Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate
The combined coagulation-solar photo Fenton treatment of leachate from the sanitary landfill located in Atlantico-Colombia was investigated. Firstly, the efficiency of two alternative combined treatments for the reduction of chemical oxygen demand in leachate was assessed, coagulation with poly-alum...
- Autores:
-
P. Rebolledo, Liceth
A. Arana, Victoria
Trilleras, Jorge
E. Barros, Gustavo
González-Solano, Arturo J.
Maury-Ardila, Henry
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4944
- Acceso en línea:
- https://hdl.handle.net/11323/4944
https://repositorio.cuc.edu.co/
- Palabra clave:
- leachates
coagulation
solar photo-fenton
ferrioxalate-induced
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a14168003b7ddaff91cf5c7e06af56f0 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4944 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
title |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
spellingShingle |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate leachates coagulation solar photo-fenton ferrioxalate-induced |
title_short |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
title_full |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
title_fullStr |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
title_full_unstemmed |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
title_sort |
Efficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill Leachate |
dc.creator.fl_str_mv |
P. Rebolledo, Liceth A. Arana, Victoria Trilleras, Jorge E. Barros, Gustavo González-Solano, Arturo J. Maury-Ardila, Henry |
dc.contributor.author.spa.fl_str_mv |
P. Rebolledo, Liceth A. Arana, Victoria Trilleras, Jorge E. Barros, Gustavo González-Solano, Arturo J. Maury-Ardila, Henry |
dc.subject.spa.fl_str_mv |
leachates coagulation solar photo-fenton ferrioxalate-induced |
topic |
leachates coagulation solar photo-fenton ferrioxalate-induced |
description |
The combined coagulation-solar photo Fenton treatment of leachate from the sanitary landfill located in Atlantico-Colombia was investigated. Firstly, the efficiency of two alternative combined treatments for the reduction of chemical oxygen demand in leachate was assessed, coagulation with poly-aluminum chloride followed by solar photo-Fenton process (Treatment 1) and coagulation with FeCl3·6H2O followed by ferrioxalate-induced solar photo-Fenton process (Treatment 2). Afterwards, treatments 1 and 2 were compared with the treatment currently used in the sanitary landfill (only coagulation with poly-aluminum chloride), in terms of efficiency and costs. An optimization study of alternative treatments was performed combining central-composite experimental design and response surface methodology. The optimum conditions resulted in a chemical oxygen demand reduction of 73 % and 80 % for Treatment 1 and 2, respectively. Both alternative treatments for the leachate are more efficient than the treatment currently used in the sanitary landfill (chemical oxygen demand reduction of 20 %). In terms of costs, treatment 1 would be the most competitive to implement in the sanitary landfill, since this would have an increase of 13.3 % in the total unitary cost compared to an increase of 39.5 % of treatment 2. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-07-11T16:14:52Z |
dc.date.available.none.fl_str_mv |
2019-07-11T16:14:52Z |
dc.date.issued.none.fl_str_mv |
2019-04-18 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2073-4441 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4944 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2073-4441 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4944 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.3390/w11071351 |
dc.relation.references.spa.fl_str_mv |
1. Zhang, H.; Wu, X.; Li, X. Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem. Eng. J. 2012, 210, 188–194. [CrossRef] 2. Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [CrossRef] [PubMed] 3. Boumechhour, F.; Rabah, K.; Lamine, C.; Said, B.M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water Environ. J. 2013, 27, 114–119. [CrossRef] 4. Risch, E.; Loubet, P.; Núñez, M.; Roux, P. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Res. 2014, 57, 20–30. [CrossRef] [PubMed] 5. Moradi, M.; Ghanbari, F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton processes: Biodegradability improvement. J. Water Process. Eng. 2014, 4, 67–73. [CrossRef] 6. Kumar, S.; Narsi, B. Coagulation of landfill leachate by FeCl3 : Process optimization using Box-Behnken design (RMS). Appl. Water Sci. 2015, 7, 1943–1953. [CrossRef] 7. Klauson, D.; Kivi, A.; Kattel, E.; Klein, K.; Viisimaa, M.; Bolobajev, J.; Velling, S.; Gol, A.; Tenno, T.; Trapido, M. Combined processes for wastewater purification: Treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J. Chem. Biotechnol. 2015, 90, 1527–1536. [CrossRef] 8. Huang, J.; Chen, J.; Xie, Z.; Xu, X. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide. J. Environ. Technol. 2015, 36, 1001–1007. [CrossRef] 9. Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.M.; Demeestere, K.; Van Hulle, S.W.H. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to actived carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [CrossRef] 10. Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 2017, 574, 1599–1610. [CrossRef] 11. Silva, T.F.C.V.; Soares, P.A.; Manenti, D.R.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Vilar, V.J.P. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Sci. Total Environ. 2017, 576, 99–117. [CrossRef] [PubMed] 12. Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/ flocculation combined with microelectrolysis-Fenton processes. Environ. Technol. 2018, 7, 1–9. [CrossRef] [PubMed] 13. Liu, X.; Li, X.-M.; Yang, Q.; Yue, X.; Shen, T.T.; Zheng, W.; Luo, K.; Sun, Y.-H.; Zeng, G.-M. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chem. Eng. J. 2012, 200–202, 39–51. [CrossRef] 14. Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205–206, 208–215. [CrossRef] [PubMed] 15. Pereira, J.H.O.S.; Queirós, D.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Boaventura, R.A.R.; Vilar, V.J.P. Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: Application to oxytetracycline degradation. Chem. Eng. J. 2014, 253, 217–228. [CrossRef] 16. Castilla-Caballero, D.; Machuca-Martínez, F.; Bustillo-Lecompte, C.; Colina-Márquez, J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling and Scaling-Up of Photoreactors. Catalysts 2018, 8, 179. [CrossRef] 17. Standard Methods for Examination of Water and Wastewater, 21st ed.; APHA AWWA WEF: Washington, DC, USA, 2005; pp. 5–2 and 5–19. 18. U.S. EPA. Method 3015 A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Revision 1; U.S. Government Printing Office: Washington, DC, USA, 2007 19. Montgomery, D.C. Desing and Analysis of Experiments, 8th ed.; John Wiley and Sons: New York, NY, USA, 2012; pp. 478–544. 20. Statgraphics Centurion XVI User’s Guide; Statpoint Technologies Inc.: Warrenton, VA, USA, 2009; pp. 257–279. 21. Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar-Fenton process. J. Hazard. Mater. 2015, 286, 261–268. [CrossRef] 22. Pereira, J.H.O.S.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Vilar, V.J.P.; Boaventura, R.A.R. Assessment of solar driven TiO2 -assisted photocatalysis efficiency on amoxicillin degradation. Environ. Sci. Pollut. Res. 2013, 21, 1292–1303. [CrossRef] 23. Wang, Z.P.; Zhang, Z.; Lin, Y.J.; Deng, N.S.; Tao, T.; Zhuo, K. Landfill leachate treatment by coagulation-photooxidation process. J. Hazard. Mater. 2002, 95, 153–159. [CrossRef] 24. Monteagudo, J.M.; Durán, A.; Culebradas, R.; San Martín, I.; Carnicer, A. Optimization of pharmaceutical wastewaster treatment by solar/ferrioxalate photo-catalysis. J. Environ. Manag. 2013, 128, 210–219. [CrossRef] 25. Estrada-Arriaga, E.B.; Zepeda-Aviles, J.A.; García-Sánchez, L. Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step. Chem. Eng. J. 2016, 285, 508–516. [CrossRef] 26. Huo, S.; Xi, B.; Yu, H.; He, L.; Fan, S.; Liu, H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20, 492–498. [CrossRef] 27. GilPavas, E.; Dobrosz-Gomez, I.; Gomez-García, M.A. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [CrossRef] [PubMed] 28. Tatsi, A.A.; Zouboulis, A.I.; Matis, K.A.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [CrossRef] 29. Wang, Z.P.; Shui, Y.; He, M.; Liu, P. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms. Biochem. Eng. J. 2017, 121, 107–117. [CrossRef] 30. Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 2017, 167, 512–519. [CrossRef] 31. Li, W.; Zhou, Q.; Hua, T. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. Int. J. Chem. Eng. 2010, 2010, 1–10. [CrossRef] 32. Ministry of Environment and Sustainable Development. Resolution 0631/2015. Available online: http://corponor. gov.co/corponor/RESOLUCION%20MINAMBIENTE%20NACIONAL%20631%20DE%202015.pdf (accessed on 5 April 2019). 33. Amiri, A.; Mohammad, R.S. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment. Waste Manag. 2014, 32, 2528–2536. [CrossRef] 34. Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [CrossRef] 35. Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [CrossRef] 36. Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Appl. Catal. B 2016, 198, 431–446. [CrossRef] 37. Kim, S.; Geissen, S.; Vogelpohl, A. Landfill leachate treatment by a photoassisted fenton reaction. Water Sci. Technol. 1997, 35, 239–248. [CrossRef] 38. Sarria, V.; Deront, M.; Péringer, P.; Pulgarin, C. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron (III) photoassisted-biological treatment. Appl. Catal. B Environ. 2003, 40, 231–246. [CrossRef] 39. Monteagudo, J.M.; Durán, A.; Corral, J.M.; Carnicer, A.; Frades, J.M.; Alonso, M.A. Ferrioxalate-induced solar photo-Fenton system for treatment of winery wastewaters. Chem. Eng. J. 2012, 181–182, 281–288. [CrossRef] 40. Seibert, D.; Diel, T.; Welter, J.B.; de Souza, A.L.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Borda, F.H. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate. J. Environ. Chem. Eng. 2017, 5, 4462–4470. [CrossRef] 41. Expósito, A.J.; Monteagudo, J.M.; Durán, A.; Martín, I.S.; González, L. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. J. Hazard. Mater. 2018, 342, 597–605. [CrossRef] [PubMed] 42. Miralles-Cuevas, S.; Daraowna, D.; Wanag, A.; Molzia, S.; Malato, S.; Oller, I. Comparison of UV/H2O2 , UV/S2O8 2−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O8 2- at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chem. Eng. J. 2017, 310, 514–524. [CrossRef] |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Water |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/15f5a2bf-de3d-41dd-a509-4800c34109a8/download https://repositorio.cuc.edu.co/bitstreams/88340bb7-da97-4c10-8152-2bacb5be068f/download https://repositorio.cuc.edu.co/bitstreams/17008ef3-1862-4334-8f5c-1e0426dae001/download https://repositorio.cuc.edu.co/bitstreams/0aa8bafa-3959-4b97-a231-fa493355be7b/download https://repositorio.cuc.edu.co/bitstreams/10a06a1c-7456-4461-a888-ae1148b4a81f/download |
bitstream.checksum.fl_str_mv |
4fc6d33f74b4429b83670b30f368dddc 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 a69d6b11d512c99dcb4cae0eb7f87f2b 8f4706a78591ecdea30b5f3085439b6b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166819159998464 |
spelling |
P. Rebolledo, LicethA. Arana, VictoriaTrilleras, JorgeE. Barros, GustavoGonzález-Solano, Arturo J.Maury-Ardila, Henry2019-07-11T16:14:52Z2019-07-11T16:14:52Z2019-04-182073-4441https://hdl.handle.net/11323/4944Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The combined coagulation-solar photo Fenton treatment of leachate from the sanitary landfill located in Atlantico-Colombia was investigated. Firstly, the efficiency of two alternative combined treatments for the reduction of chemical oxygen demand in leachate was assessed, coagulation with poly-aluminum chloride followed by solar photo-Fenton process (Treatment 1) and coagulation with FeCl3·6H2O followed by ferrioxalate-induced solar photo-Fenton process (Treatment 2). Afterwards, treatments 1 and 2 were compared with the treatment currently used in the sanitary landfill (only coagulation with poly-aluminum chloride), in terms of efficiency and costs. An optimization study of alternative treatments was performed combining central-composite experimental design and response surface methodology. The optimum conditions resulted in a chemical oxygen demand reduction of 73 % and 80 % for Treatment 1 and 2, respectively. Both alternative treatments for the leachate are more efficient than the treatment currently used in the sanitary landfill (chemical oxygen demand reduction of 20 %). In terms of costs, treatment 1 would be the most competitive to implement in the sanitary landfill, since this would have an increase of 13.3 % in the total unitary cost compared to an increase of 39.5 % of treatment 2.P. Rebolledo, LicethA. Arana, Victoria-0000-0001-5181-1135-600Trilleras, Jorge-0000-0002-4516-213X-600E. Barros, Gustavo-0000-0002-8565-9917-600González-Solano, Arturo J.Maury-Ardila, HenryengWaterhttps://doi.org/10.3390/w110713511. Zhang, H.; Wu, X.; Li, X. Oxidation and coagulation removal of COD from landfill leachate by Fered-Fenton process. Chem. Eng. J. 2012, 210, 188–194. [CrossRef] 2. Renou, S.; Givaudan, J.G.; Poulain, S.; Dirassouyan, F.; Moulin, P. Landfill Leachate Treatment: Review and Opportunity. J. Hazard. Mater. 2008, 150, 468–493. [CrossRef] [PubMed] 3. Boumechhour, F.; Rabah, K.; Lamine, C.; Said, B.M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water Environ. J. 2013, 27, 114–119. [CrossRef] 4. Risch, E.; Loubet, P.; Núñez, M.; Roux, P. How environmentally significant is water consumption during wastewater treatment? Application of recent developments in LCA to WWT technologies used at 3 contrasted geographical locations. Water Res. 2014, 57, 20–30. [CrossRef] [PubMed] 5. Moradi, M.; Ghanbari, F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton processes: Biodegradability improvement. J. Water Process. Eng. 2014, 4, 67–73. [CrossRef] 6. Kumar, S.; Narsi, B. Coagulation of landfill leachate by FeCl3 : Process optimization using Box-Behnken design (RMS). Appl. Water Sci. 2015, 7, 1943–1953. [CrossRef] 7. Klauson, D.; Kivi, A.; Kattel, E.; Klein, K.; Viisimaa, M.; Bolobajev, J.; Velling, S.; Gol, A.; Tenno, T.; Trapido, M. Combined processes for wastewater purification: Treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J. Chem. Biotechnol. 2015, 90, 1527–1536. [CrossRef] 8. Huang, J.; Chen, J.; Xie, Z.; Xu, X. Treatment of nanofiltration concentrates of mature landfill leachate by a coupled process of coagulation and internal micro-electrolysis adding hydrogen peroxide. J. Environ. Technol. 2015, 36, 1001–1007. [CrossRef] 9. Oloibiri, V.; Ufomba, I.; Chys, M.; Audenaert, W.T.M.; Demeestere, K.; Van Hulle, S.W.H. A comparative study on the efficiency of ozonation and coagulation-flocculation as pretreatment to actived carbon adsorption of biologically stabilized landfill leachate. Waste Manag. 2015, 43, 335–342. [CrossRef] 10. Huang, D.; Hu, C.; Zeng, G.; Cheng, M.; Xu, P.; Gong, X.; Wang, R.; Xue, W. Combination of Fenton processes and biotreatment for wastewater treatment and soil remediation. Sci. Total Environ. 2017, 574, 1599–1610. [CrossRef] 11. Silva, T.F.C.V.; Soares, P.A.; Manenti, D.R.; Fonseca, A.; Saraiva, I.; Boaventura, R.A.R.; Vilar, V.J.P. An innovative multistage treatment system for sanitary landfill leachate depuration: Studies at pilot-scale. Sci. Total Environ. 2017, 576, 99–117. [CrossRef] [PubMed] 12. Luo, K.; Pang, Y.; Li, X.; Chen, F.; Liao, X.; Lei, M.; Song, Y. Landfill leachate treatment by coagulation/ flocculation combined with microelectrolysis-Fenton processes. Environ. Technol. 2018, 7, 1–9. [CrossRef] [PubMed] 13. Liu, X.; Li, X.-M.; Yang, Q.; Yue, X.; Shen, T.T.; Zheng, W.; Luo, K.; Sun, Y.-H.; Zeng, G.-M. Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chem. Eng. J. 2012, 200–202, 39–51. [CrossRef] 14. Vedrenne, M.; Vasquez-Medrano, R.; Prato-Garcia, D.; Frontana-Uribe, B.A.; Ibanez, J.G. Characterization and detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. J. Hazard. Mater. 2012, 205–206, 208–215. [CrossRef] [PubMed] 15. Pereira, J.H.O.S.; Queirós, D.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Boaventura, R.A.R.; Vilar, V.J.P. Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: Application to oxytetracycline degradation. Chem. Eng. J. 2014, 253, 217–228. [CrossRef] 16. Castilla-Caballero, D.; Machuca-Martínez, F.; Bustillo-Lecompte, C.; Colina-Márquez, J. Photocatalytic Degradation of Commercial Acetaminophen: Evaluation, Modeling and Scaling-Up of Photoreactors. Catalysts 2018, 8, 179. [CrossRef] 17. Standard Methods for Examination of Water and Wastewater, 21st ed.; APHA AWWA WEF: Washington, DC, USA, 2005; pp. 5–2 and 5–19. 18. U.S. EPA. Method 3015 A (SW-846): Microwave Assisted Acid Digestion of Aqueous Samples and Extracts, Revision 1; U.S. Government Printing Office: Washington, DC, USA, 2007 19. Montgomery, D.C. Desing and Analysis of Experiments, 8th ed.; John Wiley and Sons: New York, NY, USA, 2012; pp. 478–544. 20. Statgraphics Centurion XVI User’s Guide; Statpoint Technologies Inc.: Warrenton, VA, USA, 2009; pp. 257–279. 21. Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature landfill leachate treatment by coagulation/flocculation combined with Fenton and solar-Fenton process. J. Hazard. Mater. 2015, 286, 261–268. [CrossRef] 22. Pereira, J.H.O.S.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Vilar, V.J.P.; Boaventura, R.A.R. Assessment of solar driven TiO2 -assisted photocatalysis efficiency on amoxicillin degradation. Environ. Sci. Pollut. Res. 2013, 21, 1292–1303. [CrossRef] 23. Wang, Z.P.; Zhang, Z.; Lin, Y.J.; Deng, N.S.; Tao, T.; Zhuo, K. Landfill leachate treatment by coagulation-photooxidation process. J. Hazard. Mater. 2002, 95, 153–159. [CrossRef] 24. Monteagudo, J.M.; Durán, A.; Culebradas, R.; San Martín, I.; Carnicer, A. Optimization of pharmaceutical wastewaster treatment by solar/ferrioxalate photo-catalysis. J. Environ. Manag. 2013, 128, 210–219. [CrossRef] 25. Estrada-Arriaga, E.B.; Zepeda-Aviles, J.A.; García-Sánchez, L. Post-treatment of real oil refinery effluent with high concentrations of phenols using photo-ferrioxalate and Fenton’s reactions with membrane process step. Chem. Eng. J. 2016, 285, 508–516. [CrossRef] 26. Huo, S.; Xi, B.; Yu, H.; He, L.; Fan, S.; Liu, H. Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages. J. Environ. Sci. 2008, 20, 492–498. [CrossRef] 27. GilPavas, E.; Dobrosz-Gomez, I.; Gomez-García, M.A. Coagulation-flocculation sequential with Fenton or Photo-Fenton processes as an alternative for the industrial textile wastewater treatment. J. Environ. Manag. 2017, 191, 189–197. [CrossRef] [PubMed] 28. Tatsi, A.A.; Zouboulis, A.I.; Matis, K.A.; Samaras, P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere 2003, 53, 737–744. [CrossRef] 29. Wang, Z.P.; Shui, Y.; He, M.; Liu, P. Comparison of flocs characteristics using before and after composite coagulants under different coagulation mechanisms. Biochem. Eng. J. 2017, 121, 107–117. [CrossRef] 30. Long, Y.; Xu, J.; Shen, D.; Du, Y.; Feng, H. Effective removal of contaminants in landfill leachate membrane concentrates by coagulation. Chemosphere 2017, 167, 512–519. [CrossRef] 31. Li, W.; Zhou, Q.; Hua, T. Removal of Organic Matter from Landfill Leachate by Advanced Oxidation Processes: A Review. Int. J. Chem. Eng. 2010, 2010, 1–10. [CrossRef] 32. Ministry of Environment and Sustainable Development. Resolution 0631/2015. Available online: http://corponor. gov.co/corponor/RESOLUCION%20MINAMBIENTE%20NACIONAL%20631%20DE%202015.pdf (accessed on 5 April 2019). 33. Amiri, A.; Mohammad, R.S. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment. Waste Manag. 2014, 32, 2528–2536. [CrossRef] 34. Durán, A.; Monteagudo, J.M.; Gil, J.; Expósito, A.J.; San Martín, I. Solar-photo-Fenton treatment of wastewater from the beverage industry: Intensification with ferrioxalate. Chem. Eng. J. 2015, 270, 612–620. [CrossRef] 35. Umar, M.; Aziz, H.A.; Yusoff, M.S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manag. 2010, 30, 2113–2121. [CrossRef] 36. Giannakis, S.; López, M.I.P.; Spuhler, D.; Pérez, J.A.S.; Ibáñez, P.F.; Pulgarin, C. Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 2: A review of the applications for drinking water and wastewater disinfection. Appl. Catal. B 2016, 198, 431–446. [CrossRef] 37. Kim, S.; Geissen, S.; Vogelpohl, A. Landfill leachate treatment by a photoassisted fenton reaction. Water Sci. Technol. 1997, 35, 239–248. [CrossRef] 38. Sarria, V.; Deront, M.; Péringer, P.; Pulgarin, C. Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron (III) photoassisted-biological treatment. Appl. Catal. B Environ. 2003, 40, 231–246. [CrossRef] 39. Monteagudo, J.M.; Durán, A.; Corral, J.M.; Carnicer, A.; Frades, J.M.; Alonso, M.A. Ferrioxalate-induced solar photo-Fenton system for treatment of winery wastewaters. Chem. Eng. J. 2012, 181–182, 281–288. [CrossRef] 40. Seibert, D.; Diel, T.; Welter, J.B.; de Souza, A.L.; Módenes, A.N.; Espinoza-Quiñones, F.R.; Borda, F.H. Performance of photo-Fenton process mediated by Fe (III)-carboxylate complexes applied to degradation of landfill leachate. J. Environ. Chem. Eng. 2017, 5, 4462–4470. [CrossRef] 41. Expósito, A.J.; Monteagudo, J.M.; Durán, A.; Martín, I.S.; González, L. Study of the intensification of solar photo-Fenton degradation of carbamazepine with ferrioxalate complexes and ultrasound. J. Hazard. Mater. 2018, 342, 597–605. [CrossRef] [PubMed] 42. Miralles-Cuevas, S.; Daraowna, D.; Wanag, A.; Molzia, S.; Malato, S.; Oller, I. Comparison of UV/H2O2 , UV/S2O8 2−, solar/Fe(II)/H2O2 and solar/Fe(II)/S2O8 2- at pilot plant scale for the elimination of micro-contaminants in natural water: An economic assessment. Chem. Eng. J. 2017, 310, 514–524. [CrossRef]CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2leachatescoagulationsolar photo-fentonferrioxalate-inducedEfficiency of Combined Processes Coagulation/Solar Photo Fenton in the Treatment of Landfill LeachateArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdfEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdfapplication/pdf2917997https://repositorio.cuc.edu.co/bitstreams/15f5a2bf-de3d-41dd-a509-4800c34109a8/download4fc6d33f74b4429b83670b30f368dddcMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/88340bb7-da97-4c10-8152-2bacb5be068f/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/17008ef3-1862-4334-8f5c-1e0426dae001/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdf.jpgEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdf.jpgimage/jpeg69200https://repositorio.cuc.edu.co/bitstreams/0aa8bafa-3959-4b97-a231-fa493355be7b/downloada69d6b11d512c99dcb4cae0eb7f87f2bMD55TEXTEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdf.txtEfficiency of Combined Processes CoagulationSolar Photo Fenton in the Treatment of Landfill Leachate.pdf.txttext/plain63032https://repositorio.cuc.edu.co/bitstreams/10a06a1c-7456-4461-a888-ae1148b4a81f/download8f4706a78591ecdea30b5f3085439b6bMD5611323/4944oai:repositorio.cuc.edu.co:11323/49442024-09-17 14:13:43.356http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |