Speed control in DC and AC drives

Three speed-control strategies for DC and AC drives are presented in this study: a proportional integral derivative (PID) control strategy; an internal model control (IMC); and a state-space control by pole assignment with full state observer (ESSO). The three strategies are applied to a case study,...

Full description

Autores:
Beltrán Aguedo, Reinel
Lussón Cervantes, Ania
Núñez Alvarez, José Ricardo
Llosas Albuerne, Yolanda
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8930
Acceso en línea:
https://hdl.handle.net/11323/8930
https://repositorio.cuc.edu.co/
Palabra clave:
DC and AC drives
Motor control
Pole placement
State observer
State space
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a0fe8c198ea3d6491104f222588216b8
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8930
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Speed control in DC and AC drives
title Speed control in DC and AC drives
spellingShingle Speed control in DC and AC drives
DC and AC drives
Motor control
Pole placement
State observer
State space
title_short Speed control in DC and AC drives
title_full Speed control in DC and AC drives
title_fullStr Speed control in DC and AC drives
title_full_unstemmed Speed control in DC and AC drives
title_sort Speed control in DC and AC drives
dc.creator.fl_str_mv Beltrán Aguedo, Reinel
Lussón Cervantes, Ania
Núñez Alvarez, José Ricardo
Llosas Albuerne, Yolanda
dc.contributor.author.spa.fl_str_mv Beltrán Aguedo, Reinel
Lussón Cervantes, Ania
Núñez Alvarez, José Ricardo
Llosas Albuerne, Yolanda
dc.subject.spa.fl_str_mv DC and AC drives
Motor control
Pole placement
State observer
State space
topic DC and AC drives
Motor control
Pole placement
State observer
State space
description Three speed-control strategies for DC and AC drives are presented in this study: a proportional integral derivative (PID) control strategy; an internal model control (IMC); and a state-space control by pole assignment with full state observer (ESSO). The three strategies are applied to a case study, demonstrating the potential of each one. Experimental identification was used to obtain the drive models used for the synthesis of the controllers. The three strategies showed satisfactory results when compared with the requirements imposed on the system, in addition to the good rejection of disturbances. However, the IMC strategy showed itself to be a little softer and with no maximum overshoot, which in some cases and some applications is usually a restriction.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-26T14:12:09Z
dc.date.available.none.fl_str_mv 2021-11-26T14:12:09Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2088-8694
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8930
dc.identifier.doi.spa.fl_str_mv DOI:10.11591/ijpeds.v12.i4.pp2006-2017
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2088-8694
DOI:10.11591/ijpeds.v12.i4.pp2006-2017
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8930
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] R. A. Hasanjani, S. Javadi, and R. S. Nadooshan, “DC motor speed control by self-tuning fuzzy PID algorithm,” Trans. of the Institute of Measurement and Control, vol. 37, no. 2, pp. 164-176, 2015. doi: 10.1177/0142331214535619.
[2] S. N. Mahsahirun, N. R. Nik Idris, Z. M. Yusof, and T. Sutikno, “Fundamental elements of constant volt/hertz induction motor drives based on dSPACE DS1104 controller,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 11, no. 4, pp. 1670-1685, 2020, doi: 10.11591/ijpeds.v11.i4.pp1670-1685.
[3] F. J. M. Álvarez, J. L. Blanco, J. L. T. Moreno, and A. G. Fernandez, “Modeling and multivariable control of the urban electric vehicle UAL-eCARM,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 17, no. 2, pp 144-155, 2020, doi: 10.4995/riai.2019.12679.
[4] E. Guerrero, J. Linares, E. Guzman, H. Sira, G. Guerrero and A. Martinez, “DC motor speed control through parallel DC/DC buck converters,” IEEE Latin America Transactions, vol. 15, no. 5, pp. 819-826, May 2017, doi:10.1109/TLA.2017.7910194.
[5] S. Durand, B. Boisseau, N. Marchand, J. and J. F. G. Castellanos, “Event-based PID Control: application to a mini quadrotor helicopter,” Journal of Control Engineering and Applied Informatics, vol. 20, no. 1, pp. 36-47, 2018.
[6] I. Inoan, and M. Abrudean, “Control of an induction motor using the relay method approach,” Control Engineering and Applied Informatic, vol. 16, no. 3, pp. 13-22, 2014.
[7] A. Beltran, J. Rambo, H. Azcaray, K. Santiago, M. Calixto, and E. Sarmiento, “Simulation and control of the velocity and electromagnetic torque of a three-phase induction motor: An electric vehicles approach,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 19, no. 3, pp. 308-320, 2019.
[8] N. E. Ouanjli et al., “Modern improvement techniques of direct torque control for induction motor drives-A review,” Protection and Control of Modern Power Systems,” vol. 4, no. 1, pp. 1-12, 2019, doi: 10.1186/s41601-019-0125-5.
[9] O. S. Bhatti, M. Rizwan, P. S. Shiokolas, and B. Ali, “Genetically optimized ANFIS-based PID controller design for posture-stabilization of self-balancing-robots under depleting battery conditions,” Control Engineering and Applied Informatics, vol. 21, no. 4, pp. 22-33, 2019.
[10] Q Wu, X Li, M Zhang, L Pang, and J Li, “Fast parameter identification of permanent magnet synchronous motor for electric vehicles,” Control Engineering and Applied Informatics CEAI, vol. 21, no 4, pp. 24-42, 2019.
[11] H. S. Sridhar, P. Hemanth, Pavitra, H. V. Soumya, and B. G. Joshi, “Speed control of BLDC motor using soft computing technique,” International Conference on Smart Electronics and Communication ICOSEC, 2020, pp.1162-1168, doi: 10.1109/ICOSEC49089.2020.9215417.
[12] V. S. Sousa, J. J. C. Eras, A. S. Gutierrez, and M. J. C. Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237-247, 2019, doi:10.1016/j.measurement.2018.12.080.
[13] V. Felipe et al., “Permanent magnet assisted synchronous reluctance motors: A new advance in electric motors development,” Ingeniería, investigación y tecnología, vol. 19, no. 3, pp. 267-277, 2018, doi: 10.22201/fi.25940732e.2018.19n3.023.
[14] J. R. Nuñez et al., “Design of a fuzzy controller for a hybrid generation system,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 012017, pp. 1-20, 2020, doi: 10.1088/1757-899X/844/1/012017.
[15] N. Farah, M. H. N. Talib, Z. Ibrahim, J. M. Lazi, and M. Azri, “Self-tuning fuzzy logic controller based on TakagiSugeno applied to induction motor drives,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 9, no. 4, pp. 1967-1675, 2018, doi: 10.11591/ijpeds.v9.i4.pp1967-1975.
[16] N. N. Baharudin, and S. M. Ayob, “Brushless DC motor drive control using single input fuzzy PI controller (SIFPIC),” IEEE Conference on Energy Conversion CENCON, 2015, pp. 13-18, doi: 10.1109/CENCON.2015.7409506.
[17] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8532-8542, 2018, doi: 10.1109/TIE.2018.2811362.
[18] M. R. Devi, and L. Premalatha, “Soft computing technique of bridgeless SEPIC converter for PMBLDC motor drive,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 9, no. 4, pp. 1503-1509, 2018, doi: 10.11591/ijpeds.v9.i4.pp1503-1509.
[19] K. J. Aström, and T. Hägglund, PID controllers, Book 2nd edition, The International Society for Measurement and Control: Instrument Society of America, 1995.
[20] K. J. Aström, and T. Hägglund, Advanced PID control, Book 488, Publishing Pearson Education, 2009.
[21] K. Aseem, and S. S. Kumer, “Closed loop control of DC-DC converters using PID and FOPID controllers,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 3, pp. 1323-1332, 2020, doi: 10.11591/ijpeds.v11.i3.pp1323-1332.
[22] O. Bashir, X. Rui, L. K. Abbas, and J. Z. Zhang, “Ride comfort enhancement of semi-active vehicle suspension based on SMC with PID sliding surface parameters tuning using PSO,” Control Eng. and Applied Informatics, vol. 21, no. 3, pp. 51-62, 2019.
[23] A. A. S. León, and J. R. N. Alvarez, “1D convolutional neural network for detecting ventricular heartbeats,” IEEE Latin America Transactions, vol. 17, no. 12, pp. 1970-1977, 2019, doi: 10.1109/TLA.2019.9011541.
[24] M. A. Ibrahim, A. K. Mahmood, and N. S. Sultan, “Optimal PID controller of a brushless dc motor using genetic algorithm,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 10, no. 2, pp. 822-830, 2019, doi: 10.11591/ijpeds.v10.i2.822-830.
[25] A. Abdallah, A. Bouchetta, O. Boughazi, A. Baghdadi, and L. K. Bousserhane, “Double star induction machine using nonlinear integral backstepping control,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 10, no. 1, pp. 27-40, 2019, doi: 10.11591/ijpeds.v10.i1.pp27-40.
[26] J. Nuñez, I. F. Benítez Pina, A. Rodríguez Martínez, S. Díaz Pérez, and D. Luiz de Oliveira, “Tools for the implementation of a SCADA system in a desalination process,” IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858-1864, 2019, doi: 10.1109/TLA.2019.8986424.
[27] K. Ogata, Modern control engineering, Fifth Edition, Publisher Prentice Hall US, 2010.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv International Journal of Power Electronics and Drive Systems
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://www.researchgate.net/publication/356105752_Speed_control_in_DC_and_AC_drives
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7c6504f5-0702-4581-86e0-c62b3f7587d1/download
https://repositorio.cuc.edu.co/bitstreams/9f9b6327-6340-444a-ad38-ddf329035dbe/download
https://repositorio.cuc.edu.co/bitstreams/2722e18c-8323-420f-86e0-fad6946e6663/download
https://repositorio.cuc.edu.co/bitstreams/c0d158d4-4e5e-457c-a854-21d5c1689355/download
https://repositorio.cuc.edu.co/bitstreams/ded67070-8eba-47b3-aa35-d0e6b90d0690/download
bitstream.checksum.fl_str_mv 055f94e297dc496a39a1891033109f2f
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
946bb1c07055d09cd58f934cc4fe2016
b3298cbd3abaac558636201958e47f1c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760786149736448
spelling Beltrán Aguedo, ReinelLussón Cervantes, AniaNúñez Alvarez, José RicardoLlosas Albuerne, Yolanda2021-11-26T14:12:09Z2021-11-26T14:12:09Z20212088-8694https://hdl.handle.net/11323/8930DOI:10.11591/ijpeds.v12.i4.pp2006-2017Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Three speed-control strategies for DC and AC drives are presented in this study: a proportional integral derivative (PID) control strategy; an internal model control (IMC); and a state-space control by pole assignment with full state observer (ESSO). The three strategies are applied to a case study, demonstrating the potential of each one. Experimental identification was used to obtain the drive models used for the synthesis of the controllers. The three strategies showed satisfactory results when compared with the requirements imposed on the system, in addition to the good rejection of disturbances. However, the IMC strategy showed itself to be a little softer and with no maximum overshoot, which in some cases and some applications is usually a restriction.Beltrán Aguedo, Reinel-will be generated-orcid-0000-0001-8803-2397-600Lussón Cervantes, Ania-will be generated-orcid-0000-0002-5428-8973-600Núñez Alvarez, José Ricardo-will be generated-orcid-0000-0002-6607-7305-600Llosas Albuerne, Yolanda-will be generated-orcid-0000-0002-5713-0565-600application/pdfengCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Power Electronics and Drive Systemshttps://www.researchgate.net/publication/356105752_Speed_control_in_DC_and_AC_drivesDC and AC drivesMotor controlPole placementState observerState spaceSpeed control in DC and AC drivesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] R. A. Hasanjani, S. Javadi, and R. S. Nadooshan, “DC motor speed control by self-tuning fuzzy PID algorithm,” Trans. of the Institute of Measurement and Control, vol. 37, no. 2, pp. 164-176, 2015. doi: 10.1177/0142331214535619.[2] S. N. Mahsahirun, N. R. Nik Idris, Z. M. Yusof, and T. Sutikno, “Fundamental elements of constant volt/hertz induction motor drives based on dSPACE DS1104 controller,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 11, no. 4, pp. 1670-1685, 2020, doi: 10.11591/ijpeds.v11.i4.pp1670-1685.[3] F. J. M. Álvarez, J. L. Blanco, J. L. T. Moreno, and A. G. Fernandez, “Modeling and multivariable control of the urban electric vehicle UAL-eCARM,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 17, no. 2, pp 144-155, 2020, doi: 10.4995/riai.2019.12679.[4] E. Guerrero, J. Linares, E. Guzman, H. Sira, G. Guerrero and A. Martinez, “DC motor speed control through parallel DC/DC buck converters,” IEEE Latin America Transactions, vol. 15, no. 5, pp. 819-826, May 2017, doi:10.1109/TLA.2017.7910194.[5] S. Durand, B. Boisseau, N. Marchand, J. and J. F. G. Castellanos, “Event-based PID Control: application to a mini quadrotor helicopter,” Journal of Control Engineering and Applied Informatics, vol. 20, no. 1, pp. 36-47, 2018.[6] I. Inoan, and M. Abrudean, “Control of an induction motor using the relay method approach,” Control Engineering and Applied Informatic, vol. 16, no. 3, pp. 13-22, 2014.[7] A. Beltran, J. Rambo, H. Azcaray, K. Santiago, M. Calixto, and E. Sarmiento, “Simulation and control of the velocity and electromagnetic torque of a three-phase induction motor: An electric vehicles approach,” Revista Iberoamericana de Automatica e Informatica Industrial, vol. 19, no. 3, pp. 308-320, 2019.[8] N. E. Ouanjli et al., “Modern improvement techniques of direct torque control for induction motor drives-A review,” Protection and Control of Modern Power Systems,” vol. 4, no. 1, pp. 1-12, 2019, doi: 10.1186/s41601-019-0125-5.[9] O. S. Bhatti, M. Rizwan, P. S. Shiokolas, and B. Ali, “Genetically optimized ANFIS-based PID controller design for posture-stabilization of self-balancing-robots under depleting battery conditions,” Control Engineering and Applied Informatics, vol. 21, no. 4, pp. 22-33, 2019.[10] Q Wu, X Li, M Zhang, L Pang, and J Li, “Fast parameter identification of permanent magnet synchronous motor for electric vehicles,” Control Engineering and Applied Informatics CEAI, vol. 21, no 4, pp. 24-42, 2019.[11] H. S. Sridhar, P. Hemanth, Pavitra, H. V. Soumya, and B. G. Joshi, “Speed control of BLDC motor using soft computing technique,” International Conference on Smart Electronics and Communication ICOSEC, 2020, pp.1162-1168, doi: 10.1109/ICOSEC49089.2020.9215417.[12] V. S. Sousa, J. J. C. Eras, A. S. Gutierrez, and M. J. C. Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Measurement, vol. 136, pp. 237-247, 2019, doi:10.1016/j.measurement.2018.12.080.[13] V. Felipe et al., “Permanent magnet assisted synchronous reluctance motors: A new advance in electric motors development,” Ingeniería, investigación y tecnología, vol. 19, no. 3, pp. 267-277, 2018, doi: 10.22201/fi.25940732e.2018.19n3.023.[14] J. R. Nuñez et al., “Design of a fuzzy controller for a hybrid generation system,” IOP Conference Series: Materials Science and Engineering, vol. 844, no. 012017, pp. 1-20, 2020, doi: 10.1088/1757-899X/844/1/012017.[15] N. Farah, M. H. N. Talib, Z. Ibrahim, J. M. Lazi, and M. Azri, “Self-tuning fuzzy logic controller based on TakagiSugeno applied to induction motor drives,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 9, no. 4, pp. 1967-1675, 2018, doi: 10.11591/ijpeds.v9.i4.pp1967-1975.[16] N. N. Baharudin, and S. M. Ayob, “Brushless DC motor drive control using single input fuzzy PI controller (SIFPIC),” IEEE Conference on Energy Conversion CENCON, 2015, pp. 13-18, doi: 10.1109/CENCON.2015.7409506.[17] J. Talla, V. Q. Leu, V. Šmídl, and Z. Peroutka, “Adaptive speed control of induction motor drive with inaccurate model,” IEEE Transactions on Industrial Electronics, vol. 65, no. 11, pp. 8532-8542, 2018, doi: 10.1109/TIE.2018.2811362.[18] M. R. Devi, and L. Premalatha, “Soft computing technique of bridgeless SEPIC converter for PMBLDC motor drive,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 9, no. 4, pp. 1503-1509, 2018, doi: 10.11591/ijpeds.v9.i4.pp1503-1509.[19] K. J. Aström, and T. Hägglund, PID controllers, Book 2nd edition, The International Society for Measurement and Control: Instrument Society of America, 1995.[20] K. J. Aström, and T. Hägglund, Advanced PID control, Book 488, Publishing Pearson Education, 2009.[21] K. Aseem, and S. S. Kumer, “Closed loop control of DC-DC converters using PID and FOPID controllers,” International Journal of Power Electronics and Drive Systems, vol. 11, no. 3, pp. 1323-1332, 2020, doi: 10.11591/ijpeds.v11.i3.pp1323-1332.[22] O. Bashir, X. Rui, L. K. Abbas, and J. Z. Zhang, “Ride comfort enhancement of semi-active vehicle suspension based on SMC with PID sliding surface parameters tuning using PSO,” Control Eng. and Applied Informatics, vol. 21, no. 3, pp. 51-62, 2019.[23] A. A. S. León, and J. R. N. Alvarez, “1D convolutional neural network for detecting ventricular heartbeats,” IEEE Latin America Transactions, vol. 17, no. 12, pp. 1970-1977, 2019, doi: 10.1109/TLA.2019.9011541.[24] M. A. Ibrahim, A. K. Mahmood, and N. S. Sultan, “Optimal PID controller of a brushless dc motor using genetic algorithm,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 10, no. 2, pp. 822-830, 2019, doi: 10.11591/ijpeds.v10.i2.822-830.[25] A. Abdallah, A. Bouchetta, O. Boughazi, A. Baghdadi, and L. K. Bousserhane, “Double star induction machine using nonlinear integral backstepping control,” International Journal of Power Electronics and Drive Systems IJPEDS, vol. 10, no. 1, pp. 27-40, 2019, doi: 10.11591/ijpeds.v10.i1.pp27-40.[26] J. Nuñez, I. F. Benítez Pina, A. Rodríguez Martínez, S. Díaz Pérez, and D. Luiz de Oliveira, “Tools for the implementation of a SCADA system in a desalination process,” IEEE Latin America Transactions, vol. 17, no. 11, pp. 1858-1864, 2019, doi: 10.1109/TLA.2019.8986424.[27] K. Ogata, Modern control engineering, Fifth Edition, Publisher Prentice Hall US, 2010.PublicationORIGINALSpeed control in DC and AC drives.pdfSpeed control in DC and AC drives.pdfapplication/pdf1198496https://repositorio.cuc.edu.co/bitstreams/7c6504f5-0702-4581-86e0-c62b3f7587d1/download055f94e297dc496a39a1891033109f2fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/9f9b6327-6340-444a-ad38-ddf329035dbe/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/2722e18c-8323-420f-86e0-fad6946e6663/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILSpeed control in DC and AC drives.pdf.jpgSpeed control in DC and AC drives.pdf.jpgimage/jpeg64468https://repositorio.cuc.edu.co/bitstreams/c0d158d4-4e5e-457c-a854-21d5c1689355/download946bb1c07055d09cd58f934cc4fe2016MD54TEXTSpeed control in DC and AC drives.pdf.txtSpeed control in DC and AC drives.pdf.txttext/plain32695https://repositorio.cuc.edu.co/bitstreams/ded67070-8eba-47b3-aa35-d0e6b90d0690/downloadb3298cbd3abaac558636201958e47f1cMD5511323/8930oai:repositorio.cuc.edu.co:11323/89302024-09-17 11:09:01.106http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==