Localization of Leaks in Water Distribution Networks using Flow Readings
This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rat...
- Autores:
-
Jimenez Cabas, Javier Augusto
Romero Fandiño, Elena
Torres, Lizeth A.
E.E. Sanjuan, Marco
Lopez Estrada, Francisco Ronay
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/1901
- Acceso en línea:
- https://hdl.handle.net/11323/1901
https://repositorio.cuc.edu.co/
- Palabra clave:
- fault detection and isolationx
leak diagnosis
pipelines
Water distribution networks
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_a1e17476bfc476bb194233d4d597fe3b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/1901 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Localization of Leaks in Water Distribution Networks using Flow Readings |
title |
Localization of Leaks in Water Distribution Networks using Flow Readings |
spellingShingle |
Localization of Leaks in Water Distribution Networks using Flow Readings fault detection and isolationx leak diagnosis pipelines Water distribution networks |
title_short |
Localization of Leaks in Water Distribution Networks using Flow Readings |
title_full |
Localization of Leaks in Water Distribution Networks using Flow Readings |
title_fullStr |
Localization of Leaks in Water Distribution Networks using Flow Readings |
title_full_unstemmed |
Localization of Leaks in Water Distribution Networks using Flow Readings |
title_sort |
Localization of Leaks in Water Distribution Networks using Flow Readings |
dc.creator.fl_str_mv |
Jimenez Cabas, Javier Augusto Romero Fandiño, Elena Torres, Lizeth A. E.E. Sanjuan, Marco Lopez Estrada, Francisco Ronay |
dc.contributor.author.spa.fl_str_mv |
Jimenez Cabas, Javier Augusto Romero Fandiño, Elena Torres, Lizeth A. E.E. Sanjuan, Marco Lopez Estrada, Francisco Ronay |
dc.subject.eng.fl_str_mv |
fault detection and isolationx leak diagnosis pipelines Water distribution networks |
topic |
fault detection and isolationx leak diagnosis pipelines Water distribution networks |
description |
This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rate. From the response of this model and flow rate measurements at junctions of the pipelines composing the WDN, a set of residuals1 is proposed for each pipeline. The residuals closest to zero will indicate the leak positions in the faulty pipelines. We present some simulation tests based on data from PipelineStudio® from Energy Solutions to illustrate the suitability of our method. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-11-26T21:02:44Z |
dc.date.available.none.fl_str_mv |
2018-11-26T21:02:44Z |
dc.date.issued.none.fl_str_mv |
2018 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2405-8963 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/1901 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2405-8963 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/1901 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Billmann, L. and Isermann, R. (1987). Leak detection methods for pipelines. Automatica, 23(3), 381–385. Brki´c, D. (2011). Review of explicit approximations to the colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 77(1), 34–48. Buchberger, S.G. and Nadimpalli, G. (2004). Leak estimation in water distribution systems by statistical analysis of flow readings. Journal of water resources planning and management, 130(4), 321–329. Clamond, D. (2009). Efficient resolution of the colebrook equation. Industrial & Engineering Chemistry Research, 48(7), 3665–3671. Colebrook, C. and White, C. (1937). Experiments with fluid friction in roughened pipes. Proceedings of the royal society of london. series a, mathematical and Physical sciences, 367–381. Farmer, E. (1989). System for monitoring pipelines. US Patent 4,796,466. Isermann, R. (1984). Process fault detection based on modeling and estimation methodsa survey. automatica, 20(4), 387–404. Jim´enez, J., Torres, L., Rubio, I., and Sanjuan, M. (2017). Auxiliary signal design and li´enard-type models for identifying pipeline parameters. In Modeling and Monitoring of Pipelines and Networks, 99–124. Springer. Jim´enez-Cabas, J., Torres, L., L´opez-Estrada, F.R., and Sanjuan, M. (2017). Leak diagnosis in pipelines by only using flow measurements. IEEE Colombian Conference on Automatic Control (CCAC). Kim, Y., Lee, S.J., Park, T., Lee, G., Suh, J.C., and Lee, J.M. (2016). Robust leak detection and its localization using interval estimation for water distribution network. Computers & Chemical Engineering, 92, 1–17. Kingdom, B., Liemberger, R., and Marin, P. (2006). The challenge of reducing non-revenue water (NRW) in developing countries. Multikanga, H.E., Sharma, S., and Vairavamoorthy, K. (2009). Water loss management in developing countries: Challenges and prospects. American Water Works Association. Journal, 101(12), 57. Ostapkowicz, P. (2016). Leak detection in liquid transmission pipelines using simplified pressure analysis tech niques employing a minimum of standard and nonstandard measuring devices. Engineering Structures, 113, 194–205. P´erez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E., and Jordanas, L. (2009). Pressure sensor distribution for leak detection in barcelona water distribution network. Water science and technology: water supply, 9(6), 715– 721. P´erez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., and Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157–1167. Ponce, M.V.C., Casta˜n´on, L.E.G., and Cayuela, V.P. (2014). Model-based leak detection and location in water distribution networks considering an extendedhorizon analysis of pressure sensitivities. Journal of Hydroinformatics, 16(3), 649–670. Silva, R.A., Buiatti, C.M., Cruz, S.L., and Pereira, J.A. (1996). Pressure wave behaviour and leak detection in pipelines. Computers & chemical engineering, 20, S491– S496. Torres, L., Agui˜naga, J.A.D., Besan¸con, G., Verde, C., and Begovich, O. (2016). Equivalent Li´enard-type models for a fluid transmission line. Comptes Rendus M´ecanique, 344(8), 582–595. Torres, L., Besan¸con, G., and Verde, C. (2015). Li´enard type model of fluid flow in pipelines: Application to estimation. In 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. WHO (2000). Global water supply and sanitation assessment 2000 report. Technical report, World Health Organization (WHO). Wood, D.J. (1966). An explicit friction factor relationship. Civil Engineering, 36(12), 60–61. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
IFAC-PapersOnLine |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/501ef8d1-2932-41dc-beb2-ac359b309fff/download https://repositorio.cuc.edu.co/bitstreams/3e647668-671d-4a8b-960b-e6851d77ad81/download https://repositorio.cuc.edu.co/bitstreams/15e101d5-fa94-4447-9836-105b70ee0dd8/download https://repositorio.cuc.edu.co/bitstreams/4d7fdd2b-ceee-4a3d-9015-4b25b7b27019/download |
bitstream.checksum.fl_str_mv |
2d155bfea05d7bfba3467bd6d6fea10a 8a4605be74aa9ea9d79846c1fba20a33 0cdc240ecf6aa2275fd9f9d7248cef85 f2ad152697d2f4de8dc1fa7c91eff8b9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760794585530368 |
spelling |
Jimenez Cabas, Javier AugustoRomero Fandiño, ElenaTorres, Lizeth A.E.E. Sanjuan, MarcoLopez Estrada, Francisco Ronay2018-11-26T21:02:44Z2018-11-26T21:02:44Z20182405-8963https://hdl.handle.net/11323/1901Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rate. From the response of this model and flow rate measurements at junctions of the pipelines composing the WDN, a set of residuals1 is proposed for each pipeline. The residuals closest to zero will indicate the leak positions in the faulty pipelines. We present some simulation tests based on data from PipelineStudio® from Energy Solutions to illustrate the suitability of our method.Jimenez Cabas, Javier Augusto-0000-0001-9707-8418-600Romero Fandiño, Elena-81dbff90-fa41-4705-bdd5-96d0883811d6-0Torres, Lizeth A.-5f9f5dd2-6966-422c-bcda-10c7874a2759-0E.E. Sanjuan, Marco-0f138033-0fd0-439b-b1ea-23d6ec38728b-0Lopez Estrada, Francisco Ronay-60d6af8b-d350-4875-96a6-809148f91d03-0engIFAC-PapersOnLineAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2fault detection and isolationxleak diagnosispipelinesWater distribution networksLocalization of Leaks in Water Distribution Networks using Flow ReadingsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBillmann, L. and Isermann, R. (1987). Leak detection methods for pipelines. Automatica, 23(3), 381–385. Brki´c, D. (2011). Review of explicit approximations to the colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 77(1), 34–48. Buchberger, S.G. and Nadimpalli, G. (2004). Leak estimation in water distribution systems by statistical analysis of flow readings. Journal of water resources planning and management, 130(4), 321–329. Clamond, D. (2009). Efficient resolution of the colebrook equation. Industrial & Engineering Chemistry Research, 48(7), 3665–3671. Colebrook, C. and White, C. (1937). Experiments with fluid friction in roughened pipes. Proceedings of the royal society of london. series a, mathematical and Physical sciences, 367–381. Farmer, E. (1989). System for monitoring pipelines. US Patent 4,796,466. Isermann, R. (1984). Process fault detection based on modeling and estimation methodsa survey. automatica, 20(4), 387–404. Jim´enez, J., Torres, L., Rubio, I., and Sanjuan, M. (2017). Auxiliary signal design and li´enard-type models for identifying pipeline parameters. In Modeling and Monitoring of Pipelines and Networks, 99–124. Springer. Jim´enez-Cabas, J., Torres, L., L´opez-Estrada, F.R., and Sanjuan, M. (2017). Leak diagnosis in pipelines by only using flow measurements. IEEE Colombian Conference on Automatic Control (CCAC). Kim, Y., Lee, S.J., Park, T., Lee, G., Suh, J.C., and Lee, J.M. (2016). Robust leak detection and its localization using interval estimation for water distribution network. Computers & Chemical Engineering, 92, 1–17. Kingdom, B., Liemberger, R., and Marin, P. (2006). The challenge of reducing non-revenue water (NRW) in developing countries. Multikanga, H.E., Sharma, S., and Vairavamoorthy, K. (2009). Water loss management in developing countries: Challenges and prospects. American Water Works Association. Journal, 101(12), 57. Ostapkowicz, P. (2016). Leak detection in liquid transmission pipelines using simplified pressure analysis tech niques employing a minimum of standard and nonstandard measuring devices. Engineering Structures, 113, 194–205. P´erez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E., and Jordanas, L. (2009). Pressure sensor distribution for leak detection in barcelona water distribution network. Water science and technology: water supply, 9(6), 715– 721. P´erez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., and Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157–1167. Ponce, M.V.C., Casta˜n´on, L.E.G., and Cayuela, V.P. (2014). Model-based leak detection and location in water distribution networks considering an extendedhorizon analysis of pressure sensitivities. Journal of Hydroinformatics, 16(3), 649–670. Silva, R.A., Buiatti, C.M., Cruz, S.L., and Pereira, J.A. (1996). Pressure wave behaviour and leak detection in pipelines. Computers & chemical engineering, 20, S491– S496. Torres, L., Agui˜naga, J.A.D., Besan¸con, G., Verde, C., and Begovich, O. (2016). Equivalent Li´enard-type models for a fluid transmission line. Comptes Rendus M´ecanique, 344(8), 582–595. Torres, L., Besan¸con, G., and Verde, C. (2015). Li´enard type model of fluid flow in pipelines: Application to estimation. In 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. WHO (2000). Global water supply and sanitation assessment 2000 report. Technical report, World Health Organization (WHO). Wood, D.J. (1966). An explicit friction factor relationship. Civil Engineering, 36(12), 60–61.PublicationORIGINALLocalization of Leaks in Water Distribution Networks using Flow Readings.pdfLocalization of Leaks in Water Distribution Networks using Flow Readings.pdfapplication/pdf1293859https://repositorio.cuc.edu.co/bitstreams/501ef8d1-2932-41dc-beb2-ac359b309fff/download2d155bfea05d7bfba3467bd6d6fea10aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3e647668-671d-4a8b-960b-e6851d77ad81/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.jpgLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.jpgimage/jpeg75277https://repositorio.cuc.edu.co/bitstreams/15e101d5-fa94-4447-9836-105b70ee0dd8/download0cdc240ecf6aa2275fd9f9d7248cef85MD54TEXTLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.txtLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.txttext/plain51327https://repositorio.cuc.edu.co/bitstreams/4d7fdd2b-ceee-4a3d-9015-4b25b7b27019/downloadf2ad152697d2f4de8dc1fa7c91eff8b9MD5511323/1901oai:repositorio.cuc.edu.co:11323/19012024-09-17 12:44:17.736open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |