A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir

Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reu...

Full description

Autores:
Vasco, Gabriel
S. Silva, Jones
A. Canales, Fausto
Beluco, Alexandre
de Souza, José
G. Rossini, Elton
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/5099
Acceso en línea:
https://hdl.handle.net/11323/5099
https://repositorio.cuc.edu.co/
Palabra clave:
Hybrid Systems
Energetic Complementarity
PV Modules on Floating
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_a0a2fa6b8e50bc47a9824acde0a2aaae
oai_identifier_str oai:repositorio.cuc.edu.co:11323/5099
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
title A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
spellingShingle A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
Hybrid Systems
Energetic Complementarity
PV Modules on Floating
title_short A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
title_full A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
title_fullStr A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
title_full_unstemmed A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
title_sort A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
dc.creator.fl_str_mv Vasco, Gabriel
S. Silva, Jones
A. Canales, Fausto
Beluco, Alexandre
de Souza, José
G. Rossini, Elton
dc.contributor.author.spa.fl_str_mv Vasco, Gabriel
S. Silva, Jones
A. Canales, Fausto
Beluco, Alexandre
de Souza, José
G. Rossini, Elton
dc.subject.spa.fl_str_mv Hybrid Systems
Energetic Complementarity
PV Modules on Floating
topic Hybrid Systems
Energetic Complementarity
PV Modules on Floating
description Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reuse. The Laranjeiras dam was completed in the 1960s and the original project for hydroelectric power generation was not completed, made impossible by economic changes during the construction years. A recent study proposed the implementation of a hydroelectric photovoltaic hybrid system with lower horsepower to allow the dam to be made useful again. This paper presents the results of the computational simulations with the software Homer, considering the operation of the hydroelectric component (of the proposed hybrid system) with reservoir, playing the role of energy storage device when the production exceeds the demand at a given moment, reducing the loss of energy due to unavailability of demand. The study suggested to implement a hydroelectric power plant with power house at the base of the dam that has a height of 20 m, operating at a minimum flow of 9171 L/s, with reservoir operating as a device for energy storage, operating with a photovoltaic system of 360 kW, and a power limit for the purchase of energy from the grid equal to 200 kW, providing consumer loads up to 40 MWh per day, with cost of energy equal to US$0.021 per kWh and a capital cost of US$3285.617.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-17T13:54:27Z
dc.date.available.none.fl_str_mv 2019-07-17T13:54:27Z
dc.date.issued.none.fl_str_mv 2019-04-28
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 2151-4844
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/5099
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 2151-4844
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/5099
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://doi.org/10.4236/sgre.2019.104006
dc.relation.references.spa.fl_str_mv [1] Faias, S., Sousa, J. and Castro, R. (2009) Embedded Energy Storage Systems in the Power Grid for Renewable Energy Sources Integration. In: Hammons, T.J., Ed., Renewable Energy, In Tech, Rijeka, 63-88. https://doi.org/10.5772/7376 [2] Castronuovo, E.D. and Usaola, J. (2013) Coordination between Wind Farms and Storage Devices, Technical and Economic Aspects. In: Pardalos, P.M., et al., Eds., Handbook of Wind Power Systems, Springer, Berlin, Heidelberg, 591-622. https://doi.org/10.1007/978-3-642-41080-2_17 [3] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2015) A Comparative Study of a Wind Hydro Hybrid System with Water Storage Capacity: Conventional Reservoir or Pumped Storage Plant? Journal of Energy Storage, 4, 96-105. https://doi.org/10.1016/j.est.2015.09.007 [4] Lambert, T.W., Gilman, P. and Lilienthal, P.D. (2005) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Eds., Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 379-418. https://doi.org/10.1002/0471755621.ch15 [5] Lilienthal, P.D., Lambert, T.W. and Gilman, P. (2004) Computer Modeling of Re-newable Power Systems. In: Cleveland, C.J., Ed., Encyclopedia of Energy, Elsevier, Amsterdam, Vol. 1, 633-647. https://doi.org/10.1016/B0-12-176480-X/00522-2 [6] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2017) Modelling a Hydropower Plant with Reservoir with the Micro Power Optimization Model (HOMER). International Journal of Sustainable Energy, 36, 654-667. https://doi.org/10.1080/14786451.2015.1080706 [7] Canales, F.A. and Beluco, A. (2014) Modeling Pumped Hydro Storage with the Micro Power Optimization Model (HOMER). Journal of Renewable and Sustainable Energy, 6, Article ID: 043131. https://doi.org/10.1063/1.4893077 [8] Vasco, G., Silva, J.S., Beluco, A., Rossini, E.G. and Souza, J. (2018) A Hydro PV Hybrid System as a New Concept for an Abandoned Dam in Southern Brazil. Computational Water Energy and Environmental Engineering, 8, 41-56. https://doi.org/10.4236/cweee.2019.82003 [9] Yüksel, I. (2010) Hydropower for Sustainable Water and Energy Development. Renewable and Sustainable Energy Reviews, 14, 462-469. https://doi.org/10.1016/j.rser.2009.07.025 [10] Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I. and Leung, L.R. (2018) Impacts of Climate Change, Policy and Water-Energy-Food Nexus on Hydropower Development. Renewable Energy, 116, 827-834. https://doi.org/10.1016/j.renene.2017.10.030 [11] Ferrer-Gisbert, C.M., Ferran-Gozalvez, J.J., Santafe, M.R., Ferrer-Gisbert, P., Sanchez-Romero, F.J. and Torregrose-Soler, J.B. (2013) A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60, 63-70. https://doi.org/10.1016/j.renene.2013.04.007 [12] Vision Battery (2018) Vision 6FM200D Model. http://www.vision-batt.com [13] Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M. (2010) A Review of Computer Tools for Analyzing the Integration of Renewable Energy into Various Energy Systems. Applied Energy, 87, 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026 [14] HomerEnergy (2018) Software Homer, Version 2.68 Beta, Legacy. http://www.homerenergy.com [15] IRENA International Renewable Energy Agency (2011) Renewable Energy Technologies: Cost Analysis Series, Hydropower. http://www.irena.org/documentdownloads/publications/re_technologies_cost_anal ysis-hydropower.pdf [16] Braciani, U. (2011) Cost Structure for Implementation of Power Generation Plants in Brazil. Graduationwork, Faculdade de Economia, Universidade Federal de Santa Catarina, Florianópolis. (In Portuguese) [17] Schultz, R., Beluco, A., Homrich, R.P. and Eifler, R.C. (2016) A PV Hydro Hybrid System Using Residual Flow of Guarita Hydro Power Plant, in Southern Brazil. In: Kishor, N. and Fraile-Ardanuy, J., Eds., Modeling and Dynamic Behavior of Hydropower Plants, The Institution of Engineering and Technology, 185-202.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Smart Grid and Renewable Energy
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c09b2ef6-3243-4298-b158-1c9d469062b1/download
https://repositorio.cuc.edu.co/bitstreams/afd6fb0a-5cce-42bb-b691-c647b8a32e92/download
https://repositorio.cuc.edu.co/bitstreams/388ce7b5-6b7e-4a65-9c5d-c24e3c90940d/download
https://repositorio.cuc.edu.co/bitstreams/4c89c469-63e4-4ab4-a0e3-eecb5b9f2b75/download
https://repositorio.cuc.edu.co/bitstreams/68102b08-48f8-4edd-96de-5b1ef09bb161/download
bitstream.checksum.fl_str_mv e7cfb4ce6011c1ffdf8410e0806af712
42fd4ad1e89814f5e4a476b409eb708c
8a4605be74aa9ea9d79846c1fba20a33
aa186f81b9f5a26c04404452ad798586
6268534057ddaa9fcceb4c07323eebb1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760846244675584
spelling Vasco, GabrielS. Silva, JonesA. Canales, FaustoBeluco, Alexandrede Souza, JoséG. Rossini, Elton2019-07-17T13:54:27Z2019-07-17T13:54:27Z2019-04-282151-4844https://hdl.handle.net/11323/5099Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reuse. The Laranjeiras dam was completed in the 1960s and the original project for hydroelectric power generation was not completed, made impossible by economic changes during the construction years. A recent study proposed the implementation of a hydroelectric photovoltaic hybrid system with lower horsepower to allow the dam to be made useful again. This paper presents the results of the computational simulations with the software Homer, considering the operation of the hydroelectric component (of the proposed hybrid system) with reservoir, playing the role of energy storage device when the production exceeds the demand at a given moment, reducing the loss of energy due to unavailability of demand. The study suggested to implement a hydroelectric power plant with power house at the base of the dam that has a height of 20 m, operating at a minimum flow of 9171 L/s, with reservoir operating as a device for energy storage, operating with a photovoltaic system of 360 kW, and a power limit for the purchase of energy from the grid equal to 200 kW, providing consumer loads up to 40 MWh per day, with cost of energy equal to US$0.021 per kWh and a capital cost of US$3285.617.Vasco, GabrielS. Silva, JonesA. Canales, FaustoBeluco, Alexandrede Souza, JoséG. Rossini, EltonengSmart Grid and Renewable Energyhttps://doi.org/10.4236/sgre.2019.104006[1] Faias, S., Sousa, J. and Castro, R. (2009) Embedded Energy Storage Systems in the Power Grid for Renewable Energy Sources Integration. In: Hammons, T.J., Ed., Renewable Energy, In Tech, Rijeka, 63-88. https://doi.org/10.5772/7376 [2] Castronuovo, E.D. and Usaola, J. (2013) Coordination between Wind Farms and Storage Devices, Technical and Economic Aspects. In: Pardalos, P.M., et al., Eds., Handbook of Wind Power Systems, Springer, Berlin, Heidelberg, 591-622. https://doi.org/10.1007/978-3-642-41080-2_17 [3] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2015) A Comparative Study of a Wind Hydro Hybrid System with Water Storage Capacity: Conventional Reservoir or Pumped Storage Plant? Journal of Energy Storage, 4, 96-105. https://doi.org/10.1016/j.est.2015.09.007 [4] Lambert, T.W., Gilman, P. and Lilienthal, P.D. (2005) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Eds., Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 379-418. https://doi.org/10.1002/0471755621.ch15 [5] Lilienthal, P.D., Lambert, T.W. and Gilman, P. (2004) Computer Modeling of Re-newable Power Systems. In: Cleveland, C.J., Ed., Encyclopedia of Energy, Elsevier, Amsterdam, Vol. 1, 633-647. https://doi.org/10.1016/B0-12-176480-X/00522-2 [6] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2017) Modelling a Hydropower Plant with Reservoir with the Micro Power Optimization Model (HOMER). International Journal of Sustainable Energy, 36, 654-667. https://doi.org/10.1080/14786451.2015.1080706 [7] Canales, F.A. and Beluco, A. (2014) Modeling Pumped Hydro Storage with the Micro Power Optimization Model (HOMER). Journal of Renewable and Sustainable Energy, 6, Article ID: 043131. https://doi.org/10.1063/1.4893077 [8] Vasco, G., Silva, J.S., Beluco, A., Rossini, E.G. and Souza, J. (2018) A Hydro PV Hybrid System as a New Concept for an Abandoned Dam in Southern Brazil. Computational Water Energy and Environmental Engineering, 8, 41-56. https://doi.org/10.4236/cweee.2019.82003 [9] Yüksel, I. (2010) Hydropower for Sustainable Water and Energy Development. Renewable and Sustainable Energy Reviews, 14, 462-469. https://doi.org/10.1016/j.rser.2009.07.025 [10] Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I. and Leung, L.R. (2018) Impacts of Climate Change, Policy and Water-Energy-Food Nexus on Hydropower Development. Renewable Energy, 116, 827-834. https://doi.org/10.1016/j.renene.2017.10.030 [11] Ferrer-Gisbert, C.M., Ferran-Gozalvez, J.J., Santafe, M.R., Ferrer-Gisbert, P., Sanchez-Romero, F.J. and Torregrose-Soler, J.B. (2013) A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60, 63-70. https://doi.org/10.1016/j.renene.2013.04.007 [12] Vision Battery (2018) Vision 6FM200D Model. http://www.vision-batt.com [13] Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M. (2010) A Review of Computer Tools for Analyzing the Integration of Renewable Energy into Various Energy Systems. Applied Energy, 87, 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026 [14] HomerEnergy (2018) Software Homer, Version 2.68 Beta, Legacy. http://www.homerenergy.com [15] IRENA International Renewable Energy Agency (2011) Renewable Energy Technologies: Cost Analysis Series, Hydropower. http://www.irena.org/documentdownloads/publications/re_technologies_cost_anal ysis-hydropower.pdf [16] Braciani, U. (2011) Cost Structure for Implementation of Power Generation Plants in Brazil. Graduationwork, Faculdade de Economia, Universidade Federal de Santa Catarina, Florianópolis. (In Portuguese) [17] Schultz, R., Beluco, A., Homrich, R.P. and Eifler, R.C. (2016) A PV Hydro Hybrid System Using Residual Flow of Guarita Hydro Power Plant, in Southern Brazil. In: Kishor, N. and Fraile-Ardanuy, J., Eds., Modeling and Dynamic Behavior of Hydropower Plants, The Institution of Engineering and Technology, 185-202.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hybrid SystemsEnergetic ComplementarityPV Modules on FloatingA hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoirArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdfA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdfapplication/pdf4054114https://repositorio.cuc.edu.co/bitstreams/c09b2ef6-3243-4298-b158-1c9d469062b1/downloade7cfb4ce6011c1ffdf8410e0806af712MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/afd6fb0a-5cce-42bb-b691-c647b8a32e92/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/388ce7b5-6b7e-4a65-9c5d-c24e3c90940d/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.jpgA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.jpgimage/jpeg62601https://repositorio.cuc.edu.co/bitstreams/4c89c469-63e4-4ab4-a0e3-eecb5b9f2b75/downloadaa186f81b9f5a26c04404452ad798586MD55TEXTA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.txtA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.txttext/plain35848https://repositorio.cuc.edu.co/bitstreams/68102b08-48f8-4edd-96de-5b1ef09bb161/download6268534057ddaa9fcceb4c07323eebb1MD5611323/5099oai:repositorio.cuc.edu.co:11323/50992024-09-17 14:10:08.85http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=