Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos
El proyecto de investigación que se propone tiene como propósito evaluar los métodos empleados en el análisis de factibilidad de propuestas, para el mejoramiento de la eficiencia energética en motores trifásicos (MTs). El proyecto se fundamenta en la necesidad de mejorar la eficiencia operacional de...
- Autores:
-
Sousa Santos, Vladimir
Cabello Eras, Juan José
Sagastume, Alexis
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2020
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/6948
- Acceso en línea:
- https://hdl.handle.net/11323/6948
https://repositorio.cuc.edu.co/
- Palabra clave:
- Análisis de factibilidad
Eficiencia energética
Motores trifásicos
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a0ddefea217ba7b5e76c58c131c03c78 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/6948 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
title |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
spellingShingle |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos Análisis de factibilidad Eficiencia energética Motores trifásicos |
title_short |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
title_full |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
title_fullStr |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
title_full_unstemmed |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
title_sort |
Evaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos |
dc.creator.fl_str_mv |
Sousa Santos, Vladimir Cabello Eras, Juan José Sagastume, Alexis |
dc.contributor.author.spa.fl_str_mv |
Sousa Santos, Vladimir Cabello Eras, Juan José Sagastume, Alexis |
dc.subject.spa.fl_str_mv |
Análisis de factibilidad Eficiencia energética Motores trifásicos |
topic |
Análisis de factibilidad Eficiencia energética Motores trifásicos |
description |
El proyecto de investigación que se propone tiene como propósito evaluar los métodos empleados en el análisis de factibilidad de propuestas, para el mejoramiento de la eficiencia energética en motores trifásicos (MTs). El proyecto se fundamenta en la necesidad de mejorar la eficiencia operacional de los MTs, pues estos representan casi el 50% del consumo de energía eléctrica mundial y son los mayores consumidores de energía eléctrica en el sector industrial. En la literatura científica se reportan varios estudios de factibilidad de propuestas para el mejoramiento de la eficiencia en estos equipos. Estos análisis, sin embargo, se basan en métodos de estimación que no consideran aspectos relevantes de la operación de los MTs, como las condiciones reales de carga y de suministro eléctrico, que pueden implicar errores significativos en la evaluación del impacto de las medidas propuestas. En el presente proyecto estos métodos se evaluarán experimentalmente en las cuatro etapas siguientes. En la primera etapa, se evaluarán los métodos de estimación de la eficiencia en MTs de diferentes tecnologías y niveles de eficiencia, operando en regímenes variables de cargas y de suministro eléctrico. En la segunda etapa, se evaluarán los métodos empleados para la estimación del ahorro de energía por el uso de VDVs, en un entorno de operación que simula condiciones reales. En la tercera etapa, se contempla el análisis de la eficiencia operacional de los MTs alimentados desde sistemas fotovoltaicos (SFs), donde se presentan nuevos escenarios en el suministro eléctrico, que deben de considerarse en los análisis de factibilidad. En la cuarta y última etapa, se analizarán los resultados, y se determinarán aspectos que deben de mejorarse en los análisis de factibilidad de propuestas para el aumento de la eficiencia energética en MTs. El proyecto se realizará en conjunto con investigadores de la Facultad de Ingeniería de la Universidad Autónoma de Occidente (Acreditada), y las evaluaciones experimentales se desarrollarán en laboratorios especializados de esta institución. Los resultados del proyecto se prevén publicar en cuatro artículos científicos en revistas de alto impacto, y servirán de base para la propuesta de un proyecto nacional e internacional de mayor alcance, sobre el desarrollo de nuevas herramientas y métodos, para el mejoramiento de la eficiencia energética en motores eléctricos. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-22T22:23:21Z |
dc.date.available.none.fl_str_mv |
2020-08-22T22:23:21Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/6948 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
url |
https://hdl.handle.net/11323/6948 https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Corporación Universidad de la Costa REDICUC - Repositorio CUC |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Y. De la Peña, G. Bordeth, H. Campo, y U. Murillo, Energías limpias una oportunidad para salvar el Planeta, IJMSOR, vol. 3, n.º 1, pp. 21-25, dic. 2018. 2. V. Sousa Santos, J. J. Cabello Eras, A. Sagastume Gutierrez, and M. J. Cabello Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Meas. J. Int. Meas. Confed., vol. 136, pp. 237–247, 2019. 3. Ç. Acar, O. C. Soygenc, and L. T. Ergene, “Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor Used in Industrial Applications,” Int. Rev. Electr. Eng., vol. 14, no. 1, p. 67, Feb. 2019. 4. P. Waide and C. U. Brunner, “Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems,” Cedex, Fr. Int. Energy Agency, p. 132, 2011. 5. Siemens AG, “Minimum Energy Performance Standards,” 2016. 6. B. Lu, T. G. Habetler, and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gaptorque with considerations of condition monitoring,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. 7. M. C. Di Piazza and M. Pucci, “Techniques for efficiency improvement in PWM motor drives,” Electr. Power Syst. Res., vol.136, pp. 270–280, 2016. 8. A. G. Siraki and P. Pillay, “An in situ efficiency estimation technique for induction machines working with unbalanced supplies,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 85–95, 2012. 9. C. P. Salomon, W. C. Sant’Ana, G. Lambert-Torres, L. E. Borges Da Silva, E. L. Bonaldi, and L. E. D. L. De Oliveira, “Comparison among methods for induction motor low-intrusive efficiency evaluation including a new AGT approach with a modified stator resistance,” Energies, vol. 11, no. 4, 2018. 10. V. S. Santos, P. R. V. Felipe, J. R. G. Sarduy, N. A. Lemozy, A. Jurado, and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages,” IEEE Trans. Energy Convers., vol. 30, no. 1, 2015. 11. B. Lu, T. G. Habetler, and R. G. Harley, “A survey of efficiency-estimation methods for in-service induction motors,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 924–933, 2006. 12. M. Chirindo, M. A. Khan, and P. S. Barendse, “Considerations for Nonintrusive Efficiency Estimation of Inverter-Fed Induction Motors,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 741–749, 2016. 13. J. S. Hsu et al., “Comparison of Induction Motor Field Efficiency Evaluation Methods,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 117–125, 1996. 14. J. R. Holmquist, J. A. Rooks, and M. E. Richter, “Practical Approach for Determining Motor Efficiency in the Field Using Calculated and Measured Values,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 242–248, 2004. 15. M. O. Adissi, A. C. Lima Filho, R. D. Gomes, D. M. G. B. Silva, and F. A. Belo, “Implementation and Deployment of an Intelligent Industrial Wireless System for Induction Motor Monitoring,” J. Dyn. Syst. Meas. Control, vol. 139, no. 12, p. 124502, 2017. 16. B. Lu, D. B. Durocher, and P. Stemper, “Online and nonintrusive continuous motor energy and condition monitoring in process industries,” in Conference Record of 2008 54th Annual Pulp and Paper Industry Technical Conference, 2008, pp. 18–26. 17. J. O. Ojo, V. Ostovic, T. A. Lipo, and J. C. White, “Measurement and computation of starting torque pulsations of salient pole synchronous motors,” IEEE Trans. Energy Convers., vol. 5, no. 1, pp. 176–182, 1990. 18. B. Lu, T. G. Habetler, and R. G. Harley, “A nonintrusive efficiency estimation method for in-service motor testing using a modified induction motor equivalent circuit,” in 2006 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1–6. 19. B. Herndler, P. Barendse, and M. A. Khan, “Considerations for improving the non-intrusive efficiency estimation of induction machines using the air gap torque method,” 2011 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2011, no. 1, pp. 1516–1521, 2011. 20. U. V Anbazhagu, J. S. Praveen, and R. Soundarapandian, “A Proficient Approach for Monitoring Induction Motor by Integrating Embedded System with Wireless Sensor Network,” vol. 7, no. November, pp. 174–179, 2014. 21. M. M. Stopa, M. A. Saldanha, A. A. Luiz, L. M. R. Baccarini, and G. A. M. Lacerda, “A Simple Torque Estimator for In-Service Efficiency Determination of Induction Motors,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4967–4976, 2018. 22. L. M. R. Baccarini, G. F. V. Amaral, and G. A. M. Lacerda, “Simple robust estimation of load torque in induction machines for application in real plants,” Int. J. Adv. Manuf. Technol., vol. 99, no. 9–12, pp. 2695–2704, 2018. 23. R. Saidur, “A review on electrical motors energy use and energy savings,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 877–898, Apr. 2010. 24. Quintero Coronel, D., Lenis Rodas, Y., & Corredor Martínez, L. (2018). Desarrollo de un modelo de gasificación en equilibrio químico para evaluar el potencial energético del cuesco en plantas extractoras de aceite de palma en Colombia. INGE CUC, 14(2), 62-70. https://doi.org/10.17981/ingecuc.14.2.2018.06 25. J. R. Gómez, E. C. Quispe, M. A. De Armas, and P. R. Viego, “Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms,” Proc. 2008 Int. Conf. Electr. Mach. ICEM’08, pp. 25–28, 2008. 26. V. Sousa, P. R. Viego, J. R. Gomez, E. C. Quispe, and M. Balbis, “Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages,” in CHILECON 2015 - 2015 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies, Proceedings of IEEE Chilecon 2015, 2016, pp. 567–572. 27. V. Sousa Santos, P. Viego Felipe, and J. Gómez Sarduy, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages,” Measurement, vol. 46, no. 7, pp. 2232–2237, Aug. 2013. 28. V. Sousa Santos, P. Viego Felipe, and J. Gómez Sarduy, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages,” Meas. J. Int. Meas. Confed., vol. 46, no. 7, pp. 2232–2237, 2013. 29. O. Avalos, E. Cuevas, and J. Gálvez, “Induction Motor Parameter Identification Using a Gravitational Search Algorithm,” Computers, vol. 5, no. 2, p. 6, 2016. 30. G. S. Grewal and B. S. Rajpurohit, “Comparison of efficiencies of in situ induction motor in unbalanced field conditions,” Proc. 2015 IEEE Int. Conf. Power Adv. Control Eng. ICPACE 2015, no. Im, pp. 70–74, 2015. 31. C. P. Salomon et al., “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect,” Proc. 2013 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2013, no. 1, pp. 1369–1375, 2013. 32. F. García Reina, A. Méndez García, y L. Martínez Ibáñez, «Determinación de las propiedades dielectricas de los combustibles, sus mezclas y del suelo, así como su impacto en un uso eficiente de los recurso energéticos y en la determinación de la contaminación ambiental»., IJMSOR, vol. 4, n.º 1, jun. 2019. https://doi.org/10.17981/ijmsor.04.01.04 33. D. P. de Carvalho et al., “A method for real-time wireless monitoring of the efficiency and conditions of three-phase induction motor operation,” Electr. Power Syst. Res., vol. 157, pp. 70–82, 2018. 34. F. J. T. E. Ferreira and A. T. De Almeida, “Considerations on in-field induction motor load estimation methods,” Proc. 2008 Int. Conf. Electr. Mach. ICEM’08, pp. 1–8, 2008. 35. C. Verucchi, C. Ruschetti, and F. Benger, “Efficiency Measurements in Induction Motors: Comparison of Standards,” IEEE Lat. Am. Trans., vol. 13, no. 8, pp. 2602–2607, 2015. 36. R. Saidur and T. M. I. Mahlia, “Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries,” Energy Policy, vol. 38, no. 8, pp. 4617–4625, 2010. 37. M. A. Habib, M. Hasanuzzaman, M. Hosenuzzaman, A. Salman, and M. R. Mehadi, “Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh,” Energy, vol. 112, pp. 91–100, 2016. 38. M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for rewinding and replacement of industrial motor,” Energy, vol. 36, no. 1, pp. 233–240, 2011. 39. R. Saidur, M. Hasanuzzaman, S. Yogeswaran, H. A. Mohammed, and M. S. Hossain, “An end-use energy analysis in a Malaysian public hospital,” Energy, vol. 35, no. 12, pp. 4780–4785, 2010. 40. R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009. 41. R. Saidur, N. A. Rahim, and M. Hasanuzzaman, “A review on compressed-air energy use and energy savings,” Renew. Sustain. Energy Rev., vol. 14, no. 4, pp. 1135–1153, 2010. 42. R. Saidur, N. A. Rahim, H. W. Ping, M. I. Jahirul, S. Mekhilef, and H. H. Masjuki, “Energy and emission analysis for industrial motors in Malaysia,” Energy Policy, vol. 37, no. 9, pp. 3650–3658, 2009. 43. M. Liu, L. Tan, and S. Cao, “Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine,” Energy, vol. 172, pp. 712–732, Apr. 2019. 44. P. van Rhyn and J. H. C. Pretorius, “Utilising high and premium efficiency three phase motors with VFDs in a public water supply system,” in 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2015, vol. 2015-Septe, pp. 497–502. 45. C.-L. Su, Chi-Hsiang Liao, Tso-Chu Chou, Min-Hung Chou, and J. M. Guerrero, “Variable flow controls of closed system pumps for energy savings in maritime power systems,” in 2016 IEEE Industry Applications Society Annual Meeting, 2016, pp. 1–8. 46. M. Liu, R. Ooka, W. Choi, and S. Ikeda, “Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems,” Appl. Energy, vol. 251, no. May, p. 113359, Oct. 2019. 47. G. Wang and Z. Han, “Investigation of the accuracy of VFD analog output data and the energy performance of different voltage controls in a VFD-motor-belt-fan system,” Energy Build., vol. 194, pp. 260–272, Jul. 2019. 48. V. K. A. Shankar, S. Umashankar, S. Paramasivam, and H. Norbert, “Real time simulation of Variable Speed Parallel Pumping system,” Energy Procedia, vol. 142, pp. 2102–2108, Dec. 2017. 49. V. K. A. Shankar, S. Umashankar, P. Sanjeevikumar, L. Mihet-Popa, V. Fedák, and V. K. Ramachandaramurthy, “Power Quality Performance Analysis of grid tied PV fed Parallel Pumping System under Normal and Vibrating Condition,” Energy Procedia, vol. 145, pp. 497–503, Jul. 2018. 50. G. Li, Y. Jin, M. W. Akram, and X. Chen, “Research and current status of the solar photovoltaic water pumping system – A review,” Renew. Sustain. Energy Rev., vol. 79, no. December 2016, pp. 440–458, Nov. 2017. 51. M. Basu, “Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources,” Renew. Energy, 2019. 52. M. Dib, M. Ramzi, and A. Nejmi, “Voltage regulation in the medium voltage distribution grid in the presence of renewable energy sources,” in Materials Today: Proceedings, 2019, vol. 13, pp. 739–745. 53. J. B. Kwon, X. Wang, F. Blaabjerg, C. L. Bak, A. R. Wood, and N. R. Watson, “Harmonic instability analysis of a single-phase grid-connected converter using a harmonic state-space modeling method,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4188–4200, 2016. 54. M. Anwari and A. Hiendro, “New unbalance factor for estimating performance of a three-phase induction motor withunder-and overvoltage unbalance,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 619–625, 2010. 55. A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 782–790, 2001. 56. NEMA, “ANSI/NEMA MG 1-2016 . Motors and Generators,” 2016. 57. Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.11 58. IEEE Power and Energy Society, IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society, vol. 2014. 2014, pp. 5–9. 59. IEEE, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, vol. 1992, no. June. 1993. 60. M. Digalovski, K. Najdenkoski, and G. Rafajlovski, “Impact of current high order harmonic to core losses of three-phase distribution transformer,” in IEEE EuroCon 2013, 2013. 61. M. T. Bishop, J. F. Baranowski, D. Heath, and S. J. Benna, “Evaluating harmonic-induced transformer heating,” IEEE Trans. Power Deliv., 1996. 62. C. Boonseng, R. Boonseng, N. Boonsaner, V. Kinnares, P. Apiratikul, and K. Kularbphettong, “Partial Discharge Phenomena in Power Capacitor Unit Insulation Under Harmonic Resonance Effects,” in Lecture Notes in Electrical Engineering, 2020. 63. C. Boonseng, C. Chompoo-inwai, V. Kinnares, K. Nakawiwat, and P. Apiratikul, “Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001. 64. R. Milankov and M. Radic, “Harmonics: Examples of negative impacts,” in 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 435–438. 65. W. A. Elmore, C. A. Kramer, and S. E. Zocholl, “Effect of Waveform Distortion on Protective Relays,” IEEE Trans. Ind. Appl., 1993. 66. J. F. Fuller and D. J. Roesler, “Influence of harmonics on power distribution system protection,” IEEE Trans. Power Deliv., 1988. 67. Ching-Yin Lee and Wei-Jen Lee, “Effects of nonsinusoidal voltage on the operation performance of a three-phase induction motor,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 193–201, Jun. 1999. 68. D. R. Williams and L. Good, Guide to the Energy Policy Act of 1992. United States: Fairmont Press, Inc., Liburn, GA (United States), 1994. 69. International Electrotechnical Commission, “IEC 60034-30-1:2014 Rotating Electrical Machines: Efficiency Classes of Line Operated AC Motors,” p. 50, 2014. 70. P. R. Viego Felipe, J. R. Gómez Sarduy, and E. C. Quispe Oqueña, “Synchronous reluctance motors controlled by variable frequency converters: an application to save energy.,” Ing. Energética, vol. 36, no. 1, pp. 72–82, 2015. 71. Abb, “Low voltage IE4 synchronous reluctance motor and drive package for pump and fan applications,” 2013. 72. A. T. De Almeida, F. J. T. E. Ferreira, and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274–1285, Mar. 2014. 73. I. Peter, G. Scutaru, and C. G. Nistor, “Manufacturing of asynchronous motors with squirrel cage rotor, included in the premium efficiency category IE3 at S.C. Electroprecizia Electrical-Motors S.R.L. Sacele,”in 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, 2014. 74. L. Alberti, N. Bianchi, A. Boglietti, and A. Cavagnino, “Core axial lengthening as effective solution to improve the induction motor efficiency classes,” IEEE Trans. Ind. Appl., 2014. 75. A. T. De Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond induction motors - Technology trends to move up efficiency,” IEEE Trans. Ind. Appl., 2014. 76. ABB, “General purpose motor catalog.” 2018. 77. M. Zigliotto, “Permanent magnet synchronous motor drives,” in Power Electronic Converters and Systems: Frontiers and Applications, 2016. 78. S. Taghavi and P. Pillay, “A Sizing Methodology of the Synchronous Reluctance Motor for Traction Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014. 79. K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111–121, 2000. 80. P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” Int. J. Electr. Comput. Eng., vol. 10, no. 1, pp. 651–659, 2020. 81. C. Zhang, K. J. Tseng, and G. Zhao, “Comparison of axial flux PM synchronous motor and induction motor by mathematical and finite element analysis,” Int. J. Appl. Electromagn. Mech., 2011. 82. S. Neethu, S. P. Nikam, B. G. Fernandes, S. Pal, and A. K. Wankhede, “Radial-and Axial-Flux Synchronous Motors for HighSpeed Low-Power Applications,” in Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, 2018. 83. A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, “A comparison between the axial flux and the radial flux structures for PM synchronous motors,” IEEE Trans. Ind. Appl., 2002. 84. R. Saidur, S. Mekhilef, M. B. Ali, A. Safari, and H. A. Mohammed, “Applications of variable speed drive (VSD) in electrical motors energy savings,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 543–550, Jan. 2012. 85. M. H. Rashid, Power Electronics Handbook. 2007. 86. K. Sueker, Power electronics design: a practitioner’s guide. Newnes, 2005. 87. S. Mustaffah and S. Azma, “Variable speed drives as energy efficient strategy in pulp and paper industry,” University Technology Malaysia, 2006 88. L. Jayamaha, Energy-efficient building systems: green strategies for operation and maintenance. New York: McGraw-Hill Professional, 2006. 89. A. Brodgesell, R. D. Buchanan, J. B. Rishel, B. G. Lipták, R. H. Osman, and I. H. Gibson, “Variable-speed drives,” in Instrument Engineers Handbook, Fourth Edition: Process Control and Optimization, 2005. 90. P. Mohanty, T. Muneer, and M. Kolhe, Solar Photovoltaic System Applications, First. Switzerland: Springer International Publishing, 2016. 91. L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Sol. Energy, vol. 188, no. June, pp. 426–440, 2019. 92. R. F. Pierret, Modular series on solid state devices. Volume I: Semiconductor fundamentals. Addison-Wesley Publishing Company, 1983. 93.Tiwari, G.N. and S. Dubey, Fundamentals of Photovoltaic Modules and their Applications. Royal Society of Chemistry, 2010. 94. P. L. Alger and R. E. Arnold, “The History of Induction Motors in America,” Proc. IEEE, vol. 64, no. 9, pp. 1380–1383, 1976. 95. J. L. Devore, Probability and Statistics for Engineering and the Sciences, 8th ed. San Luis Obispo, 2010. 96. S. Rönnberg and M. Bollen, “Power quality issues in the electric power system of the future,” Electr. J., vol. 29, no. 10, pp. 49–61, 2016. 97. J. I. Pérez-Díaz and J. Jiménez, “Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration,” Energy, vol. 109, pp. 92–104, 2016. 98. J. I. Pérez-Díaz, M. Chazarra, J. García-González, G. Cavazzini, and A. Stoppato, “Trends and challenges in the operation of pumped-storage hydropower plants,” Renew. Sustain. Energy Rev., vol. 44, pp. 767–784, 2015. 99. M. A. Azzouz, H. E. Farag, and E. F. El-Saadany, “Real-time fuzzy voltage regulation for distribution networks incorporating high penetration of renewable sources,” IEEE Syst. J., vol. 11, no. 3, pp. 1702–1711, 2017. 100. García-Guarín, P., Cantor-López, J., Cortés-Guerrero, C., Guzmán-Pardo, M., & Rivera, S. (2019). Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes. INGE CUC, 15(1), 142-154. https://doi.org/10.17981/ingecuc.15.1.2019.13 101. C. X. Mu, J. X. Jin, and W. Xu, “Adaptive frequency regulation strategy based integral sliding mode control for smart grid with renewable energy sources,” 2015 IEEE Int. Conf. Appl. Supercond. Electromagn. Devices, ASEMD 2015 - Proc., pp. 391–392, 2016. 102. S. Zhang, Y. Mishra, and M. Shahidehpour, “Utilizing distributed energy resources to support frequency regulation services,” Appl. Energy, vol. 206, pp. 1484–1494, Nov. 2017. 103. B. Jie, T. Tsuji, and K. Uchida, “Analysis and modelling regarding frequency regulation of power systems and power supply–demand-control based on penetration of renewable energy sources,” J. Eng., vol. 2017, no. 13, pp. 1824–1828, 2017. 104. A. Habib, C. Sou, H. M. Hafeez, and A. Arshad, “Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant),” Renew. Energy, vol. 127, pp. 204–212, Nov. 2018. 104. A. Habib, C. Sou, H. M. Hafeez, and A. Arshad, “Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant),” Renew. Energy, vol. 127, pp. 204–212, Nov. 2018. 105. Z. X. Tang, Y. S. Lim, S. Morris, J. L. Yi, P. F. Lyons, and P. C. Taylor, “A comprehensive work package for energy storage systems as a means of frequency regulation with increased penetration of photovoltaic systems,” Int. J. Electr. Power Energy Syst., vol. 110, pp. 197–207, Sep. 2019. 106. Y. Ye, Y. Qiao, and Z. Lu, “Revolution of frequency regulation in the converter-dominated power system,” Renew. Sustain. Energy Rev., vol. 111, pp. 145–156, Sep. 2019. 107. D. H. Tungadio and Y. Sun, “Load frequency controllers considering renewable energy integration in power system,” Energy Reports, vol. 5, pp. 436–453, Nov. 2019. 108. J. W. Shim, G. Verbic, N. Zhang, and K. Hur, “Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6193–6205, 2018. 109. H. R. Kermani, M. V. Dahraie, and H. R. Najafi, “Frequency control of a microgrid including renewable resources with energy management of electric vehicles,” 4th Iran. Conf. Renew. Energy Distrib. Gener. ICREDG 2016, pp. 114–118, 2016. 110. S. M. Brahma and A. A. Girgis, “Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 56–63, 2004. 111. V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” in CSEE Journal of Power and Energy Systems, 2018, vol. 3, no. 4, pp. 365–379. 112. Hoyos Velasco, F., Candelo, J., & Silva Ortega, J. (2018). Rendimiento de un Inversor DC-AC controlado con ZAD-FPIC. INGE CUC, 14(1), 9-18. https://doi.org/10.17981/ingecuc.14.1.2018.01 113. X. Liang and C. Andalib-Bin-Karim, “Harmonics and Mitigation Techniques Through Advanced Control in Grid-Connected Renewable Energy Sources: A Review,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3100–3111, 2018. 114. J. Kwon, X. Wang, C. L. Bak, and F. Blaabjerg, “The modeling and harmonic coupling analysis of multiple-parallel connected inverter using Harmonic State Space (HSS),” in 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 2015, pp. 6231–6238. 115. M. N. I. Sarkar, L. G. Meegahapola, and M. Datta, “Reactive power management in renewable rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and optimization Algorithms,” IEEE Access, vol. 6, pp. 41458–41489, 2018. 116. R. Kabiri, D. G. Holmes, B. P. McGrath, and L. G. Meegahapola, “LV Grid Voltage Regulation Using Transformer Electronic Tap Changing, with PV Inverter Reactive Power Injection,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 4, pp. 1182–1192, 2015. 117. B. Zhang, P. Hou, W. Hu, M. Soltani, C. Chen, and Z. Chen, “A Reactive Power Dispatch Strategy with Loss Minimization for a DFIG-Based Wind Farm,” IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 914–923, 2016. 118. Y. Shen, M. Cui, Q. Wang, F. Shen, B. Zhang, and L. Liang, “Comprehensive reactive power support of DFIG adapted to different depth of voltage sags,” Energies, vol. 10, no. 6, 2017. 119. Á. Molina-García, R. A. Mastromauro, T. García-Sánchez, S. Pugliese, M. Liserre, and S. Stasi, “Reactive Power Flow Control for PV Inverters Voltage Support in LV Distribution Networks,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 447–456, 2017. 120. T. K. S. Freddy, J.-H. Lee, H.-C. Moon, K.-B. Lee, and N. A. Rahim, “Modulation Technique for Single-Phase Transformerless Photovoltaic Inverters with Reactive Power Capability,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6989–6999, 2017. 121. J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, and J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, 2019. 122. E. El-Kharashi, J. G. Massoud, and M. A. Al-Ahmar, “The impact of the unbalance in both the voltage and the frequency on the performance of single and cascaded induction motors,” Energy, vol. 181, pp. 561–575, Aug. 2019. 123. A. Kalair, N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, “Review of harmonic analysis, modeling and mitigation techniques,” Renew. Sustain. Energy Rev., vol. 78, pp. 1152–1187, 2017. 124. P. Donolo, M. Pezzani, G. Bossio, E. C. Quispe, D. Valencia, and V. Sousa, “Impact of Voltage Waveform on the Losses and Performance of Energy Efficiency Induction Motors,” in 2018 IEEE ANDESCON, ANDESCON 2018 – Conference Proceedings, 2018, pp. 20–23. 125. E. C. Quispe, I. D. López, F. J. T. E. Ferreira, and V. Sousa, “Unbalanced voltages impacts on the energy performance of induction motors,” Int. J. Electr. Comput. Eng., vol. 8, no. 3, pp. 1412–1422, 2018. 126. E. C. Quispe, X. M. Lopez-Fernandez, A. M. S. Mendes, A. J. Marques Cardoso, and J. A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance,” in Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, 2013, no. 100, pp. 100–105. 127. Duarte-Forero, J., Berrio-Orozco, K., & Guzmán-Fruto, A. (2019). Caracterización de un sistema de adquisición de datos para un banco de prueba de Motor Diésel Monocilíndrico. INGE CUC, 15(1), 155-167. https://doi.org/10.17981/ingecuc.15.1.2019.14 128. M. Nuñez, J. Correa, G. Herrera, P. Gómez, S. Morón, y N. Fonseca, Estudio de percepción sobre energía limpia y auto sostenible, IJMSOR, vol. 3, n.º 1, pp. 11-15, dic. 2018. http://ijmsoridi.com/index.php/ijmsor/article/view/89 129. M. J. S. Zuberi, A. Tijdink, and M. K. Patel, “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry,” Appl. Energy, vol. 205, no. January, pp. 85–104, Nov. 2017. 130. G. S. Grewal and B. Singh, “Efficiency determination of in-service induction machines using gravitational search optimization,” Meas. J. Int. Meas. Confed., vol. 118, no. October 2017, pp. 156–163, 2018. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/b6fd6977-60c2-4e7a-bae3-7a0fec5f0020/download https://repositorio.cuc.edu.co/bitstreams/1b75c665-91c0-4a7a-bbbe-26e551f15caf/download https://repositorio.cuc.edu.co/bitstreams/b33a5bd3-59dd-4246-bf1d-03d8a388eb63/download https://repositorio.cuc.edu.co/bitstreams/87fe7215-96a4-4162-9dec-29cf8ef6c5e4/download https://repositorio.cuc.edu.co/bitstreams/165d9322-746a-40bd-a325-025c37f6bc5d/download |
bitstream.checksum.fl_str_mv |
41e4b770efebe5cce08a218d9c36376a 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad 6bae14df15b41b5ec93c2c05124dace7 7774f242b39e2ae5f0db88e91843f6c3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760834792128512 |
spelling |
Sousa Santos, VladimirCabello Eras, Juan JoséSagastume, Alexis2020-08-22T22:23:21Z2020-08-22T22:23:21Z2020https://hdl.handle.net/11323/6948Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/El proyecto de investigación que se propone tiene como propósito evaluar los métodos empleados en el análisis de factibilidad de propuestas, para el mejoramiento de la eficiencia energética en motores trifásicos (MTs). El proyecto se fundamenta en la necesidad de mejorar la eficiencia operacional de los MTs, pues estos representan casi el 50% del consumo de energía eléctrica mundial y son los mayores consumidores de energía eléctrica en el sector industrial. En la literatura científica se reportan varios estudios de factibilidad de propuestas para el mejoramiento de la eficiencia en estos equipos. Estos análisis, sin embargo, se basan en métodos de estimación que no consideran aspectos relevantes de la operación de los MTs, como las condiciones reales de carga y de suministro eléctrico, que pueden implicar errores significativos en la evaluación del impacto de las medidas propuestas. En el presente proyecto estos métodos se evaluarán experimentalmente en las cuatro etapas siguientes. En la primera etapa, se evaluarán los métodos de estimación de la eficiencia en MTs de diferentes tecnologías y niveles de eficiencia, operando en regímenes variables de cargas y de suministro eléctrico. En la segunda etapa, se evaluarán los métodos empleados para la estimación del ahorro de energía por el uso de VDVs, en un entorno de operación que simula condiciones reales. En la tercera etapa, se contempla el análisis de la eficiencia operacional de los MTs alimentados desde sistemas fotovoltaicos (SFs), donde se presentan nuevos escenarios en el suministro eléctrico, que deben de considerarse en los análisis de factibilidad. En la cuarta y última etapa, se analizarán los resultados, y se determinarán aspectos que deben de mejorarse en los análisis de factibilidad de propuestas para el aumento de la eficiencia energética en MTs. El proyecto se realizará en conjunto con investigadores de la Facultad de Ingeniería de la Universidad Autónoma de Occidente (Acreditada), y las evaluaciones experimentales se desarrollarán en laboratorios especializados de esta institución. Los resultados del proyecto se prevén publicar en cuatro artículos científicos en revistas de alto impacto, y servirán de base para la propuesta de un proyecto nacional e internacional de mayor alcance, sobre el desarrollo de nuevas herramientas y métodos, para el mejoramiento de la eficiencia energética en motores eléctricos.Sousa Santos, Vladimir-will be generated-orcid-0000-0001-8808-1914-600Cabello Eras, Juan José-will be generated-orcid-0000-0003-0949-0862-600Sagastume, Alexis-will be generated-orcid-0000-0003-0188-7101-600spaCorporación Universidad de la CostaCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Análisis de factibilidadEficiencia energéticaMotores trifásicosEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicosArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. Y. De la Peña, G. Bordeth, H. Campo, y U. Murillo, Energías limpias una oportunidad para salvar el Planeta, IJMSOR, vol. 3, n.º 1, pp. 21-25, dic. 2018.2. V. Sousa Santos, J. J. Cabello Eras, A. Sagastume Gutierrez, and M. J. Cabello Ulloa, “Assessment of the energy efficiency estimation methods on induction motors considering real-time monitoring,” Meas. J. Int. Meas. Confed., vol. 136, pp. 237–247, 2019.3. Ç. Acar, O. C. Soygenc, and L. T. Ergene, “Increasing the Efficiency to IE4 Class for 5.5 kW Induction Motor Used in Industrial Applications,” Int. Rev. Electr. Eng., vol. 14, no. 1, p. 67, Feb. 2019.4. P. Waide and C. U. Brunner, “Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems,” Cedex, Fr. Int. Energy Agency, p. 132, 2011.5. Siemens AG, “Minimum Energy Performance Standards,” 2016.6. B. Lu, T. G. Habetler, and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gaptorque with considerations of condition monitoring,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008.7. M. C. Di Piazza and M. Pucci, “Techniques for efficiency improvement in PWM motor drives,” Electr. Power Syst. Res., vol.136, pp. 270–280, 2016.8. A. G. Siraki and P. Pillay, “An in situ efficiency estimation technique for induction machines working with unbalanced supplies,” IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 85–95, 2012.9. C. P. Salomon, W. C. Sant’Ana, G. Lambert-Torres, L. E. Borges Da Silva, E. L. Bonaldi, and L. E. D. L. De Oliveira, “Comparison among methods for induction motor low-intrusive efficiency evaluation including a new AGT approach with a modified stator resistance,” Energies, vol. 11, no. 4, 2018.10. V. S. Santos, P. R. V. Felipe, J. R. G. Sarduy, N. A. Lemozy, A. Jurado, and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages,” IEEE Trans. Energy Convers., vol. 30, no. 1, 2015.11. B. Lu, T. G. Habetler, and R. G. Harley, “A survey of efficiency-estimation methods for in-service induction motors,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 924–933, 2006.12. M. Chirindo, M. A. Khan, and P. S. Barendse, “Considerations for Nonintrusive Efficiency Estimation of Inverter-Fed Induction Motors,” IEEE Trans. Ind. Electron., vol. 63, no. 2, pp. 741–749, 2016.13. J. S. Hsu et al., “Comparison of Induction Motor Field Efficiency Evaluation Methods,” IEEE Trans. Ind. Appl., vol. 34, no. 1, pp. 117–125, 1996.14. J. R. Holmquist, J. A. Rooks, and M. E. Richter, “Practical Approach for Determining Motor Efficiency in the Field Using Calculated and Measured Values,” IEEE Trans. Ind. Appl., vol. 40, no. 1, pp. 242–248, 2004.15. M. O. Adissi, A. C. Lima Filho, R. D. Gomes, D. M. G. B. Silva, and F. A. Belo, “Implementation and Deployment of an Intelligent Industrial Wireless System for Induction Motor Monitoring,” J. Dyn. Syst. Meas. Control, vol. 139, no. 12, p. 124502, 2017.16. B. Lu, D. B. Durocher, and P. Stemper, “Online and nonintrusive continuous motor energy and condition monitoring in process industries,” in Conference Record of 2008 54th Annual Pulp and Paper Industry Technical Conference, 2008, pp. 18–26.17. J. O. Ojo, V. Ostovic, T. A. Lipo, and J. C. White, “Measurement and computation of starting torque pulsations of salient pole synchronous motors,” IEEE Trans. Energy Convers., vol. 5, no. 1, pp. 176–182, 1990.18. B. Lu, T. G. Habetler, and R. G. Harley, “A nonintrusive efficiency estimation method for in-service motor testing using a modified induction motor equivalent circuit,” in 2006 37th IEEE Power Electronics Specialists Conference, 2006, pp. 1–6.19. B. Herndler, P. Barendse, and M. A. Khan, “Considerations for improving the non-intrusive efficiency estimation of induction machines using the air gap torque method,” 2011 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2011, no. 1, pp. 1516–1521, 2011.20. U. V Anbazhagu, J. S. Praveen, and R. Soundarapandian, “A Proficient Approach for Monitoring Induction Motor by Integrating Embedded System with Wireless Sensor Network,” vol. 7, no. November, pp. 174–179, 2014.21. M. M. Stopa, M. A. Saldanha, A. A. Luiz, L. M. R. Baccarini, and G. A. M. Lacerda, “A Simple Torque Estimator for In-Service Efficiency Determination of Induction Motors,” IEEE Trans. Ind. Appl., vol. 54, no. 5, pp. 4967–4976, 2018.22. L. M. R. Baccarini, G. F. V. Amaral, and G. A. M. Lacerda, “Simple robust estimation of load torque in induction machines for application in real plants,” Int. J. Adv. Manuf. Technol., vol. 99, no. 9–12, pp. 2695–2704, 2018.23. R. Saidur, “A review on electrical motors energy use and energy savings,” Renew. Sustain. Energy Rev., vol. 14, no. 3, pp. 877–898, Apr. 2010.24. Quintero Coronel, D., Lenis Rodas, Y., & Corredor Martínez, L. (2018). Desarrollo de un modelo de gasificación en equilibrio químico para evaluar el potencial energético del cuesco en plantas extractoras de aceite de palma en Colombia. INGE CUC, 14(2), 62-70. https://doi.org/10.17981/ingecuc.14.2.2018.0625. J. R. Gómez, E. C. Quispe, M. A. De Armas, and P. R. Viego, “Estimation of induction motor efficiency in-situ under unbalanced voltages using genetic algorithms,” Proc. 2008 Int. Conf. Electr. Mach. ICEM’08, pp. 25–28, 2008.26. V. Sousa, P. R. Viego, J. R. Gomez, E. C. Quispe, and M. Balbis, “Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages,” in CHILECON 2015 - 2015 IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies, Proceedings of IEEE Chilecon 2015, 2016, pp. 567–572.27. V. Sousa Santos, P. Viego Felipe, and J. Gómez Sarduy, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages,” Measurement, vol. 46, no. 7, pp. 2232–2237, Aug. 2013.28. V. Sousa Santos, P. Viego Felipe, and J. Gómez Sarduy, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages,” Meas. J. Int. Meas. Confed., vol. 46, no. 7, pp. 2232–2237, 2013.29. O. Avalos, E. Cuevas, and J. Gálvez, “Induction Motor Parameter Identification Using a Gravitational Search Algorithm,” Computers, vol. 5, no. 2, p. 6, 2016.30. G. S. Grewal and B. S. Rajpurohit, “Comparison of efficiencies of in situ induction motor in unbalanced field conditions,” Proc. 2015 IEEE Int. Conf. Power Adv. Control Eng. ICPACE 2015, no. Im, pp. 70–74, 2015.31. C. P. Salomon et al., “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect,” Proc. 2013 IEEE Int. Electr. Mach. Drives Conf. IEMDC 2013, no. 1, pp. 1369–1375, 2013.32. F. García Reina, A. Méndez García, y L. Martínez Ibáñez, «Determinación de las propiedades dielectricas de los combustibles, sus mezclas y del suelo, así como su impacto en un uso eficiente de los recurso energéticos y en la determinación de la contaminación ambiental»., IJMSOR, vol. 4, n.º 1, jun. 2019. https://doi.org/10.17981/ijmsor.04.01.0433. D. P. de Carvalho et al., “A method for real-time wireless monitoring of the efficiency and conditions of three-phase induction motor operation,” Electr. Power Syst. Res., vol. 157, pp. 70–82, 2018.34. F. J. T. E. Ferreira and A. T. De Almeida, “Considerations on in-field induction motor load estimation methods,” Proc. 2008 Int. Conf. Electr. Mach. ICEM’08, pp. 1–8, 2008.35. C. Verucchi, C. Ruschetti, and F. Benger, “Efficiency Measurements in Induction Motors: Comparison of Standards,” IEEE Lat. Am. Trans., vol. 13, no. 8, pp. 2602–2607, 2015.36. R. Saidur and T. M. I. Mahlia, “Energy, economic and environmental benefits of using high-efficiency motors to replace standard motors for the Malaysian industries,” Energy Policy, vol. 38, no. 8, pp. 4617–4625, 2010.37. M. A. Habib, M. Hasanuzzaman, M. Hosenuzzaman, A. Salman, and M. R. Mehadi, “Energy consumption, energy saving and emission reduction of a garment industrial building in Bangladesh,” Energy, vol. 112, pp. 91–100, 2016.38. M. Hasanuzzaman, N. A. Rahim, R. Saidur, and S. N. Kazi, “Energy savings and emissions reductions for rewinding and replacement of industrial motor,” Energy, vol. 36, no. 1, pp. 233–240, 2011.39. R. Saidur, M. Hasanuzzaman, S. Yogeswaran, H. A. Mohammed, and M. S. Hossain, “An end-use energy analysis in a Malaysian public hospital,” Energy, vol. 35, no. 12, pp. 4780–4785, 2010.40. R. Saidur, “Energy consumption, energy savings, and emission analysis in Malaysian office buildings,” Energy Policy, vol. 37, no. 10, pp. 4104–4113, 2009.41. R. Saidur, N. A. Rahim, and M. Hasanuzzaman, “A review on compressed-air energy use and energy savings,” Renew. Sustain. Energy Rev., vol. 14, no. 4, pp. 1135–1153, 2010.42. R. Saidur, N. A. Rahim, H. W. Ping, M. I. Jahirul, S. Mekhilef, and H. H. Masjuki, “Energy and emission analysis for industrial motors in Malaysia,” Energy Policy, vol. 37, no. 9, pp. 3650–3658, 2009.43. M. Liu, L. Tan, and S. Cao, “Theoretical model of energy performance prediction and BEP determination for centrifugal pump as turbine,” Energy, vol. 172, pp. 712–732, Apr. 2019.44. P. van Rhyn and J. H. C. Pretorius, “Utilising high and premium efficiency three phase motors with VFDs in a public water supply system,” in 2015 IEEE 5th International Conference on Power Engineering, Energy and Electrical Drives (POWERENG), 2015, vol. 2015-Septe, pp. 497–502.45. C.-L. Su, Chi-Hsiang Liao, Tso-Chu Chou, Min-Hung Chou, and J. M. Guerrero, “Variable flow controls of closed system pumps for energy savings in maritime power systems,” in 2016 IEEE Industry Applications Society Annual Meeting, 2016, pp. 1–8.46. M. Liu, R. Ooka, W. Choi, and S. Ikeda, “Experimental and numerical investigation of energy saving potential of centralized and decentralized pumping systems,” Appl. Energy, vol. 251, no. May, p. 113359, Oct. 2019.47. G. Wang and Z. Han, “Investigation of the accuracy of VFD analog output data and the energy performance of different voltage controls in a VFD-motor-belt-fan system,” Energy Build., vol. 194, pp. 260–272, Jul. 2019.48. V. K. A. Shankar, S. Umashankar, S. Paramasivam, and H. Norbert, “Real time simulation of Variable Speed Parallel Pumping system,” Energy Procedia, vol. 142, pp. 2102–2108, Dec. 2017.49. V. K. A. Shankar, S. Umashankar, P. Sanjeevikumar, L. Mihet-Popa, V. Fedák, and V. K. Ramachandaramurthy, “Power Quality Performance Analysis of grid tied PV fed Parallel Pumping System under Normal and Vibrating Condition,” Energy Procedia, vol. 145, pp. 497–503, Jul. 2018.50. G. Li, Y. Jin, M. W. Akram, and X. Chen, “Research and current status of the solar photovoltaic water pumping system – A review,” Renew. Sustain. Energy Rev., vol. 79, no. December 2016, pp. 440–458, Nov. 2017.51. M. Basu, “Optimal generation scheduling of hydrothermal system with demand side management considering uncertainty and outage of renewable energy sources,” Renew. Energy, 2019.52. M. Dib, M. Ramzi, and A. Nejmi, “Voltage regulation in the medium voltage distribution grid in the presence of renewable energy sources,” in Materials Today: Proceedings, 2019, vol. 13, pp. 739–745.53. J. B. Kwon, X. Wang, F. Blaabjerg, C. L. Bak, A. R. Wood, and N. R. Watson, “Harmonic instability analysis of a single-phase grid-connected converter using a harmonic state-space modeling method,” IEEE Trans. Ind. Appl., vol. 52, no. 5, pp. 4188–4200, 2016.54. M. Anwari and A. Hiendro, “New unbalance factor for estimating performance of a three-phase induction motor withunder-and overvoltage unbalance,” IEEE Trans. Energy Convers., vol. 25, no. 3, pp. 619–625, 2010.55. A. von Jouanne and B. Banerjee, “Assessment of voltage unbalance,” IEEE Trans. Power Deliv., vol. 16, no. 4, pp. 782–790, 2001.56. NEMA, “ANSI/NEMA MG 1-2016 . Motors and Generators,” 2016.57. Duarte Forero, J., Guillín Estrada, W., & Sánchez Guerrero, J. (2018). Desarrollo de una metodología para la predicción del volumen real en la cámara de combustión de motores diésel utilizando elementos finitos. INGE CUC, 14(1), 122-132. https://doi.org/10.17981/ingecuc.14.1.2018.1158. IEEE Power and Energy Society, IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems IEEE Power and Energy Society, vol. 2014. 2014, pp. 5–9.59. IEEE, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, vol. 1992, no. June. 1993.60. M. Digalovski, K. Najdenkoski, and G. Rafajlovski, “Impact of current high order harmonic to core losses of three-phase distribution transformer,” in IEEE EuroCon 2013, 2013.61. M. T. Bishop, J. F. Baranowski, D. Heath, and S. J. Benna, “Evaluating harmonic-induced transformer heating,” IEEE Trans. Power Deliv., 1996.62. C. Boonseng, R. Boonseng, N. Boonsaner, V. Kinnares, P. Apiratikul, and K. Kularbphettong, “Partial Discharge Phenomena in Power Capacitor Unit Insulation Under Harmonic Resonance Effects,” in Lecture Notes in Electrical Engineering, 2020.63. C. Boonseng, C. Chompoo-inwai, V. Kinnares, K. Nakawiwat, and P. Apiratikul, “Failure analysis of dielectric of low voltage power capacitors due to related harmonic resonance effects,” in Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001.64. R. Milankov and M. Radic, “Harmonics: Examples of negative impacts,” in 2014 16th International Conference on Harmonics and Quality of Power (ICHQP), 2014, pp. 435–438.65. W. A. Elmore, C. A. Kramer, and S. E. Zocholl, “Effect of Waveform Distortion on Protective Relays,” IEEE Trans. Ind. Appl., 1993.66. J. F. Fuller and D. J. Roesler, “Influence of harmonics on power distribution system protection,” IEEE Trans. Power Deliv., 1988.67. Ching-Yin Lee and Wei-Jen Lee, “Effects of nonsinusoidal voltage on the operation performance of a three-phase induction motor,” IEEE Trans. Energy Convers., vol. 14, no. 2, pp. 193–201, Jun. 1999.68. D. R. Williams and L. Good, Guide to the Energy Policy Act of 1992. United States: Fairmont Press, Inc., Liburn, GA (United States), 1994.69. International Electrotechnical Commission, “IEC 60034-30-1:2014 Rotating Electrical Machines: Efficiency Classes of Line Operated AC Motors,” p. 50, 2014.70. P. R. Viego Felipe, J. R. Gómez Sarduy, and E. C. Quispe Oqueña, “Synchronous reluctance motors controlled by variable frequency converters: an application to save energy.,” Ing. Energética, vol. 36, no. 1, pp. 72–82, 2015.71. Abb, “Low voltage IE4 synchronous reluctance motor and drive package for pump and fan applications,” 2013.72. A. T. De Almeida, F. J. T. E. Ferreira, and A. Q. Duarte, “Technical and Economical Considerations on Super High-Efficiency Three-Phase Motors,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1274–1285, Mar. 2014.73. I. Peter, G. Scutaru, and C. G. Nistor, “Manufacturing of asynchronous motors with squirrel cage rotor, included in the premium efficiency category IE3 at S.C. Electroprecizia Electrical-Motors S.R.L. Sacele,”in 2014 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2014, 2014.74. L. Alberti, N. Bianchi, A. Boglietti, and A. Cavagnino, “Core axial lengthening as effective solution to improve the induction motor efficiency classes,” IEEE Trans. Ind. Appl., 2014.75. A. T. De Almeida, F. J. T. E. Ferreira, and G. Baoming, “Beyond induction motors - Technology trends to move up efficiency,” IEEE Trans. Ind. Appl., 2014.76. ABB, “General purpose motor catalog.” 2018.77. M. Zigliotto, “Permanent magnet synchronous motor drives,” in Power Electronic Converters and Systems: Frontiers and Applications, 2016.78. S. Taghavi and P. Pillay, “A Sizing Methodology of the Synchronous Reluctance Motor for Traction Applications,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 2, no. 2, pp. 329–340, Jun. 2014.79. K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111–121, 2000.80. P. R. Viego, V. Sousa, J. R. Gómez, and E. C. Quispe, “Direct-on-line-start permanent-magnet-assisted synchronous reluctance motors with ferrite magnets for driving constant loads,” Int. J. Electr. Comput. Eng., vol. 10, no. 1, pp. 651–659, 2020.81. C. Zhang, K. J. Tseng, and G. Zhao, “Comparison of axial flux PM synchronous motor and induction motor by mathematical and finite element analysis,” Int. J. Appl. Electromagn. Mech., 2011.82. S. Neethu, S. P. Nikam, B. G. Fernandes, S. Pal, and A. K. Wankhede, “Radial-and Axial-Flux Synchronous Motors for HighSpeed Low-Power Applications,” in Proceedings of 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems, PEDES 2018, 2018.83. A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, “A comparison between the axial flux and the radial flux structures for PM synchronous motors,” IEEE Trans. Ind. Appl., 2002.84. R. Saidur, S. Mekhilef, M. B. Ali, A. Safari, and H. A. Mohammed, “Applications of variable speed drive (VSD) in electrical motors energy savings,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 543–550, Jan. 2012.85. M. H. Rashid, Power Electronics Handbook. 2007.86. K. Sueker, Power electronics design: a practitioner’s guide. Newnes, 2005.87. S. Mustaffah and S. Azma, “Variable speed drives as energy efficient strategy in pulp and paper industry,” University Technology Malaysia, 200688. L. Jayamaha, Energy-efficient building systems: green strategies for operation and maintenance. New York: McGraw-Hill Professional, 2006.89. A. Brodgesell, R. D. Buchanan, J. B. Rishel, B. G. Lipták, R. H. Osman, and I. H. Gibson, “Variable-speed drives,” in Instrument Engineers Handbook, Fourth Edition: Process Control and Optimization, 2005.90. P. Mohanty, T. Muneer, and M. Kolhe, Solar Photovoltaic System Applications, First. Switzerland: Springer International Publishing, 2016.91. L. Hernández-Callejo, S. Gallardo-Saavedra, and V. Alonso-Gómez, “A review of photovoltaic systems: Design, operation and maintenance,” Sol. Energy, vol. 188, no. June, pp. 426–440, 2019.92. R. F. Pierret, Modular series on solid state devices. Volume I: Semiconductor fundamentals. Addison-Wesley Publishing Company, 1983.93.Tiwari, G.N. and S. Dubey, Fundamentals of Photovoltaic Modules and their Applications. Royal Society of Chemistry, 2010.94. P. L. Alger and R. E. Arnold, “The History of Induction Motors in America,” Proc. IEEE, vol. 64, no. 9, pp. 1380–1383, 1976.95. J. L. Devore, Probability and Statistics for Engineering and the Sciences, 8th ed. San Luis Obispo, 2010.96. S. Rönnberg and M. Bollen, “Power quality issues in the electric power system of the future,” Electr. J., vol. 29, no. 10, pp. 49–61, 2016.97. J. I. Pérez-Díaz and J. Jiménez, “Contribution of a pumped-storage hydropower plant to reduce the scheduling costs of an isolated power system with high wind power penetration,” Energy, vol. 109, pp. 92–104, 2016.98. J. I. Pérez-Díaz, M. Chazarra, J. García-González, G. Cavazzini, and A. Stoppato, “Trends and challenges in the operation of pumped-storage hydropower plants,” Renew. Sustain. Energy Rev., vol. 44, pp. 767–784, 2015.99. M. A. Azzouz, H. E. Farag, and E. F. El-Saadany, “Real-time fuzzy voltage regulation for distribution networks incorporating high penetration of renewable sources,” IEEE Syst. J., vol. 11, no. 3, pp. 1702–1711, 2017.100. García-Guarín, P., Cantor-López, J., Cortés-Guerrero, C., Guzmán-Pardo, M., & Rivera, S. (2019). Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes. INGE CUC, 15(1), 142-154. https://doi.org/10.17981/ingecuc.15.1.2019.13101. C. X. Mu, J. X. Jin, and W. Xu, “Adaptive frequency regulation strategy based integral sliding mode control for smart grid with renewable energy sources,” 2015 IEEE Int. Conf. Appl. Supercond. Electromagn. Devices, ASEMD 2015 - Proc., pp. 391–392, 2016.102. S. Zhang, Y. Mishra, and M. Shahidehpour, “Utilizing distributed energy resources to support frequency regulation services,” Appl. Energy, vol. 206, pp. 1484–1494, Nov. 2017.103. B. Jie, T. Tsuji, and K. Uchida, “Analysis and modelling regarding frequency regulation of power systems and power supply–demand-control based on penetration of renewable energy sources,” J. Eng., vol. 2017, no. 13, pp. 1824–1828, 2017.104. A. Habib, C. Sou, H. M. Hafeez, and A. Arshad, “Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant),” Renew. Energy, vol. 127, pp. 204–212, Nov. 2018.104. A. Habib, C. Sou, H. M. Hafeez, and A. Arshad, “Evaluation of the effect of high penetration of renewable energy sources (RES) on system frequency regulation using stochastic risk assessment technique (an approach based on improved cumulant),” Renew. Energy, vol. 127, pp. 204–212, Nov. 2018.105. Z. X. Tang, Y. S. Lim, S. Morris, J. L. Yi, P. F. Lyons, and P. C. Taylor, “A comprehensive work package for energy storage systems as a means of frequency regulation with increased penetration of photovoltaic systems,” Int. J. Electr. Power Energy Syst., vol. 110, pp. 197–207, Sep. 2019.106. Y. Ye, Y. Qiao, and Z. Lu, “Revolution of frequency regulation in the converter-dominated power system,” Renew. Sustain. Energy Rev., vol. 111, pp. 145–156, Sep. 2019.107. D. H. Tungadio and Y. Sun, “Load frequency controllers considering renewable energy integration in power system,” Energy Reports, vol. 5, pp. 436–453, Nov. 2019.108. J. W. Shim, G. Verbic, N. Zhang, and K. Hur, “Harmonious integration of faster-acting energy storage systems into frequency control reserves in power grid with high renewable generation,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6193–6205, 2018.109. H. R. Kermani, M. V. Dahraie, and H. R. Najafi, “Frequency control of a microgrid including renewable resources with energy management of electric vehicles,” 4th Iran. Conf. Renew. Energy Distrib. Gener. ICREDG 2016, pp. 114–118, 2016.110. S. M. Brahma and A. A. Girgis, “Development of Adaptive Protection Scheme for Distribution Systems with High Penetration of Distributed Generation,” IEEE Trans. Power Deliv., vol. 19, no. 1, pp. 56–63, 2004.111. V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” in CSEE Journal of Power and Energy Systems, 2018, vol. 3, no. 4, pp. 365–379.112. Hoyos Velasco, F., Candelo, J., & Silva Ortega, J. (2018). Rendimiento de un Inversor DC-AC controlado con ZAD-FPIC. INGE CUC, 14(1), 9-18. https://doi.org/10.17981/ingecuc.14.1.2018.01113. X. Liang and C. Andalib-Bin-Karim, “Harmonics and Mitigation Techniques Through Advanced Control in Grid-Connected Renewable Energy Sources: A Review,” IEEE Trans. Ind. Appl., vol. 54, no. 4, pp. 3100–3111, 2018.114. J. Kwon, X. Wang, C. L. Bak, and F. Blaabjerg, “The modeling and harmonic coupling analysis of multiple-parallel connected inverter using Harmonic State Space (HSS),” in 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 2015, pp. 6231–6238.115. M. N. I. Sarkar, L. G. Meegahapola, and M. Datta, “Reactive power management in renewable rich power grids: A review of grid-codes, renewable generators, support devices, control strategies and optimization Algorithms,” IEEE Access, vol. 6, pp. 41458–41489, 2018.116. R. Kabiri, D. G. Holmes, B. P. McGrath, and L. G. Meegahapola, “LV Grid Voltage Regulation Using Transformer Electronic Tap Changing, with PV Inverter Reactive Power Injection,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 3, no. 4, pp. 1182–1192, 2015.117. B. Zhang, P. Hou, W. Hu, M. Soltani, C. Chen, and Z. Chen, “A Reactive Power Dispatch Strategy with Loss Minimization for a DFIG-Based Wind Farm,” IEEE Trans. Sustain. Energy, vol. 7, no. 3, pp. 914–923, 2016.118. Y. Shen, M. Cui, Q. Wang, F. Shen, B. Zhang, and L. Liang, “Comprehensive reactive power support of DFIG adapted to different depth of voltage sags,” Energies, vol. 10, no. 6, 2017.119. Á. Molina-García, R. A. Mastromauro, T. García-Sánchez, S. Pugliese, M. Liserre, and S. Stasi, “Reactive Power Flow Control for PV Inverters Voltage Support in LV Distribution Networks,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 447–456, 2017.120. T. K. S. Freddy, J.-H. Lee, H.-C. Moon, K.-B. Lee, and N. A. Rahim, “Modulation Technique for Single-Phase Transformerless Photovoltaic Inverters with Reactive Power Capability,” IEEE Trans. Ind. Electron., vol. 64, no. 9, pp. 6989–6999, 2017.121. J. G. Rueda-Bayona, A. Guzmán, J. J. C. Eras, R. Silva-Casarín, E. Bastidas-Arteaga, and J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, 2019.122. E. El-Kharashi, J. G. Massoud, and M. A. Al-Ahmar, “The impact of the unbalance in both the voltage and the frequency on the performance of single and cascaded induction motors,” Energy, vol. 181, pp. 561–575, Aug. 2019.123. A. Kalair, N. Abas, A. R. Kalair, Z. Saleem, and N. Khan, “Review of harmonic analysis, modeling and mitigation techniques,” Renew. Sustain. Energy Rev., vol. 78, pp. 1152–1187, 2017.124. P. Donolo, M. Pezzani, G. Bossio, E. C. Quispe, D. Valencia, and V. Sousa, “Impact of Voltage Waveform on the Losses and Performance of Energy Efficiency Induction Motors,” in 2018 IEEE ANDESCON, ANDESCON 2018 – Conference Proceedings, 2018, pp. 20–23.125. E. C. Quispe, I. D. López, F. J. T. E. Ferreira, and V. Sousa, “Unbalanced voltages impacts on the energy performance of induction motors,” Int. J. Electr. Comput. Eng., vol. 8, no. 3, pp. 1412–1422, 2018.126. E. C. Quispe, X. M. Lopez-Fernandez, A. M. S. Mendes, A. J. Marques Cardoso, and J. A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance,” in Proceedings of the 2013 IEEE International Electric Machines and Drives Conference, IEMDC 2013, 2013, no. 100, pp. 100–105.127. Duarte-Forero, J., Berrio-Orozco, K., & Guzmán-Fruto, A. (2019). Caracterización de un sistema de adquisición de datos para un banco de prueba de Motor Diésel Monocilíndrico. INGE CUC, 15(1), 155-167. https://doi.org/10.17981/ingecuc.15.1.2019.14128. M. Nuñez, J. Correa, G. Herrera, P. Gómez, S. Morón, y N. Fonseca, Estudio de percepción sobre energía limpia y auto sostenible, IJMSOR, vol. 3, n.º 1, pp. 11-15, dic. 2018. http://ijmsoridi.com/index.php/ijmsor/article/view/89129. M. J. S. Zuberi, A. Tijdink, and M. K. Patel, “Techno-economic analysis of energy efficiency improvement in electric motor driven systems in Swiss industry,” Appl. Energy, vol. 205, no. January, pp. 85–104, Nov. 2017.130. G. S. Grewal and B. Singh, “Efficiency determination of in-service induction machines using gravitational search optimization,” Meas. J. Int. Meas. Confed., vol. 118, no. October 2017, pp. 156–163, 2018.PublicationORIGINALEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdfEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdfapplication/pdf438422https://repositorio.cuc.edu.co/bitstreams/b6fd6977-60c2-4e7a-bae3-7a0fec5f0020/download41e4b770efebe5cce08a218d9c36376aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/1b75c665-91c0-4a7a-bbbe-26e551f15caf/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/b33a5bd3-59dd-4246-bf1d-03d8a388eb63/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdf.jpgEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdf.jpgimage/jpeg73261https://repositorio.cuc.edu.co/bitstreams/87fe7215-96a4-4162-9dec-29cf8ef6c5e4/download6bae14df15b41b5ec93c2c05124dace7MD54TEXTEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdf.txtEvaluación de métodos empleados en el análisis de factibilidad de propuestas para el mejoramiento de la eficiencia energética de motores trifásicos.pdf.txttext/plain63141https://repositorio.cuc.edu.co/bitstreams/165d9322-746a-40bd-a325-025c37f6bc5d/download7774f242b39e2ae5f0db88e91843f6c3MD5511323/6948oai:repositorio.cuc.edu.co:11323/69482024-09-17 14:07:49.417http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |