A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir
Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reu...
- Autores:
-
Vasco, Gabriel
S. Silva, Jones
A. Canales, Fausto
Beluco, Alexandre
de Souza, José
G. Rossini, Elton
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5099
- Acceso en línea:
- https://hdl.handle.net/11323/5099
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hybrid Systems
Energetic Complementarity
PV Modules on Floating
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_a0a2fa6b8e50bc47a9824acde0a2aaae |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5099 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
title |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
spellingShingle |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir Hybrid Systems Energetic Complementarity PV Modules on Floating |
title_short |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
title_full |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
title_fullStr |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
title_full_unstemmed |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
title_sort |
A hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoir |
dc.creator.fl_str_mv |
Vasco, Gabriel S. Silva, Jones A. Canales, Fausto Beluco, Alexandre de Souza, José G. Rossini, Elton |
dc.contributor.author.spa.fl_str_mv |
Vasco, Gabriel S. Silva, Jones A. Canales, Fausto Beluco, Alexandre de Souza, José G. Rossini, Elton |
dc.subject.spa.fl_str_mv |
Hybrid Systems Energetic Complementarity PV Modules on Floating |
topic |
Hybrid Systems Energetic Complementarity PV Modules on Floating |
description |
Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reuse. The Laranjeiras dam was completed in the 1960s and the original project for hydroelectric power generation was not completed, made impossible by economic changes during the construction years. A recent study proposed the implementation of a hydroelectric photovoltaic hybrid system with lower horsepower to allow the dam to be made useful again. This paper presents the results of the computational simulations with the software Homer, considering the operation of the hydroelectric component (of the proposed hybrid system) with reservoir, playing the role of energy storage device when the production exceeds the demand at a given moment, reducing the loss of energy due to unavailability of demand. The study suggested to implement a hydroelectric power plant with power house at the base of the dam that has a height of 20 m, operating at a minimum flow of 9171 L/s, with reservoir operating as a device for energy storage, operating with a photovoltaic system of 360 kW, and a power limit for the purchase of energy from the grid equal to 200 kW, providing consumer loads up to 40 MWh per day, with cost of energy equal to US$0.021 per kWh and a capital cost of US$3285.617. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-07-17T13:54:27Z |
dc.date.available.none.fl_str_mv |
2019-07-17T13:54:27Z |
dc.date.issued.none.fl_str_mv |
2019-04-28 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2151-4844 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5099 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2151-4844 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5099 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://doi.org/10.4236/sgre.2019.104006 |
dc.relation.references.spa.fl_str_mv |
[1] Faias, S., Sousa, J. and Castro, R. (2009) Embedded Energy Storage Systems in the Power Grid for Renewable Energy Sources Integration. In: Hammons, T.J., Ed., Renewable Energy, In Tech, Rijeka, 63-88. https://doi.org/10.5772/7376 [2] Castronuovo, E.D. and Usaola, J. (2013) Coordination between Wind Farms and Storage Devices, Technical and Economic Aspects. In: Pardalos, P.M., et al., Eds., Handbook of Wind Power Systems, Springer, Berlin, Heidelberg, 591-622. https://doi.org/10.1007/978-3-642-41080-2_17 [3] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2015) A Comparative Study of a Wind Hydro Hybrid System with Water Storage Capacity: Conventional Reservoir or Pumped Storage Plant? Journal of Energy Storage, 4, 96-105. https://doi.org/10.1016/j.est.2015.09.007 [4] Lambert, T.W., Gilman, P. and Lilienthal, P.D. (2005) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Eds., Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 379-418. https://doi.org/10.1002/0471755621.ch15 [5] Lilienthal, P.D., Lambert, T.W. and Gilman, P. (2004) Computer Modeling of Re-newable Power Systems. In: Cleveland, C.J., Ed., Encyclopedia of Energy, Elsevier, Amsterdam, Vol. 1, 633-647. https://doi.org/10.1016/B0-12-176480-X/00522-2 [6] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2017) Modelling a Hydropower Plant with Reservoir with the Micro Power Optimization Model (HOMER). International Journal of Sustainable Energy, 36, 654-667. https://doi.org/10.1080/14786451.2015.1080706 [7] Canales, F.A. and Beluco, A. (2014) Modeling Pumped Hydro Storage with the Micro Power Optimization Model (HOMER). Journal of Renewable and Sustainable Energy, 6, Article ID: 043131. https://doi.org/10.1063/1.4893077 [8] Vasco, G., Silva, J.S., Beluco, A., Rossini, E.G. and Souza, J. (2018) A Hydro PV Hybrid System as a New Concept for an Abandoned Dam in Southern Brazil. Computational Water Energy and Environmental Engineering, 8, 41-56. https://doi.org/10.4236/cweee.2019.82003 [9] Yüksel, I. (2010) Hydropower for Sustainable Water and Energy Development. Renewable and Sustainable Energy Reviews, 14, 462-469. https://doi.org/10.1016/j.rser.2009.07.025 [10] Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I. and Leung, L.R. (2018) Impacts of Climate Change, Policy and Water-Energy-Food Nexus on Hydropower Development. Renewable Energy, 116, 827-834. https://doi.org/10.1016/j.renene.2017.10.030 [11] Ferrer-Gisbert, C.M., Ferran-Gozalvez, J.J., Santafe, M.R., Ferrer-Gisbert, P., Sanchez-Romero, F.J. and Torregrose-Soler, J.B. (2013) A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60, 63-70. https://doi.org/10.1016/j.renene.2013.04.007 [12] Vision Battery (2018) Vision 6FM200D Model. http://www.vision-batt.com [13] Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M. (2010) A Review of Computer Tools for Analyzing the Integration of Renewable Energy into Various Energy Systems. Applied Energy, 87, 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026 [14] HomerEnergy (2018) Software Homer, Version 2.68 Beta, Legacy. http://www.homerenergy.com [15] IRENA International Renewable Energy Agency (2011) Renewable Energy Technologies: Cost Analysis Series, Hydropower. http://www.irena.org/documentdownloads/publications/re_technologies_cost_anal ysis-hydropower.pdf [16] Braciani, U. (2011) Cost Structure for Implementation of Power Generation Plants in Brazil. Graduationwork, Faculdade de Economia, Universidade Federal de Santa Catarina, Florianópolis. (In Portuguese) [17] Schultz, R., Beluco, A., Homrich, R.P. and Eifler, R.C. (2016) A PV Hydro Hybrid System Using Residual Flow of Guarita Hydro Power Plant, in Southern Brazil. In: Kishor, N. and Fraile-Ardanuy, J., Eds., Modeling and Dynamic Behavior of Hydropower Plants, The Institution of Engineering and Technology, 185-202. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Smart Grid and Renewable Energy |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/c09b2ef6-3243-4298-b158-1c9d469062b1/download https://repositorio.cuc.edu.co/bitstreams/afd6fb0a-5cce-42bb-b691-c647b8a32e92/download https://repositorio.cuc.edu.co/bitstreams/388ce7b5-6b7e-4a65-9c5d-c24e3c90940d/download https://repositorio.cuc.edu.co/bitstreams/4c89c469-63e4-4ab4-a0e3-eecb5b9f2b75/download https://repositorio.cuc.edu.co/bitstreams/68102b08-48f8-4edd-96de-5b1ef09bb161/download |
bitstream.checksum.fl_str_mv |
e7cfb4ce6011c1ffdf8410e0806af712 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 aa186f81b9f5a26c04404452ad798586 6268534057ddaa9fcceb4c07323eebb1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760846244675584 |
spelling |
Vasco, GabrielS. Silva, JonesA. Canales, FaustoBeluco, Alexandrede Souza, JoséG. Rossini, Elton2019-07-17T13:54:27Z2019-07-17T13:54:27Z2019-04-282151-4844https://hdl.handle.net/11323/5099Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Seasonal variability coupled with the intermittency of renewable energy sources makes reservoir hydroelectric plants an interesting option to consider in hybrid energy systems, especially in cases of dams that have not been completed or have been abandoned and which still have some potential for reuse. The Laranjeiras dam was completed in the 1960s and the original project for hydroelectric power generation was not completed, made impossible by economic changes during the construction years. A recent study proposed the implementation of a hydroelectric photovoltaic hybrid system with lower horsepower to allow the dam to be made useful again. This paper presents the results of the computational simulations with the software Homer, considering the operation of the hydroelectric component (of the proposed hybrid system) with reservoir, playing the role of energy storage device when the production exceeds the demand at a given moment, reducing the loss of energy due to unavailability of demand. The study suggested to implement a hydroelectric power plant with power house at the base of the dam that has a height of 20 m, operating at a minimum flow of 9171 L/s, with reservoir operating as a device for energy storage, operating with a photovoltaic system of 360 kW, and a power limit for the purchase of energy from the grid equal to 200 kW, providing consumer loads up to 40 MWh per day, with cost of energy equal to US$0.021 per kWh and a capital cost of US$3285.617.Vasco, GabrielS. Silva, JonesA. Canales, FaustoBeluco, Alexandrede Souza, JoséG. Rossini, EltonengSmart Grid and Renewable Energyhttps://doi.org/10.4236/sgre.2019.104006[1] Faias, S., Sousa, J. and Castro, R. (2009) Embedded Energy Storage Systems in the Power Grid for Renewable Energy Sources Integration. In: Hammons, T.J., Ed., Renewable Energy, In Tech, Rijeka, 63-88. https://doi.org/10.5772/7376 [2] Castronuovo, E.D. and Usaola, J. (2013) Coordination between Wind Farms and Storage Devices, Technical and Economic Aspects. In: Pardalos, P.M., et al., Eds., Handbook of Wind Power Systems, Springer, Berlin, Heidelberg, 591-622. https://doi.org/10.1007/978-3-642-41080-2_17 [3] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2015) A Comparative Study of a Wind Hydro Hybrid System with Water Storage Capacity: Conventional Reservoir or Pumped Storage Plant? Journal of Energy Storage, 4, 96-105. https://doi.org/10.1016/j.est.2015.09.007 [4] Lambert, T.W., Gilman, P. and Lilienthal, P.D. (2005) Micropower System Modeling with Homer. In: Farret, F.A. and Simões, M.G., Eds., Integration of Alternative Sources of Energy, John Wiley & Sons, Hoboken, 379-418. https://doi.org/10.1002/0471755621.ch15 [5] Lilienthal, P.D., Lambert, T.W. and Gilman, P. (2004) Computer Modeling of Re-newable Power Systems. In: Cleveland, C.J., Ed., Encyclopedia of Energy, Elsevier, Amsterdam, Vol. 1, 633-647. https://doi.org/10.1016/B0-12-176480-X/00522-2 [6] Canales, F.A., Beluco, A. and Mendes, C.A.B. (2017) Modelling a Hydropower Plant with Reservoir with the Micro Power Optimization Model (HOMER). International Journal of Sustainable Energy, 36, 654-667. https://doi.org/10.1080/14786451.2015.1080706 [7] Canales, F.A. and Beluco, A. (2014) Modeling Pumped Hydro Storage with the Micro Power Optimization Model (HOMER). Journal of Renewable and Sustainable Energy, 6, Article ID: 043131. https://doi.org/10.1063/1.4893077 [8] Vasco, G., Silva, J.S., Beluco, A., Rossini, E.G. and Souza, J. (2018) A Hydro PV Hybrid System as a New Concept for an Abandoned Dam in Southern Brazil. Computational Water Energy and Environmental Engineering, 8, 41-56. https://doi.org/10.4236/cweee.2019.82003 [9] Yüksel, I. (2010) Hydropower for Sustainable Water and Energy Development. Renewable and Sustainable Energy Reviews, 14, 462-469. https://doi.org/10.1016/j.rser.2009.07.025 [10] Zhang, X., Li, H.Y., Deng, Z.D., Ringler, C., Gao, Y., Hejazi, M.I. and Leung, L.R. (2018) Impacts of Climate Change, Policy and Water-Energy-Food Nexus on Hydropower Development. Renewable Energy, 116, 827-834. https://doi.org/10.1016/j.renene.2017.10.030 [11] Ferrer-Gisbert, C.M., Ferran-Gozalvez, J.J., Santafe, M.R., Ferrer-Gisbert, P., Sanchez-Romero, F.J. and Torregrose-Soler, J.B. (2013) A New Photovoltaic Floating Cover System for Water Reservoirs. Renewable Energy, 60, 63-70. https://doi.org/10.1016/j.renene.2013.04.007 [12] Vision Battery (2018) Vision 6FM200D Model. http://www.vision-batt.com [13] Connolly, D., Lund, H., Mathiesen, B.V. and Leahy, M. (2010) A Review of Computer Tools for Analyzing the Integration of Renewable Energy into Various Energy Systems. Applied Energy, 87, 1059-1082. https://doi.org/10.1016/j.apenergy.2009.09.026 [14] HomerEnergy (2018) Software Homer, Version 2.68 Beta, Legacy. http://www.homerenergy.com [15] IRENA International Renewable Energy Agency (2011) Renewable Energy Technologies: Cost Analysis Series, Hydropower. http://www.irena.org/documentdownloads/publications/re_technologies_cost_anal ysis-hydropower.pdf [16] Braciani, U. (2011) Cost Structure for Implementation of Power Generation Plants in Brazil. Graduationwork, Faculdade de Economia, Universidade Federal de Santa Catarina, Florianópolis. (In Portuguese) [17] Schultz, R., Beluco, A., Homrich, R.P. and Eifler, R.C. (2016) A PV Hydro Hybrid System Using Residual Flow of Guarita Hydro Power Plant, in Southern Brazil. In: Kishor, N. and Fraile-Ardanuy, J., Eds., Modeling and Dynamic Behavior of Hydropower Plants, The Institution of Engineering and Technology, 185-202.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Hybrid SystemsEnergetic ComplementarityPV Modules on FloatingA hydro pv hybrid system for the laranjeiras dam (in southern Brazil) operating with storage capacity in the water reservoirArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdfA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdfapplication/pdf4054114https://repositorio.cuc.edu.co/bitstreams/c09b2ef6-3243-4298-b158-1c9d469062b1/downloade7cfb4ce6011c1ffdf8410e0806af712MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/afd6fb0a-5cce-42bb-b691-c647b8a32e92/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/388ce7b5-6b7e-4a65-9c5d-c24e3c90940d/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.jpgA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.jpgimage/jpeg62601https://repositorio.cuc.edu.co/bitstreams/4c89c469-63e4-4ab4-a0e3-eecb5b9f2b75/downloadaa186f81b9f5a26c04404452ad798586MD55TEXTA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.txtA hydro pv hybrid system for the laranjeiras dam (in southern brazil) operating with storage capacity in the water reservoir.pdf.txttext/plain35848https://repositorio.cuc.edu.co/bitstreams/68102b08-48f8-4edd-96de-5b1ef09bb161/download6268534057ddaa9fcceb4c07323eebb1MD5611323/5099oai:repositorio.cuc.edu.co:11323/50992024-09-17 14:10:08.85http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |