Partículas suspendidas (PST) y partículas respirables (PM10) en el Valle de Aburrá, Colombia. Rev. Fac. Ing. Univ. Antioquia. 32, 7–16 (in Spanish). https://www.redalyc.org/articulo.oa?id=430/43003201.Salvador, P., Artíñano, B., Querol, X., Alastuey, A., Costoya, M., 2007. Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site. Atmos. Environ. 41(1), 1–17. https://doi.org/10.1016/j.atmosenv.2006.08.007.Salvo, A., Brito, J., Artaxo, P., Geiger, F.M., 2017. Reduced ultrafine particle levels in São Paulo’s atmosphere during shifts from gasoline to ethanol use. Nat. Commun. 8, 77. https://doi.org/10.1038/s41467-017-00041-5.Santos Junior, D.A.M., 2009. Emissões veiculares em São Paulo: Quantificação de fontes com modelos receptores e caracterização do material carbonáceo. São Paulo: Instituto de Física, Universidade de São Paulo, 2015. Dissertação de Mestrado em Física.(in Portuguese) https://doi.org/10.11606/D.43.2015.tde-17072015-135624.Saraga, D.E., Tolis, E.I., Maggos, T., Vasilakos, C., Bartzis, J.G., 2019. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 650(2), 2337–2354. https://doi.org/10.1016/j.scitotenv.2018.09.250.Scerri, M.M., Kandler, K., Weinbruch, S., 2016. Disentangling the contribution of Saharan dust and marine aerosol to PM10 levels in the Central Mediterranean. Atmos. Environ. 147, 395–408. https://doi.org/10.1016/j.atmosenv.2016.10.028.Schneider, I.L., Teixeira, E.C., Oliveira, L.F.S., Wiegand, F., 2015. Atmospheric particle number concentration and size distribution in a traffic–impacted area. Atmos. Pollut. Res. 6(5), 877–885. https://doi.org/10.5094/APR.2015.097.Silva, L.F.O., Milanes, C., Pinto, D., Ramirez, O., Lima, B.D., 2020a. Multiple hazardous elements in nanoparticulate matter from a Caribbean industrialized atmosphere. Chemosphere 239, 124776.Silva, L.F.O., Pinto, D., Neckel, A., Oliveira, M.L.S., Sampaio, C.H., 2020b. Atmospheric nanocompounds on Lanzarote Island: Vehicular exhaust and igneous geologic formation interactions. Chemosphere 254, 126822.Soleimani, M., Amini, N., Sadeghian, B., Wang, D., Fang, L., 2018. Heavy metals and their source identification in particulate matter (PM2.5) in Isfahan City, Iran. J. Environ. Sci. 72, 166–175. https://doi.org/10.1016/j.jes.2018.01.002.Song, X., Yang, S., Shao, L., Fan, J., Liu, Y., 2016. PM10 mass concentration, chemical composition, and sources in the typical coal-dominated industrial city of Pingdingshan, China. Sci. Total Environ. 571, 1155–1163. https://doi.org/10.1016/j.scitotenv.2016.07.115.Souza, I.C., Mendes, V.A.S., Duarte, I.D., Rocha, L.D., Azevedo, V.C., Matsumoto, S.T., Elliott, M., Wunderlin, D.A., Monferrán, M.V., Fernandes, M.N., 2019. Nanoparticle transport and sequestration: intracellular titanium dioxide nanoparticles in a neotropical fish. Sci. Total Environ. 658, 798-808.Taiwo, A.M., 2016. Source apportionment of urban background particulate matter in Birmingham, United Kingdom using a mass closure model. Aerosol and Air Qual. Res. 16(5), 1244–1252. https://doi.org/10.4209/aaqr.2015.09.0537.Tao, J., Gao, J., Zhang, L., Zhang, R., Che, H., Zhang, Z., Lin, Z., Jing, J., Cao, J., Hsu, S.C., 2014. PM2.5 pollution in a megacity of Southwest China: Source apportionment and implication. Atmos. Chem. Phys. 14(16), 8679–8699. https://doi.org/10.5194/acp14-8679-2014.Tasić, M., Mijić, Z., Rajšić, S., Stojić, A., Radenković, M., Joksić, J., 2009. Source apportionment of atmospheric bulk deposition in the Belgrade urban area using Positive Matrix factorization. J. Phys.: Conf. Se. 162, 012018. https://doi.org/10.1088/17426596/162/1/012018.Terzi, E., Argyropoulos, G., Bougatioti, A., Mihalopoulos, N., Nikolaou, K., Samara, C., 2010. Chemical composition and mass closure of ambient PM10 at urban sites. Atmos. Environ. 44(18), 2231–2239. https://doi.org/10.1016/j.atmosenv.2010.02.019.Tiwary A., Williams I., 2018. Air Pollution: Measurement, Modelling and Mitigation. CRC Press,696 pp.Tsyro, S.G., 2005. To what extent can aerosol water explain the discrepancy between model calculated and gravimetric PM10 and PM2.5? Atmos. Chem. Phys. 5(2), 515–532. https://doi.org/10.5194/acp-5-515-2005.Tomasi, C., Fuzzi, S., Kokhanovsky, A., 2017. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate. Remote Sensing of Atmospheric Aerosol, 341-436.USEPA – United States Environmental Protection Agency, 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide – EPA/600/R-14/108. https://www.epa.gov/sites/production/files/2015-02/documents/pmf_5.0_user_guide.pdfVallius, M., Lanki, T., Tiittanen, P., Koistinen, K., Ruuskanen, J., Pekkanen, J., 2003. Source apportionment of urban ambient PM2.5 in two successive measurement campaigns in Helsinki, Finland. Atmos. Environ. 37(5), 615–623. https://doi.org/10.1016/S1352-2310(02)00925-1.Vargas, F.A., Rojas, N.Y., Pachon, J.E., Russell, A.G., 2011. PM10 characterization and source apportionment at two residential areas in Bogota. Atmos. Pollut. Res. 3(1), 72– 80. https://doi.org/10.5094/APR.2012.006.Vélez-Pereira, A.M., Vergara-Vasquez, E., 2013. Caracterización de emisiones atmosféricas por fuentes fijas industriales del distrito de Barranquilla, Colombia. In: 4th Colombian Meeting and International Conference on Air Quality and Public Health 1176–1183. https://doi.org/ 10.13140/RG.2.1.1941.1047.Vengoechea, A.M., Rojano, R.E., Arregoces, H.A., 2018. Dispersion and Concentration of PM10 Particles in a Caribbean Coastal City. Inf. Tecnol. 29(6), 123–130. https://doi.org/10.4067/s0718-07642018000600123.Viana, M., Querol, X., Alastuey, A., Gil, J.I., Menéndez, M., 2006. Identification of PM sources by principal component analysis (PCA) coupled with wind direction data. Chemosphere 65(11), 2411–2418. https://doi.org/10.1016/j.chemosphere.2006.04.060.Wang, W., Yu, J., Cui, Y., He, J., Xue, P., Cao, W., Ying, H., Gao, W., Yan, Y., Hu, B., Xin, J., Wang, L., Liu, Z., Sun, Y., Dongsheng, J., Wang, Y., 2018. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China. Atmos. Res. 203, 105–117. https://doi.org/10.1016/j.atmosres.2017.11.033.Wang, Y., Zhuang, G., Sun, Y., An, Z., 2006. The variation of characteristics and formation mechanisms of aerosols in dust, haze, and clear days in Beijing. Atmos. Environ. 40(34), 6579–6591. https://doi.org/10.1016/j.atmosenv.2006.05.066.Weichenthal, S., Hatzopoulou, M., Goldberg, M.S., 2014. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part. Fibre. Toxicol. 11, 70.WHO – World Health Organization, 2005. Air quality guidelines - global update 2005. https://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/en/.WHO – World Health Organization, 2018. Ambient (outdoor) air pollution. https://www.who.int/es/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-andhealthWu, X., Vu, T.V., Shi, Z., Harrison, R.M., Liu, D., Cen, K., 2018. Characterization and source apportionment of carbonaceous PM2.5 particles in China - A review. Atmos. Environ. 189, 187–212. https://doi.org/10.1016/j.atmosenv.2018.06.025.Xue, F., Kikumoto, H., Li, X., Ooka, R., 2018. Bayesian source term estimation of atmospheric releases in urban areas using LES approach. J. Hazard. Mater. 349, 68–78. https://doi.org/10.1016/j.jhazmat.2018.01.050.Yan, S., Subramanian, S.B., Tyagi, R.D., Surampalli, R.Y., Zhang, T.C., 2010. Emerging contaminants of environmental concern: source, transport, fate, and treatment. Pract. Period. Hazard Toxic Radioact. Waste Manag. 14 (1), 2-20.Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Sui, X., Yang, F., Lu, Y., Wang, W., 2016. Sources apportionment of PM2.5 in a background site in the North China Plain. Sci. Total Environ. 541, 590–598. https://doi.org/10.1016/j.scitotenv.2015.09.123.Zhong, Z., Zheng, J., Zhu, M., Huang, Z., Zhang, Z., Jia, G., Wang, X., Bian, Y., Wang, Y., Li, N., 2018. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 627, 1080–1092. https://doi.org/10.1016/j.scitotenv.2018.01.268.Zhou, W., Wang, Q., Zhao, X., Xu, W., Chen, C., Du, W., Zhao, J., Canonaco, F., Prévôt, A.S.H., Fu, P., Wang, Z., Worsnop, D.R., Sun, Y., 2018. Characterization and sourcePublicationORIGINALParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdfParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdfapplication/pdf1164404https://repositorio.cuc.edu.co/bitstreams/4109b6eb-c171-4534-9bbe-1c8a57563444/download71a433dc8d5845eafbcdafdf7655c2e2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/6103d8fd-2bd3-4a3f-b71f-382584fa6559/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/d97fe132-3509-4fcb-86e1-c78abd8d9bda/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdf.jpgParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdf.jpgimage/jpeg40180https://repositorio.cuc.edu.co/bitstreams/2d176861-d2ac-4a19-9540-fd8dd45532c0/download5919d4e2242c9f63d2aef92aafd2e1bfMD54TEXTParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdf.txtParticulatemattergeochemistryofahighlyindustrializedregionin the Caribbean. Basis for future toxicological studies.pdf.txttext/plain81108https://repositorio.cuc.edu.co/bitstreams/d141ba45-4005-4601-b267-01d3854cc17a/downloadc840d11d11baa536e74ce1f2420e05bdMD5511323/7614oai:repositorio.cuc.edu.co:11323/76142024-09-17 14:25:12.992http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==