Sustainable composite development: Novel use of human hair as fiber in concrete

In the present era, to recycle waste and to reduce environmental pollution is the main objectives of sustainable development. Many researchers are working on new techniques and thinking for innovation in the field of concrete technology by utilizing the waste material in concrete. This research aims...

Full description

Autores:
Bheel, Naraindas
Awoyera, Paul
Aluko, Oluwatobi Gbenga
Mahro, Santosh
amelec, viloria
Severiche Sierra, Carlos Alberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2020
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8026
Acceso en línea:
https://hdl.handle.net/11323/8026
https://doi.org/10.1016/j.cscm.2020.e00412
https://repositorio.cuc.edu.co/
Palabra clave:
Human hair
Fiber reinforcement
Mechanical properties
Environmental pollution
Waste reuse
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a1bbc8f718755780dda3c58f794a815e
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8026
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Sustainable composite development: Novel use of human hair as fiber in concrete
title Sustainable composite development: Novel use of human hair as fiber in concrete
spellingShingle Sustainable composite development: Novel use of human hair as fiber in concrete
Human hair
Fiber reinforcement
Mechanical properties
Environmental pollution
Waste reuse
title_short Sustainable composite development: Novel use of human hair as fiber in concrete
title_full Sustainable composite development: Novel use of human hair as fiber in concrete
title_fullStr Sustainable composite development: Novel use of human hair as fiber in concrete
title_full_unstemmed Sustainable composite development: Novel use of human hair as fiber in concrete
title_sort Sustainable composite development: Novel use of human hair as fiber in concrete
dc.creator.fl_str_mv Bheel, Naraindas
Awoyera, Paul
Aluko, Oluwatobi Gbenga
Mahro, Santosh
amelec, viloria
Severiche Sierra, Carlos Alberto
dc.contributor.author.spa.fl_str_mv Bheel, Naraindas
Awoyera, Paul
Aluko, Oluwatobi Gbenga
Mahro, Santosh
amelec, viloria
Severiche Sierra, Carlos Alberto
dc.subject.spa.fl_str_mv Human hair
Fiber reinforcement
Mechanical properties
Environmental pollution
Waste reuse
topic Human hair
Fiber reinforcement
Mechanical properties
Environmental pollution
Waste reuse
description In the present era, to recycle waste and to reduce environmental pollution is the main objectives of sustainable development. Many researchers are working on new techniques and thinking for innovation in the field of concrete technology by utilizing the waste material in concrete. This research aims to check the effect of a human hair (waste material) as fiber on the fresh, physical and mechanical properties of concrete with 0%, 1%, 2%, 3%, and 4% of human hair by volume of cement. In this regard, a total of 180 concrete specimens (cubes, cylinders, and prisms) was made and cured after 7th, 28th, and 90th day. The result indicated that the compressive strength was enhanced by 8.15 % at 1% human hair after 28 days as indirecttensile strength and flexural strength were improved by 21.83 % and 12.71 % at 2% of human hair after 28 days, respectively. Also, the density of concrete gets reduced with rising in the content of human hair, and water absorption is improved, as the content of human hair increases after 28 days, respectively. Besides, the modulus of elasticity increased with the inclusion of human hair after every curing period, and drying shrinkage of concrete is minimized with the addition of human hair as fibers in concrete at 40 days. The slump value was reduced as the content of human hair increased.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-08-03
dc.date.accessioned.none.fl_str_mv 2021-03-16T20:49:41Z
dc.date.available.none.fl_str_mv 2021-03-16T20:49:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 22145095
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8026
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.1016/j.cscm.2020.e00412
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 22145095
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8026
https://doi.org/10.1016/j.cscm.2020.e00412
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] N. Bheel, M.A. Jokhio, J.A. Abbasi, H.B. Lashari, M.I. Qureshi, A.S. Qureshi, Rice husk ash and fly ash effects on the mechanical properties of concrete, Eng.Technol. Appl. Sci. Res. 10 (2) (2020) 5402–5405.
[2] N. Bheel, A.W. Abro, I.A. Shar, A.A. Dayo, S. Shaikh, Z.H. Shaikh, Use of rice husk ash as cementitious material in concrete, Eng. Technol. Appl. Sci. Res. 9(3) (2019) 4209–4212.
[3] N. Bheel, K.A. Kalhoro, T.A. Memon, Z.U.Z. Lashari, M.A. Soomro, U.A. Memon, Use of marble powder and tile powder as cementitious materials inconcrete, Eng. Technol. Appl. Sci. Res. 10 (2) (2020) 5448–5451.
[4] N.D. Bheel, F.A. Memonb, S.L. Meghwar, A.W. Abroa, I.A. Shara, Millet husk ash as environmental friendly material in cement concrete, Proceedings ofthe 5thInternational Conference on Energy, Environment and Sustainable Development, Mehran UET Jamshoro, Sindh, Pakistan: Energy andEnvironment Engineering Research Group, 2018, pp. 153–158.
[5] N. Bheel, R.A. Abbasi, S. Sohu, S.A. Abbasi, A.W. Abro, Z.H. Shaikh, Effect of tile powder used as a cementitious material on the mechanical properties ofconcrete, Eng. Technol. Appl. Sci. Res. 9 (5) (2019) 4596–4599.
[6] A.A. Dayo, A. Kumar, A. Raja, N. Bheel, Z.H. Shaikh, Use of Sugarcane bagasse ash as a fine aggregate in cement concrete, Eng. Sci. Technol. Int. Res. J. 3 (3)(2019) 8–11.
[7] N.D. Bheel, S.A. Abbasi, S.L. Meghwar, F.A. Shaikh, Effect of human hair as fibers in cement concrete, International Conference on SustainableDevelopment in Civil Engineering, 1(2017) , pp. 67–72.
[8] A.M. Neville, J.J. Brooks, Properties of Concrete, 2nd edition, Pearson Education Ltd, England, 2010.
[9] A. Gupta, Human hair (waste) and its utilization: gaps and possibilities, J. Waste Manag. 2014 (2014)498018 pp. 1-17.
[10] M. Brebu, I. Spiridon, Thermal degradation of keratin waste, J. Anal. Appl. Pyrolysis 91 (2) (2011) 288–295.
[11] A.M. Neville, J.J. Brooks, Properties of Concrete, 2nd edition, Pearson Education Ltd, England, 2007, pp. 269.
[12] United Nations-Department of Economic and Social Affairs (Population Division), World Population 2012, United Nations Publication, USA, 2013August.
[13] C.S. Gupta, Clay traditional material for making handicrafts, Indian J. Trad. Knowl. 7 (1) (2008) pp. 166-124.
[14] N. Bantia, R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete, Cement Concrete Res. J. 36 (7) (2006) 1263–12679.
[15] L. Dvorkin, O. Dvorkin, V. Zhitkovsky, Y. Ribakov, A method for optimal design of steel fiber reinforced concrete composition, Mater. Design J. 32 (1)(2011) 246–254.
[16] L. Dvorkin, O. Dvorkin, S. Nwaubani, Construction Materials, Nova Science Publishers Inc., New York, 2010, pp. 409
[17] K.W. Day, Concrete Mix Design, Quality Control and Specification, 3rd edition, Taylor and Francis Publisher, New York, 2006, pp. 214.
[18] F. Bayramov, C. Tasdemir, M.A. Tasdemir, Optimization of steel fiber reinforced concrete by means of statistical response surface method, Cem. Concr.Compos. 26 (6) (2004) 665–675.
[19] N. Banthia, S.M. Soleimani, Flexural response of hybrid fiber reinforced cementitious composites, ACI Mater. J. 102 (5) (2005) 382–389.
[20] V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composites (PVA-ECC), ACI Mater. J. 98 (6)(2001) 483–492.
[21] P.K. Nelson, V.C. Li, T. Kamada, Fracture toughness of microfiber reinforced cement composites, ACI Mater. J. 14 (5) (2002) 384–391.2
[22] R.V. Balendran, F.P. Zhou, A. Nadeem, Influence of steel fibers on strength and ductility of normal and light weight high strength concrete, Build.Environ. J. 37 (12) (2002) 1361–1367.
[23] P. Balaguru, H. Najm, HighPerformance fiber reinforced concrete mixture properties with high fiber volume fractions, ACI Mater. J.101 (2004) 281–286.
[24] N. Banthia, C. Zanoti, M. Sappakittipakron, Sustainable fiber reinforced concrete for repair applications, Constr. Build. Mater. 67 (Part-C) (2014) 405–412.
[25] N. Bantia, R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete, Cement Concrete Res. J. 36 (7) (2006) 1263–12679.
[26] C. Victor, Li, On engineered cementitious composites: a review of the material and its applications, J. Adv. Concr. Technol. 1 (3) (2003) 215–230.
[27] R. Tapfers, Report on Investigation of Different Types of Fibers to Strengthen Cement Paste, Mortar and Concrete, Department of Civil & EnvironmentEngineering, Structural Engineering, Concrete Structures, Chalmers University of Technology, Sweden, 2008.
[28] O. Dugenci, T. Haktanir, F. Altun, Experimental research for the effect of high temperature on the mechanical properties of steel fiber reinforcedconcrete, Constr. Build. Mater. 75 (2015) 82–88.
[29] H. Wang, A. Belorbi, Ductility characteristics of fiber reinforced concrete beams reinforced with FRP rebar, Constr. Build. Mater. 25 (5) (2011) 2391–2401.
[30] V.S. Parameswaran, Fiber reinforced concrete: a versatile construction material, Build. Environ. J. 26 (3) (1991) 301–305.
[31] P. Rossi, Ultra-high-performance Fiber reinforced concretes, Concr. Int. (12) (2001) 46–52.
[32] N.M. Heymans, Archaeology, experimental archaeology and ethno archaeology on bread ovens in Syria, Civilization 49 (2002) pp. 197-122.
[33] M.M. Al-Darbi, N.O. Saeed, L.O. Ajijolavia, M.R. Aslam, A novel well cementing technology using natural fibers, Pet. Sci. Technol. 24 (11) (2006) 1267–1282.
[34] D. Jain, A. Kothari, Hair fiber reinforced concrete, Res. J. Recent Sci. 1 (2012) 128–133.
[35] S.L. Meghwar, G.B. Kheskheli, A. Kumar, R.B. Mahar, Recycling of human scalp hair as environmental friendly material in cement concrete, Proceedingsof 4th International Conference on Energy, Environment and Sustainable Development, Energy and Environment Engineering Research Group, PaperID: EESD_2016_54, Mehran University of Engineering & Technology, Jamshoro, Pakistan, November 1-3, 2016.
[36] Y. Batebi, A. Mirzagoltarbar, S.M. Shabanian, S. Fateri, Experimental investigation of shrinkage nano hair reinforced concrete, Iran. J. Energy Environ. 4(1) (2013) 68–72.
[37] P.N. Balaguru, P.S. Surendra, Fiber Reinforced Cement Composites, 1st edition, McGraw Hill Publisher, USA, 1996.
[38] D.D.L. Chung, Dispersion of short fibers in cement, J. Mater.Civil Eng. 17 (4) (2005) 379–383.
[39] S. Pyo, K. Wille, S. El-Tawil, A.E. Naaman, Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension,Cem. Concr. Compos. 56 (2015) 15–24, doi:http://dx.doi.org/10.1016/j.cemconcomp.2014.10.002.
[40] R. Gettu, D.R. Gardner, H. Saldivar, B.E. Barragan, Study of the distribution and orientation of Fiber in SFRC specimens, Mater. Struct. 38 (2005) 31–37.
[41] M.S. Maddah, V. Bencheikh, Properties of concrete reinforced with different kinds of industrial waste fiber materials, Constr. Build. Mater. 23 (2009)3196–3205.
[42] B. Boolekbache, M. Hamrat, M. Chemrook, S. Amziane, Flowability of Fiber reinforced concrete and its effects on the mechanical properties of thematerial, Constr. Build. Mater. J. 24 (9) (2010) 1664–1671.
[43] ASTM C191-19, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2019.
[44] ASTM, C, 136. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials, Philadelphia, PA,2005.
[45] ASTM C127, Standard Method of Test for Specific Gravity and Water Absorption of Coarse Aggregate, American Society for Testing and Materials, 1993.
[46] ASTM C128, Standard Method of Test for Specific Gravity and Water Absorption of Fine Aggregate, American Society for Testing and Materials, 1993.
[47] ASTM, C, Standard test method for bulk density (“Unit weight”) and voids in aggregate 29/C 29M,”, Annual Book of ASTM Standards, (1997) , pp. 4.
[48] Standard, ASTM, C143-90, Standard test method for slump of hydraulic cement concrete, Annual Book of ASTM Standards, (1991) , pp. 4.
[49] Standard, ASTM, C39/C39M, Standard test method for compressive strength of concrete specimens, Annual Book of ASTM Standards, (2015) , pp. 9.
[50] ASTM, C, Test for Splitting Tensile Strength of Cylindrical Concrete Specimens 496-90, (1990) .
[51] ASTM, C., 293, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-point Loading), ASTM International, WestConshohocken, PA, 2008 ASTM C, pp.293-208.
[52] ASTM C1754 / C1754M-12, Standard Test Method for Density and Void Content of Hardened Pervious Concrete, ASTM International, WestConshohocken, PA, 2012.
[53] ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, WestConshohocken, PA, 2013.
[54] ASTM C. 469, ASTM C.469/C469M-14: standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression, Annual Bookof ASTM Standards, (2014) .
[55] ASTM C426-07, Standard Test Method for Linear Drying Shrinkage of Concrete Masonry Units, ASTM International, West Conshohocken, PA, 2007.
[56] S.L. Meghwar, G.B. Khaskheli, A. Kumar, Human scalp hair as fiber reinforcement in cement concrete, Mehran Univ. Res. J. Eng. Technol. 39 (2) (2020)443.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Case Studies in Construction Materials
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S221450952030084X
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/8026/1/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf
https://repositorio.cuc.edu.co/bitstream/11323/8026/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/8026/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/8026/4/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/8026/5/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf.txt
bitstream.checksum.fl_str_mv 1e08ad72554ce0b34085e45e738b7d11
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
77fd09f2928e59067b3979fb439dcaf7
cd8223fdd296f78c57e378612806cd2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400162686500864
spelling Bheel, Naraindas42be46f8a91c563996af41ff0abd45a8Awoyera, Paul3f8aad724a3f0e31810e1e798763729bAluko, Oluwatobi Gbenga2a7ef9e589c3ab07584ddd2b49df1e9aMahro, Santosh484a5f8bcf1ac3441251bae678a8fb4aamelec, viloria2f22a05451ff1bbfc2d4dd00035c952fSeveriche Sierra, Carlos Alberto813bdb933011df474edb91c5591c19ff2021-03-16T20:49:41Z2021-03-16T20:49:41Z2020-08-0322145095https://hdl.handle.net/11323/8026https://doi.org/10.1016/j.cscm.2020.e00412Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/In the present era, to recycle waste and to reduce environmental pollution is the main objectives of sustainable development. Many researchers are working on new techniques and thinking for innovation in the field of concrete technology by utilizing the waste material in concrete. This research aims to check the effect of a human hair (waste material) as fiber on the fresh, physical and mechanical properties of concrete with 0%, 1%, 2%, 3%, and 4% of human hair by volume of cement. In this regard, a total of 180 concrete specimens (cubes, cylinders, and prisms) was made and cured after 7th, 28th, and 90th day. The result indicated that the compressive strength was enhanced by 8.15 % at 1% human hair after 28 days as indirecttensile strength and flexural strength were improved by 21.83 % and 12.71 % at 2% of human hair after 28 days, respectively. Also, the density of concrete gets reduced with rising in the content of human hair, and water absorption is improved, as the content of human hair increases after 28 days, respectively. Besides, the modulus of elasticity increased with the inclusion of human hair after every curing period, and drying shrinkage of concrete is minimized with the addition of human hair as fibers in concrete at 40 days. The slump value was reduced as the content of human hair increased.application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Case Studies in Construction Materialshttps://www.sciencedirect.com/science/article/pii/S221450952030084XHuman hairFiber reinforcementMechanical propertiesEnvironmental pollutionWaste reuseSustainable composite development: Novel use of human hair as fiber in concreteArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] N. Bheel, M.A. Jokhio, J.A. Abbasi, H.B. Lashari, M.I. Qureshi, A.S. Qureshi, Rice husk ash and fly ash effects on the mechanical properties of concrete, Eng.Technol. Appl. Sci. Res. 10 (2) (2020) 5402–5405.[2] N. Bheel, A.W. Abro, I.A. Shar, A.A. Dayo, S. Shaikh, Z.H. Shaikh, Use of rice husk ash as cementitious material in concrete, Eng. Technol. Appl. Sci. Res. 9(3) (2019) 4209–4212.[3] N. Bheel, K.A. Kalhoro, T.A. Memon, Z.U.Z. Lashari, M.A. Soomro, U.A. Memon, Use of marble powder and tile powder as cementitious materials inconcrete, Eng. Technol. Appl. Sci. Res. 10 (2) (2020) 5448–5451.[4] N.D. Bheel, F.A. Memonb, S.L. Meghwar, A.W. Abroa, I.A. Shara, Millet husk ash as environmental friendly material in cement concrete, Proceedings ofthe 5thInternational Conference on Energy, Environment and Sustainable Development, Mehran UET Jamshoro, Sindh, Pakistan: Energy andEnvironment Engineering Research Group, 2018, pp. 153–158.[5] N. Bheel, R.A. Abbasi, S. Sohu, S.A. Abbasi, A.W. Abro, Z.H. Shaikh, Effect of tile powder used as a cementitious material on the mechanical properties ofconcrete, Eng. Technol. Appl. Sci. Res. 9 (5) (2019) 4596–4599.[6] A.A. Dayo, A. Kumar, A. Raja, N. Bheel, Z.H. Shaikh, Use of Sugarcane bagasse ash as a fine aggregate in cement concrete, Eng. Sci. Technol. Int. Res. J. 3 (3)(2019) 8–11.[7] N.D. Bheel, S.A. Abbasi, S.L. Meghwar, F.A. Shaikh, Effect of human hair as fibers in cement concrete, International Conference on SustainableDevelopment in Civil Engineering, 1(2017) , pp. 67–72.[8] A.M. Neville, J.J. Brooks, Properties of Concrete, 2nd edition, Pearson Education Ltd, England, 2010.[9] A. Gupta, Human hair (waste) and its utilization: gaps and possibilities, J. Waste Manag. 2014 (2014)498018 pp. 1-17.[10] M. Brebu, I. Spiridon, Thermal degradation of keratin waste, J. Anal. Appl. Pyrolysis 91 (2) (2011) 288–295.[11] A.M. Neville, J.J. Brooks, Properties of Concrete, 2nd edition, Pearson Education Ltd, England, 2007, pp. 269.[12] United Nations-Department of Economic and Social Affairs (Population Division), World Population 2012, United Nations Publication, USA, 2013August.[13] C.S. Gupta, Clay traditional material for making handicrafts, Indian J. Trad. Knowl. 7 (1) (2008) pp. 166-124.[14] N. Bantia, R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete, Cement Concrete Res. J. 36 (7) (2006) 1263–12679.[15] L. Dvorkin, O. Dvorkin, V. Zhitkovsky, Y. Ribakov, A method for optimal design of steel fiber reinforced concrete composition, Mater. Design J. 32 (1)(2011) 246–254.[16] L. Dvorkin, O. Dvorkin, S. Nwaubani, Construction Materials, Nova Science Publishers Inc., New York, 2010, pp. 409[17] K.W. Day, Concrete Mix Design, Quality Control and Specification, 3rd edition, Taylor and Francis Publisher, New York, 2006, pp. 214.[18] F. Bayramov, C. Tasdemir, M.A. Tasdemir, Optimization of steel fiber reinforced concrete by means of statistical response surface method, Cem. Concr.Compos. 26 (6) (2004) 665–675.[19] N. Banthia, S.M. Soleimani, Flexural response of hybrid fiber reinforced cementitious composites, ACI Mater. J. 102 (5) (2005) 382–389.[20] V.C. Li, S. Wang, C. Wu, Tensile strain-hardening behavior of polyvinyl alcohol engineered cementitious composites (PVA-ECC), ACI Mater. J. 98 (6)(2001) 483–492.[21] P.K. Nelson, V.C. Li, T. Kamada, Fracture toughness of microfiber reinforced cement composites, ACI Mater. J. 14 (5) (2002) 384–391.2[22] R.V. Balendran, F.P. Zhou, A. Nadeem, Influence of steel fibers on strength and ductility of normal and light weight high strength concrete, Build.Environ. J. 37 (12) (2002) 1361–1367.[23] P. Balaguru, H. Najm, HighPerformance fiber reinforced concrete mixture properties with high fiber volume fractions, ACI Mater. J.101 (2004) 281–286.[24] N. Banthia, C. Zanoti, M. Sappakittipakron, Sustainable fiber reinforced concrete for repair applications, Constr. Build. Mater. 67 (Part-C) (2014) 405–412.[25] N. Bantia, R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete, Cement Concrete Res. J. 36 (7) (2006) 1263–12679.[26] C. Victor, Li, On engineered cementitious composites: a review of the material and its applications, J. Adv. Concr. Technol. 1 (3) (2003) 215–230.[27] R. Tapfers, Report on Investigation of Different Types of Fibers to Strengthen Cement Paste, Mortar and Concrete, Department of Civil & EnvironmentEngineering, Structural Engineering, Concrete Structures, Chalmers University of Technology, Sweden, 2008.[28] O. Dugenci, T. Haktanir, F. Altun, Experimental research for the effect of high temperature on the mechanical properties of steel fiber reinforcedconcrete, Constr. Build. Mater. 75 (2015) 82–88.[29] H. Wang, A. Belorbi, Ductility characteristics of fiber reinforced concrete beams reinforced with FRP rebar, Constr. Build. Mater. 25 (5) (2011) 2391–2401.[30] V.S. Parameswaran, Fiber reinforced concrete: a versatile construction material, Build. Environ. J. 26 (3) (1991) 301–305.[31] P. Rossi, Ultra-high-performance Fiber reinforced concretes, Concr. Int. (12) (2001) 46–52.[32] N.M. Heymans, Archaeology, experimental archaeology and ethno archaeology on bread ovens in Syria, Civilization 49 (2002) pp. 197-122.[33] M.M. Al-Darbi, N.O. Saeed, L.O. Ajijolavia, M.R. Aslam, A novel well cementing technology using natural fibers, Pet. Sci. Technol. 24 (11) (2006) 1267–1282.[34] D. Jain, A. Kothari, Hair fiber reinforced concrete, Res. J. Recent Sci. 1 (2012) 128–133.[35] S.L. Meghwar, G.B. Kheskheli, A. Kumar, R.B. Mahar, Recycling of human scalp hair as environmental friendly material in cement concrete, Proceedingsof 4th International Conference on Energy, Environment and Sustainable Development, Energy and Environment Engineering Research Group, PaperID: EESD_2016_54, Mehran University of Engineering & Technology, Jamshoro, Pakistan, November 1-3, 2016.[36] Y. Batebi, A. Mirzagoltarbar, S.M. Shabanian, S. Fateri, Experimental investigation of shrinkage nano hair reinforced concrete, Iran. J. Energy Environ. 4(1) (2013) 68–72.[37] P.N. Balaguru, P.S. Surendra, Fiber Reinforced Cement Composites, 1st edition, McGraw Hill Publisher, USA, 1996.[38] D.D.L. Chung, Dispersion of short fibers in cement, J. Mater.Civil Eng. 17 (4) (2005) 379–383.[39] S. Pyo, K. Wille, S. El-Tawil, A.E. Naaman, Strain rate dependent properties of ultra high performance fiber reinforced concrete (UHP-FRC) under tension,Cem. Concr. Compos. 56 (2015) 15–24, doi:http://dx.doi.org/10.1016/j.cemconcomp.2014.10.002.[40] R. Gettu, D.R. Gardner, H. Saldivar, B.E. Barragan, Study of the distribution and orientation of Fiber in SFRC specimens, Mater. Struct. 38 (2005) 31–37.[41] M.S. Maddah, V. Bencheikh, Properties of concrete reinforced with different kinds of industrial waste fiber materials, Constr. Build. Mater. 23 (2009)3196–3205.[42] B. Boolekbache, M. Hamrat, M. Chemrook, S. Amziane, Flowability of Fiber reinforced concrete and its effects on the mechanical properties of thematerial, Constr. Build. Mater. J. 24 (9) (2010) 1664–1671.[43] ASTM C191-19, Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle, ASTM International, West Conshohocken, PA, 2019.[44] ASTM, C, 136. Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, American Society for Testing and Materials, Philadelphia, PA,2005.[45] ASTM C127, Standard Method of Test for Specific Gravity and Water Absorption of Coarse Aggregate, American Society for Testing and Materials, 1993.[46] ASTM C128, Standard Method of Test for Specific Gravity and Water Absorption of Fine Aggregate, American Society for Testing and Materials, 1993.[47] ASTM, C, Standard test method for bulk density (“Unit weight”) and voids in aggregate 29/C 29M,”, Annual Book of ASTM Standards, (1997) , pp. 4.[48] Standard, ASTM, C143-90, Standard test method for slump of hydraulic cement concrete, Annual Book of ASTM Standards, (1991) , pp. 4.[49] Standard, ASTM, C39/C39M, Standard test method for compressive strength of concrete specimens, Annual Book of ASTM Standards, (2015) , pp. 9.[50] ASTM, C, Test for Splitting Tensile Strength of Cylindrical Concrete Specimens 496-90, (1990) .[51] ASTM, C., 293, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-point Loading), ASTM International, WestConshohocken, PA, 2008 ASTM C, pp.293-208.[52] ASTM C1754 / C1754M-12, Standard Test Method for Density and Void Content of Hardened Pervious Concrete, ASTM International, WestConshohocken, PA, 2012.[53] ASTM C1585-13, Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes, ASTM International, WestConshohocken, PA, 2013.[54] ASTM C. 469, ASTM C.469/C469M-14: standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression, Annual Bookof ASTM Standards, (2014) .[55] ASTM C426-07, Standard Test Method for Linear Drying Shrinkage of Concrete Masonry Units, ASTM International, West Conshohocken, PA, 2007.[56] S.L. Meghwar, G.B. Khaskheli, A. Kumar, Human scalp hair as fiber reinforcement in cement concrete, Mehran Univ. Res. J. Eng. Technol. 39 (2) (2020)443.ORIGINALSustainable composite development Novel use of human hair as fiber in concrete.pdfSustainable composite development Novel use of human hair as fiber in concrete.pdfapplication/pdf2508409https://repositorio.cuc.edu.co/bitstream/11323/8026/1/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf1e08ad72554ce0b34085e45e738b7d11MD51open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstream/11323/8026/2/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstream/11323/8026/3/license.txte30e9215131d99561d40d6b0abbe9badMD53open accessTHUMBNAILSustainable composite development Novel use of human hair as fiber in concrete.pdf.jpgSustainable composite development Novel use of human hair as fiber in concrete.pdf.jpgimage/jpeg54489https://repositorio.cuc.edu.co/bitstream/11323/8026/4/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf.jpg77fd09f2928e59067b3979fb439dcaf7MD54open accessTEXTSustainable composite development Novel use of human hair as fiber in concrete.pdf.txtSustainable composite development Novel use of human hair as fiber in concrete.pdf.txttext/plain33339https://repositorio.cuc.edu.co/bitstream/11323/8026/5/Sustainable%20composite%20development%20Novel%20use%20of%20human%20hair%20as%20fiber%20in%20concrete.pdf.txtcd8223fdd296f78c57e378612806cd2dMD55open access11323/8026oai:repositorio.cuc.edu.co:11323/80262023-12-14 15:48:01.125CC0 1.0 Universal|||http://creativecommons.org/publicdomain/zero/1.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==