Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set correspo...
- Autores:
-
Zapata, Andrés
Amaris, Carlos
Sagastume Gutierrez, Alexis
Rodríguez, Andrés
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2022
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/12889
- Acceso en línea:
- https://hdl.handle.net/11323/12889
https://repositorio.cuc.edu.co/
- Palabra clave:
- CFD model
Absorption chiller
Ammonia
Lithium nitrate
Bubble absorber
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a096dc55b87624c72d719c69f1b2a12b |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/12889 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
title |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
spellingShingle |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model CFD model Absorption chiller Ammonia Lithium nitrate Bubble absorber |
title_short |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
title_full |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
title_fullStr |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
title_full_unstemmed |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
title_sort |
Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model |
dc.creator.fl_str_mv |
Zapata, Andrés Amaris, Carlos Sagastume Gutierrez, Alexis Rodríguez, Andrés |
dc.contributor.author.none.fl_str_mv |
Zapata, Andrés Amaris, Carlos Sagastume Gutierrez, Alexis Rodríguez, Andrés |
dc.subject.proposal.eng.fl_str_mv |
CFD model Absorption chiller Ammonia Lithium nitrate Bubble absorber |
topic |
CFD model Absorption chiller Ammonia Lithium nitrate Bubble absorber |
description |
The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set corresponds to an absorption chiller driven by low-temperature heat sources such as solar energy in warm environments. Results evidenced that the Volume of Fluid and Mixture models are adequate to be used in the CFD model to predict the absorption process in the bubble absorber assessed depending on the mesh density refinement. Moreover, the heat transfer coefficient from the solution side and the absorption mass flux are the variables needed for reliable validation of the model. Finally, the absorbed flux estimated from the CFD model ranged between 3.2×10−3 kg.m−2 .s−1 and 4.4×10−3 kg.m−2 .s−1 , while the solution side heat transfer coefficient varied between 457 W.m−2 .K−1 and 786 W.m−2 .K−1 , under the conditions considered. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022 |
dc.date.accessioned.none.fl_str_mv |
2024-04-29T14:12:51Z |
dc.date.available.none.fl_str_mv |
2024-04-29T14:12:51Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
status_str |
publishedVersion |
dc.identifier.citation.spa.fl_str_mv |
Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.33 |
dc.identifier.issn.spa.fl_str_mv |
2151-8629 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/11323/12889 |
dc.identifier.doi.none.fl_str_mv |
10.5098/hmt.19.33 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC – Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.33 2151-8629 10.5098/hmt.19.33 Corporación Universidad de la Costa REDICUC – Repositorio CUC |
url |
https://hdl.handle.net/11323/12889 https://repositorio.cuc.edu.co/ |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Frontiers in Heat and Mass Transfer |
dc.relation.references.spa.fl_str_mv |
Aggarwal, M. K., and Agarwal, R. S. (1986). Thermodynamic properties of lithium nitrate‐ammonia mixtures. Int. J. Energy Res. 10, 59 –68. https://doi.org/10.1002/er.4440100107 Amaris, C. (2013). Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers. Available at: https://www.tdx.cat/handle/10803/128504 Amaris, C., Alvarez, M. E., Vallès, M., and Bourouis, M. (2020a). Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi -empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313 Amaris, C., and Bourouis, M. (2021). Boiling process assessment for absorption heat pumps: A review. Int. J. Heat Mass Transf. 179, 121723. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121723 Amaris, C., Bourouis, M., Vallès, M., Salavera, D., and Coronas, A. (2015). Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems. Heat Transf. Eng. 36. https://doi.org/10.1080/01457632.2014.923983 Amaris, C., Miranda, B. C., and Balbis -Morejón, M. (2020b). Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm. Sci. Eng. Prog. 20. https://doi.org/10.1016/j.tsep.2020.100684 Amaris, C., Rodriguez, A., Sagastume, A., and Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. Lect. Notes Mech. Eng., 311 –328. https://doi.org/10.1007/978-981-19-3467-4_19 Amaris, C., Vallès, M., and Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 231, 826–853. https://doi.org/10.1016/j.apenergy.2018.09.071 Anand, S., Suresh, S., Dhanuskodi, R., and Santhosh Kumar, D. (2020). Comparison of cfd and empirical models for predicting wall temperature at supercritical conditions of water. Front. Heat Mass Transf. 14. https://doi.org/10.5098/hmt.14.8 ANSYS (2013). ANSYS Fluent Theory Guide. , ed. Ansys New York, USA https://doi.org/10.1016/0140-3664(87)90311- 2 Asfand, F., Stiriba, Y., and Bourouis, M. (2015). CFD simulation to investigate heat and mass transfer processes in a membrane -based absorber for water -LiBr absorption cooling systems. Energy. https://doi.org/10.1016/j.energy.2015.08.018 Asfand, F., Stiriba, Y., and Bourouis, M. (2016). Performance evaluation of membrane -based absorbers employing H2O/(LiBr + LiI+ LiNO3+ LiCl) andH2O/(LiNO3+ KNO3+ NaNO3) as working pairs in absorption coolingsystems. Energy. https://doi.org/10.1016/j.energy.2016.08.103 Ayou, D. S., Bruno, J. C., Saravanan, R., and Coronas, A. (2013). An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 21, 728 –748. https://doi.org/10.1016/j.rser.2012.12.068 Bhagat, R. D., and Deshmukh, S. J. (2022). Numerical analysis to predict the behavior of liquid vapor slug flow in vertically placed u -shaped closed capillary tube. Front. Heat Mass Transf. 19. https://doi.org/10.5098/hmt.19.14 Cerezo, J. (2006). Estudio del proceso de absorción con amoníaco -agua en intercambiadores de placas para equipos de refrigeración por absorción. Cuenca, Y., Salavera, D., Vernet, A., Teja, A. S., and Vallès, M. (2014). Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int. J. Refrig. 38, 333 –340. https://doi.org/10.1016/j.ijrefrig.2013.08.010 Elperin, T., and Fominykh, A. (2003). Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 58, 3555 –3564. https://doi.org/10.1016/S0009-2509(03)00192-1 Florides, G. A., Tassou, S. A., Kalogirou, S. A., and Wrobel, L. C. (2002). Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 6, 557 –572. https://doi.org/10.1016/S1364-0321(02)00016-3 Haltenberger, W. (1939). Enthalpy -Concentration Charts from Vapor Pressure Data. Ind. Eng. Chem. 31, 783 –786. https://doi.org/10.1021/ie50354a032 Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2016). CFD simulation of adiabatic water vapor absorption in large drops of water -LiBr solution. Appl. Therm. Eng. 102, 17 –29. https://doi.org/10.1016/j.applthermaleng.2016.03.144 Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2017). CFD simulation of water vapor absorption in laminar falling film solution of water -LiBr ─ Drop and jet modes. Appl. Therm. Eng. 115, 860 –873. https://doi.org/10.1016/j.applthermaleng.2017.01.022 Kang, Y. T., Akisawa, A., and Kashiwagi, T. (2000). Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. 23, 430 –443. https://doi.org/10.1016/S0140-7007(99)00075-4 Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998). Ammonia - water bubble absorber with a plate heat exchanger. in ASHRAE Transactions, 1565 –1575. Karima, A., Djamel, S., Ali, N., and Houari, A. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front. Heat Mass Transf. 10. https://doi.org/10.5098/hmt.10.27 Libotean, S., Martín, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2008). Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 53, 2383 –2388. https://doi.org/10.1021/je8003035 Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2007). Vapor -liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 52, 1050 –1055. https://doi.org/10.1021/je7000045 Lima, A. A. S., Ochoa, A. A. V, Da Costa, J. A. P., and Henríquez, J. R. (2019). CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig. 98, 514 –525. https://doi.org/10.1016/j.ijrefrig.2018.11.010 McNeely, L. A. (1979). Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413 –434 . Mendoza, J., Rhenals, J., Avila, A., Martinez, A., De la Vega, T., and Durango, E. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17, 1 –10. https://doi.org/10.17981/ingecuc.17.2.2021.01 Merrill, T. L., and Perez -Blanco, H. (1997). Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 40, 589 –603. https://doi.org/10.1016/0017-9310(96)00118 - 4 Mirzaie, M., Talebizadeh, A. R., and Hashemipour, H. (2020). CFD simulation of benzene adsorption on pistachio activated carbon porous media. Front. Heat Mass Transf. 14, 1 –7. https://doi.org/10.5098/hmt.14.1 9 Oronel, C., Amaris, C., Vallès, M., and Bourouis, M. (2010). Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). in 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 217 –225. https://doi.org/10.1109/THETA.2010.5766401 Panda, S. K., and Mani, A. (2016). CFD heat and mass transfer studies in a R134a -DMF bubble absorber with swirl flow entry of R134a vapour. Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., 1 –10. Rodríguez -Toscano, A., Amaris, C., Sagastume -Gutiérrez, A., and Bourouis, M. (2022). Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls inthe Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743. https://doi.org/10.1016/J.CSITE.2021.101743 Soheel, A. H., Jumaah, O. M., and Saleem, A. M. (2021). Simulation and investigation of nano -refrigerant fluid characteristics with the two -phase flow in microchannel. Front. Heat Mass Transf. 17. https://doi.org/10.5098/hmt.17.21 Suresh, M., and Mani, A. (2010). Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 53, 2813 –2825. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016 Triché, D., Bonnot, S., Perier -Muzet, M., Boudéhenn, F., Demasles, H., and Caney, N. (2017). Experimental and numerical study of a falling film absorber in an ammonia -water absorption chiller. Int. J. Heat Mass Transf. 111, 374 –385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008 Turkyilmazoglu, M. (2019). Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger. J. Heat Transfer 141, 114501. https://doi.org/10.1115/1.4044590 Turkyilmazoglu, M. (2021). Heat absorption due to falling film with imposed uniform mass fraction at the wall. Int. J. Heat Mass Transf. 177, 121585. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121585 Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., and Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499 –513. https://doi.org/10.1016/j.rser.2013.03.024 Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics. The finite volume method. 1st ed. , ed. Longman Group Ltd New York. Wu, X., Xu, S., and Jiang, M. (2018). Development of bubble absorption refrigeration technology: A review. Renew. Sustain. Energy Rev. 82, 3468 –3482. https://doi.org/10.1016/J.RSER.2017.10.109 Zapata, A., Amaris, C., Sagastume, A., and Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud. Therm. Eng. 27, 101311. https://doi.org/10.1016/J.CSITE.2021.101311 Zhou, R., Wang, M., Jin, Z., and Li, S. (2023). Modeling and experimental verification of the enhancement of TiO2 nanofluid on ammonia falling film absorption process. Int. J. Therm. Sci. 184, 107917. https://doi.org/10.1016/j.ijthermalsci.2022.107917 |
dc.relation.citationendpage.spa.fl_str_mv |
9 |
dc.relation.citationstartpage.spa.fl_str_mv |
1 |
dc.relation.citationissue.spa.fl_str_mv |
1 |
dc.relation.citationvolume.spa.fl_str_mv |
19 |
dc.rights.eng.fl_str_mv |
© 1997-2024 TSP (Henderson, USA) unless otherwise stated |
dc.rights.license.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 1997-2024 TSP (Henderson, USA) unless otherwise stated https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
9 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Tech Science Press |
dc.publisher.place.spa.fl_str_mv |
United States |
dc.source.spa.fl_str_mv |
https://www.techscience.com/fhmt/v19n1/52424 |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/7f9a9fe7-adb4-4f76-9752-c9be0af609a2/download https://repositorio.cuc.edu.co/bitstreams/0106446e-8176-4209-8744-b254a58861d3/download https://repositorio.cuc.edu.co/bitstreams/2b98babd-4093-4447-b4fa-86b41bbbc552/download https://repositorio.cuc.edu.co/bitstreams/ed497211-4cfd-47b9-b393-e33d8ecc30f5/download |
bitstream.checksum.fl_str_mv |
094af13dc935b5adcb782d4c21c6e2b6 2f9959eaf5b71fae44bbf9ec84150c7a a77876b8e650e133cbce407e35c9ff42 9abc103d71385214672618418b3d0251 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760775687045120 |
spelling |
Atribución 4.0 Internacional (CC BY 4.0)© 1997-2024 TSP (Henderson, USA) unless otherwise statedhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata, AndrésAmaris, CarlosSagastume Gutierrez, AlexisRodríguez, Andrés2024-04-29T14:12:51Z2024-04-29T14:12:51Z2022Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.332151-8629https://hdl.handle.net/11323/1288910.5098/hmt.19.33Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set corresponds to an absorption chiller driven by low-temperature heat sources such as solar energy in warm environments. Results evidenced that the Volume of Fluid and Mixture models are adequate to be used in the CFD model to predict the absorption process in the bubble absorber assessed depending on the mesh density refinement. Moreover, the heat transfer coefficient from the solution side and the absorption mass flux are the variables needed for reliable validation of the model. Finally, the absorbed flux estimated from the CFD model ranged between 3.2×10−3 kg.m−2 .s−1 and 4.4×10−3 kg.m−2 .s−1 , while the solution side heat transfer coefficient varied between 457 W.m−2 .K−1 and 786 W.m−2 .K−1 , under the conditions considered.9 páginasapplication/pdfengTech Science PressUnited Stateshttps://www.techscience.com/fhmt/v19n1/52424Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Frontiers in Heat and Mass TransferAggarwal, M. K., and Agarwal, R. S. (1986). Thermodynamic properties of lithium nitrate‐ammonia mixtures. Int. J. Energy Res. 10, 59 –68. https://doi.org/10.1002/er.4440100107Amaris, C. (2013). Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers. Available at: https://www.tdx.cat/handle/10803/128504Amaris, C., Alvarez, M. E., Vallès, M., and Bourouis, M. (2020a). Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi -empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313Amaris, C., and Bourouis, M. (2021). Boiling process assessment for absorption heat pumps: A review. Int. J. Heat Mass Transf. 179, 121723. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121723Amaris, C., Bourouis, M., Vallès, M., Salavera, D., and Coronas, A. (2015). Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems. Heat Transf. Eng. 36. https://doi.org/10.1080/01457632.2014.923983Amaris, C., Miranda, B. C., and Balbis -Morejón, M. (2020b). Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm. Sci. Eng. Prog. 20. https://doi.org/10.1016/j.tsep.2020.100684Amaris, C., Rodriguez, A., Sagastume, A., and Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. Lect. Notes Mech. Eng., 311 –328. https://doi.org/10.1007/978-981-19-3467-4_19Amaris, C., Vallès, M., and Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 231, 826–853. https://doi.org/10.1016/j.apenergy.2018.09.071Anand, S., Suresh, S., Dhanuskodi, R., and Santhosh Kumar, D. (2020). Comparison of cfd and empirical models for predicting wall temperature at supercritical conditions of water. Front. Heat Mass Transf. 14. https://doi.org/10.5098/hmt.14.8ANSYS (2013). ANSYS Fluent Theory Guide. , ed. Ansys New York, USA https://doi.org/10.1016/0140-3664(87)90311- 2Asfand, F., Stiriba, Y., and Bourouis, M. (2015). CFD simulation to investigate heat and mass transfer processes in a membrane -based absorber for water -LiBr absorption cooling systems. Energy. https://doi.org/10.1016/j.energy.2015.08.018Asfand, F., Stiriba, Y., and Bourouis, M. (2016). Performance evaluation of membrane -based absorbers employing H2O/(LiBr + LiI+ LiNO3+ LiCl) andH2O/(LiNO3+ KNO3+ NaNO3) as working pairs in absorption coolingsystems. Energy. https://doi.org/10.1016/j.energy.2016.08.103Ayou, D. S., Bruno, J. C., Saravanan, R., and Coronas, A. (2013). An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 21, 728 –748. https://doi.org/10.1016/j.rser.2012.12.068Bhagat, R. D., and Deshmukh, S. J. (2022). Numerical analysis to predict the behavior of liquid vapor slug flow in vertically placed u -shaped closed capillary tube. Front. Heat Mass Transf. 19. https://doi.org/10.5098/hmt.19.14Cerezo, J. (2006). Estudio del proceso de absorción con amoníaco -agua en intercambiadores de placas para equipos de refrigeración por absorción.Cuenca, Y., Salavera, D., Vernet, A., Teja, A. S., and Vallès, M. (2014). Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int. J. Refrig. 38, 333 –340. https://doi.org/10.1016/j.ijrefrig.2013.08.010Elperin, T., and Fominykh, A. (2003). Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 58, 3555 –3564. https://doi.org/10.1016/S0009-2509(03)00192-1Florides, G. A., Tassou, S. A., Kalogirou, S. A., and Wrobel, L. C. (2002). Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 6, 557 –572. https://doi.org/10.1016/S1364-0321(02)00016-3Haltenberger, W. (1939). Enthalpy -Concentration Charts from Vapor Pressure Data. Ind. Eng. Chem. 31, 783 –786. https://doi.org/10.1021/ie50354a032Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2016). CFD simulation of adiabatic water vapor absorption in large drops of water -LiBr solution. Appl. Therm. Eng. 102, 17 –29. https://doi.org/10.1016/j.applthermaleng.2016.03.144Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2017). CFD simulation of water vapor absorption in laminar falling film solution of water -LiBr ─ Drop and jet modes. Appl. Therm. Eng. 115, 860 –873. https://doi.org/10.1016/j.applthermaleng.2017.01.022Kang, Y. T., Akisawa, A., and Kashiwagi, T. (2000). Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. 23, 430 –443. https://doi.org/10.1016/S0140-7007(99)00075-4Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998). Ammonia - water bubble absorber with a plate heat exchanger. in ASHRAE Transactions, 1565 –1575.Karima, A., Djamel, S., Ali, N., and Houari, A. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front. Heat Mass Transf. 10. https://doi.org/10.5098/hmt.10.27Libotean, S., Martín, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2008). Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 53, 2383 –2388. https://doi.org/10.1021/je8003035Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2007). Vapor -liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 52, 1050 –1055. https://doi.org/10.1021/je7000045Lima, A. A. S., Ochoa, A. A. V, Da Costa, J. A. P., and Henríquez, J. R. (2019). CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig. 98, 514 –525. https://doi.org/10.1016/j.ijrefrig.2018.11.010McNeely, L. A. (1979). Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413 –434 .Mendoza, J., Rhenals, J., Avila, A., Martinez, A., De la Vega, T., and Durango, E. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17, 1 –10. https://doi.org/10.17981/ingecuc.17.2.2021.01Merrill, T. L., and Perez -Blanco, H. (1997). Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 40, 589 –603. https://doi.org/10.1016/0017-9310(96)00118 - 4Mirzaie, M., Talebizadeh, A. R., and Hashemipour, H. (2020). CFD simulation of benzene adsorption on pistachio activated carbon porous media. Front. Heat Mass Transf. 14, 1 –7. https://doi.org/10.5098/hmt.14.1 9Oronel, C., Amaris, C., Vallès, M., and Bourouis, M. (2010). Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). in 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 217 –225. https://doi.org/10.1109/THETA.2010.5766401Panda, S. K., and Mani, A. (2016). CFD heat and mass transfer studies in a R134a -DMF bubble absorber with swirl flow entry of R134a vapour. Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., 1 –10.Rodríguez -Toscano, A., Amaris, C., Sagastume -Gutiérrez, A., and Bourouis, M. (2022). Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls inthe Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743. https://doi.org/10.1016/J.CSITE.2021.101743Soheel, A. H., Jumaah, O. M., and Saleem, A. M. (2021). Simulation and investigation of nano -refrigerant fluid characteristics with the two -phase flow in microchannel. Front. Heat Mass Transf. 17. https://doi.org/10.5098/hmt.17.21Suresh, M., and Mani, A. (2010). Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 53, 2813 –2825. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016Triché, D., Bonnot, S., Perier -Muzet, M., Boudéhenn, F., Demasles, H., and Caney, N. (2017). Experimental and numerical study of a falling film absorber in an ammonia -water absorption chiller. Int. J. Heat Mass Transf. 111, 374 –385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008Turkyilmazoglu, M. (2019). Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger. J. Heat Transfer 141, 114501. https://doi.org/10.1115/1.4044590Turkyilmazoglu, M. (2021). Heat absorption due to falling film with imposed uniform mass fraction at the wall. Int. J. Heat Mass Transf. 177, 121585. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121585Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., and Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499 –513. https://doi.org/10.1016/j.rser.2013.03.024Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics. The finite volume method. 1st ed. , ed. Longman Group Ltd New York.Wu, X., Xu, S., and Jiang, M. (2018). Development of bubble absorption refrigeration technology: A review. Renew. Sustain. Energy Rev. 82, 3468 –3482. https://doi.org/10.1016/J.RSER.2017.10.109Zapata, A., Amaris, C., Sagastume, A., and Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud. Therm. Eng. 27, 101311. https://doi.org/10.1016/J.CSITE.2021.101311Zhou, R., Wang, M., Jin, Z., and Li, S. (2023). Modeling and experimental verification of the enhancement of TiO2 nanofluid on ammonia falling film absorption process. Int. J. Therm. Sci. 184, 107917. https://doi.org/10.1016/j.ijthermalsci.2022.10791791119CFD modelAbsorption chillerAmmoniaLithium nitrateBubble absorberPublicationORIGINALVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdfVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdfArtículoapplication/pdf1056508https://repositorio.cuc.edu.co/bitstreams/7f9a9fe7-adb4-4f76-9752-c9be0af609a2/download094af13dc935b5adcb782d4c21c6e2b6MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/0106446e-8176-4209-8744-b254a58861d3/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.txtVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.txtExtracted texttext/plain50144https://repositorio.cuc.edu.co/bitstreams/2b98babd-4093-4447-b4fa-86b41bbbc552/downloada77876b8e650e133cbce407e35c9ff42MD53THUMBNAILVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.jpgVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.jpgGenerated Thumbnailimage/jpeg18446https://repositorio.cuc.edu.co/bitstreams/ed497211-4cfd-47b9-b393-e33d8ecc30f5/download9abc103d71385214672618418b3d0251MD5411323/12889oai:repositorio.cuc.edu.co:11323/128892024-09-17 11:05:57.855https://creativecommons.org/licenses/by/4.0/© 1997-2024 TSP (Henderson, USA) unless otherwise statedopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo= |