Localization of Leaks in Water Distribution Networks using Flow Readings

This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rat...

Full description

Autores:
Jimenez Cabas, Javier Augusto
Romero Fandiño, Elena
Torres, Lizeth A.
E.E. Sanjuan, Marco
Lopez Estrada, Francisco Ronay
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1901
Acceso en línea:
https://hdl.handle.net/11323/1901
https://repositorio.cuc.edu.co/
Palabra clave:
fault detection and isolationx
leak diagnosis
pipelines
Water distribution networks
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_a1e17476bfc476bb194233d4d597fe3b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1901
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Localization of Leaks in Water Distribution Networks using Flow Readings
title Localization of Leaks in Water Distribution Networks using Flow Readings
spellingShingle Localization of Leaks in Water Distribution Networks using Flow Readings
fault detection and isolationx
leak diagnosis
pipelines
Water distribution networks
title_short Localization of Leaks in Water Distribution Networks using Flow Readings
title_full Localization of Leaks in Water Distribution Networks using Flow Readings
title_fullStr Localization of Leaks in Water Distribution Networks using Flow Readings
title_full_unstemmed Localization of Leaks in Water Distribution Networks using Flow Readings
title_sort Localization of Leaks in Water Distribution Networks using Flow Readings
dc.creator.fl_str_mv Jimenez Cabas, Javier Augusto
Romero Fandiño, Elena
Torres, Lizeth A.
E.E. Sanjuan, Marco
Lopez Estrada, Francisco Ronay
dc.contributor.author.spa.fl_str_mv Jimenez Cabas, Javier Augusto
Romero Fandiño, Elena
Torres, Lizeth A.
E.E. Sanjuan, Marco
Lopez Estrada, Francisco Ronay
dc.subject.eng.fl_str_mv fault detection and isolationx
leak diagnosis
pipelines
Water distribution networks
topic fault detection and isolationx
leak diagnosis
pipelines
Water distribution networks
description This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rate. From the response of this model and flow rate measurements at junctions of the pipelines composing the WDN, a set of residuals1 is proposed for each pipeline. The residuals closest to zero will indicate the leak positions in the faulty pipelines. We present some simulation tests based on data from PipelineStudio® from Energy Solutions to illustrate the suitability of our method.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-26T21:02:44Z
dc.date.available.none.fl_str_mv 2018-11-26T21:02:44Z
dc.date.issued.none.fl_str_mv 2018
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2405-8963
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1901
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2405-8963
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1901
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Billmann, L. and Isermann, R. (1987). Leak detection methods for pipelines. Automatica, 23(3), 381–385. Brki´c, D. (2011). Review of explicit approximations to the colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 77(1), 34–48. Buchberger, S.G. and Nadimpalli, G. (2004). Leak estimation in water distribution systems by statistical analysis of flow readings. Journal of water resources planning and management, 130(4), 321–329. Clamond, D. (2009). Efficient resolution of the colebrook equation. Industrial & Engineering Chemistry Research, 48(7), 3665–3671. Colebrook, C. and White, C. (1937). Experiments with fluid friction in roughened pipes. Proceedings of the royal society of london. series a, mathematical and Physical sciences, 367–381. Farmer, E. (1989). System for monitoring pipelines. US Patent 4,796,466. Isermann, R. (1984). Process fault detection based on modeling and estimation methodsa survey. automatica, 20(4), 387–404. Jim´enez, J., Torres, L., Rubio, I., and Sanjuan, M. (2017). Auxiliary signal design and li´enard-type models for identifying pipeline parameters. In Modeling and Monitoring of Pipelines and Networks, 99–124. Springer. Jim´enez-Cabas, J., Torres, L., L´opez-Estrada, F.R., and Sanjuan, M. (2017). Leak diagnosis in pipelines by only using flow measurements. IEEE Colombian Conference on Automatic Control (CCAC). Kim, Y., Lee, S.J., Park, T., Lee, G., Suh, J.C., and Lee, J.M. (2016). Robust leak detection and its localization using interval estimation for water distribution network. Computers & Chemical Engineering, 92, 1–17. Kingdom, B., Liemberger, R., and Marin, P. (2006). The challenge of reducing non-revenue water (NRW) in developing countries. Multikanga, H.E., Sharma, S., and Vairavamoorthy, K. (2009). Water loss management in developing countries: Challenges and prospects. American Water Works Association. Journal, 101(12), 57. Ostapkowicz, P. (2016). Leak detection in liquid transmission pipelines using simplified pressure analysis tech niques employing a minimum of standard and nonstandard measuring devices. Engineering Structures, 113, 194–205. P´erez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E., and Jordanas, L. (2009). Pressure sensor distribution for leak detection in barcelona water distribution network. Water science and technology: water supply, 9(6), 715– 721. P´erez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., and Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157–1167. Ponce, M.V.C., Casta˜n´on, L.E.G., and Cayuela, V.P. (2014). Model-based leak detection and location in water distribution networks considering an extendedhorizon analysis of pressure sensitivities. Journal of Hydroinformatics, 16(3), 649–670. Silva, R.A., Buiatti, C.M., Cruz, S.L., and Pereira, J.A. (1996). Pressure wave behaviour and leak detection in pipelines. Computers & chemical engineering, 20, S491– S496. Torres, L., Agui˜naga, J.A.D., Besan¸con, G., Verde, C., and Begovich, O. (2016). Equivalent Li´enard-type models for a fluid transmission line. Comptes Rendus M´ecanique, 344(8), 582–595. Torres, L., Besan¸con, G., and Verde, C. (2015). Li´enard type model of fluid flow in pipelines: Application to estimation. In 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. WHO (2000). Global water supply and sanitation assessment 2000 report. Technical report, World Health Organization (WHO). Wood, D.J. (1966). An explicit friction factor relationship. Civil Engineering, 36(12), 60–61.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv IFAC-PapersOnLine
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/501ef8d1-2932-41dc-beb2-ac359b309fff/download
https://repositorio.cuc.edu.co/bitstreams/3e647668-671d-4a8b-960b-e6851d77ad81/download
https://repositorio.cuc.edu.co/bitstreams/15e101d5-fa94-4447-9836-105b70ee0dd8/download
https://repositorio.cuc.edu.co/bitstreams/4d7fdd2b-ceee-4a3d-9015-4b25b7b27019/download
bitstream.checksum.fl_str_mv 2d155bfea05d7bfba3467bd6d6fea10a
8a4605be74aa9ea9d79846c1fba20a33
0cdc240ecf6aa2275fd9f9d7248cef85
f2ad152697d2f4de8dc1fa7c91eff8b9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760794585530368
spelling Jimenez Cabas, Javier AugustoRomero Fandiño, ElenaTorres, Lizeth A.E.E. Sanjuan, MarcoLopez Estrada, Francisco Ronay2018-11-26T21:02:44Z2018-11-26T21:02:44Z20182405-8963https://hdl.handle.net/11323/1901Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a novel approach to localize single and sequential leaks based on the lumped model of a water distribution network (WDN). The principal features of such a model are: a new friction term expressed as a power-law and a suitable representation expressed only in terms of the flow rate. From the response of this model and flow rate measurements at junctions of the pipelines composing the WDN, a set of residuals1 is proposed for each pipeline. The residuals closest to zero will indicate the leak positions in the faulty pipelines. We present some simulation tests based on data from PipelineStudio® from Energy Solutions to illustrate the suitability of our method.Jimenez Cabas, Javier Augusto-0000-0001-9707-8418-600Romero Fandiño, Elena-81dbff90-fa41-4705-bdd5-96d0883811d6-0Torres, Lizeth A.-5f9f5dd2-6966-422c-bcda-10c7874a2759-0E.E. Sanjuan, Marco-0f138033-0fd0-439b-b1ea-23d6ec38728b-0Lopez Estrada, Francisco Ronay-60d6af8b-d350-4875-96a6-809148f91d03-0engIFAC-PapersOnLineAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2fault detection and isolationxleak diagnosispipelinesWater distribution networksLocalization of Leaks in Water Distribution Networks using Flow ReadingsArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionBillmann, L. and Isermann, R. (1987). Leak detection methods for pipelines. Automatica, 23(3), 381–385. Brki´c, D. (2011). Review of explicit approximations to the colebrook relation for flow friction. Journal of Petroleum Science and Engineering, 77(1), 34–48. Buchberger, S.G. and Nadimpalli, G. (2004). Leak estimation in water distribution systems by statistical analysis of flow readings. Journal of water resources planning and management, 130(4), 321–329. Clamond, D. (2009). Efficient resolution of the colebrook equation. Industrial & Engineering Chemistry Research, 48(7), 3665–3671. Colebrook, C. and White, C. (1937). Experiments with fluid friction in roughened pipes. Proceedings of the royal society of london. series a, mathematical and Physical sciences, 367–381. Farmer, E. (1989). System for monitoring pipelines. US Patent 4,796,466. Isermann, R. (1984). Process fault detection based on modeling and estimation methodsa survey. automatica, 20(4), 387–404. Jim´enez, J., Torres, L., Rubio, I., and Sanjuan, M. (2017). Auxiliary signal design and li´enard-type models for identifying pipeline parameters. In Modeling and Monitoring of Pipelines and Networks, 99–124. Springer. Jim´enez-Cabas, J., Torres, L., L´opez-Estrada, F.R., and Sanjuan, M. (2017). Leak diagnosis in pipelines by only using flow measurements. IEEE Colombian Conference on Automatic Control (CCAC). Kim, Y., Lee, S.J., Park, T., Lee, G., Suh, J.C., and Lee, J.M. (2016). Robust leak detection and its localization using interval estimation for water distribution network. Computers & Chemical Engineering, 92, 1–17. Kingdom, B., Liemberger, R., and Marin, P. (2006). The challenge of reducing non-revenue water (NRW) in developing countries. Multikanga, H.E., Sharma, S., and Vairavamoorthy, K. (2009). Water loss management in developing countries: Challenges and prospects. American Water Works Association. Journal, 101(12), 57. Ostapkowicz, P. (2016). Leak detection in liquid transmission pipelines using simplified pressure analysis tech niques employing a minimum of standard and nonstandard measuring devices. Engineering Structures, 113, 194–205. P´erez, R., Puig, V., Pascual, J., Peralta, A., Landeros, E., and Jordanas, L. (2009). Pressure sensor distribution for leak detection in barcelona water distribution network. Water science and technology: water supply, 9(6), 715– 721. P´erez, R., Puig, V., Pascual, J., Quevedo, J., Landeros, E., and Peralta, A. (2011). Methodology for leakage isolation using pressure sensitivity analysis in water distribution networks. Control Engineering Practice, 19(10), 1157–1167. Ponce, M.V.C., Casta˜n´on, L.E.G., and Cayuela, V.P. (2014). Model-based leak detection and location in water distribution networks considering an extendedhorizon analysis of pressure sensitivities. Journal of Hydroinformatics, 16(3), 649–670. Silva, R.A., Buiatti, C.M., Cruz, S.L., and Pereira, J.A. (1996). Pressure wave behaviour and leak detection in pipelines. Computers & chemical engineering, 20, S491– S496. Torres, L., Agui˜naga, J.A.D., Besan¸con, G., Verde, C., and Begovich, O. (2016). Equivalent Li´enard-type models for a fluid transmission line. Comptes Rendus M´ecanique, 344(8), 582–595. Torres, L., Besan¸con, G., and Verde, C. (2015). Li´enard type model of fluid flow in pipelines: Application to estimation. In 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), 1–6. WHO (2000). Global water supply and sanitation assessment 2000 report. Technical report, World Health Organization (WHO). Wood, D.J. (1966). An explicit friction factor relationship. Civil Engineering, 36(12), 60–61.PublicationORIGINALLocalization of Leaks in Water Distribution Networks using Flow Readings.pdfLocalization of Leaks in Water Distribution Networks using Flow Readings.pdfapplication/pdf1293859https://repositorio.cuc.edu.co/bitstreams/501ef8d1-2932-41dc-beb2-ac359b309fff/download2d155bfea05d7bfba3467bd6d6fea10aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/3e647668-671d-4a8b-960b-e6851d77ad81/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.jpgLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.jpgimage/jpeg75277https://repositorio.cuc.edu.co/bitstreams/15e101d5-fa94-4447-9836-105b70ee0dd8/download0cdc240ecf6aa2275fd9f9d7248cef85MD54TEXTLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.txtLocalization of Leaks in Water Distribution Networks using Flow Readings.pdf.txttext/plain51327https://repositorio.cuc.edu.co/bitstreams/4d7fdd2b-ceee-4a3d-9015-4b25b7b27019/downloadf2ad152697d2f4de8dc1fa7c91eff8b9MD5511323/1901oai:repositorio.cuc.edu.co:11323/19012024-09-17 12:44:17.736open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=