Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model

The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set correspo...

Full description

Autores:
Zapata, Andrés
Amaris, Carlos
Sagastume Gutierrez, Alexis
Rodríguez, Andrés
Tipo de recurso:
Article of investigation
Fecha de publicación:
2022
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/12889
Acceso en línea:
https://hdl.handle.net/11323/12889
https://repositorio.cuc.edu.co/
Palabra clave:
CFD model
Absorption chiller
Ammonia
Lithium nitrate
Bubble absorber
Rights
openAccess
License
Atribución 4.0 Internacional (CC BY 4.0)
id RCUC2_a096dc55b87624c72d719c69f1b2a12b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/12889
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
title Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
spellingShingle Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
CFD model
Absorption chiller
Ammonia
Lithium nitrate
Bubble absorber
title_short Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
title_full Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
title_fullStr Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
title_full_unstemmed Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
title_sort Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD model
dc.creator.fl_str_mv Zapata, Andrés
Amaris, Carlos
Sagastume Gutierrez, Alexis
Rodríguez, Andrés
dc.contributor.author.none.fl_str_mv Zapata, Andrés
Amaris, Carlos
Sagastume Gutierrez, Alexis
Rodríguez, Andrés
dc.subject.proposal.eng.fl_str_mv CFD model
Absorption chiller
Ammonia
Lithium nitrate
Bubble absorber
topic CFD model
Absorption chiller
Ammonia
Lithium nitrate
Bubble absorber
description The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set corresponds to an absorption chiller driven by low-temperature heat sources such as solar energy in warm environments. Results evidenced that the Volume of Fluid and Mixture models are adequate to be used in the CFD model to predict the absorption process in the bubble absorber assessed depending on the mesh density refinement. Moreover, the heat transfer coefficient from the solution side and the absorption mass flux are the variables needed for reliable validation of the model. Finally, the absorbed flux estimated from the CFD model ranged between 3.2×10−3 kg.m−2 .s−1 and 4.4×10−3 kg.m−2 .s−1 , while the solution side heat transfer coefficient varied between 457 W.m−2 .K−1 and 786 W.m−2 .K−1 , under the conditions considered.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2024-04-29T14:12:51Z
dc.date.available.none.fl_str_mv 2024-04-29T14:12:51Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.33
dc.identifier.issn.spa.fl_str_mv 2151-8629
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/12889
dc.identifier.doi.none.fl_str_mv 10.5098/hmt.19.33
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC – Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.33
2151-8629
10.5098/hmt.19.33
Corporación Universidad de la Costa
REDICUC – Repositorio CUC
url https://hdl.handle.net/11323/12889
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Frontiers in Heat and Mass Transfer
dc.relation.references.spa.fl_str_mv Aggarwal, M. K., and Agarwal, R. S. (1986). Thermodynamic properties of lithium nitrate‐ammonia mixtures. Int. J. Energy Res. 10, 59 –68. https://doi.org/10.1002/er.4440100107
Amaris, C. (2013). Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers. Available at: https://www.tdx.cat/handle/10803/128504
Amaris, C., Alvarez, M. E., Vallès, M., and Bourouis, M. (2020a). Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi -empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313
Amaris, C., and Bourouis, M. (2021). Boiling process assessment for absorption heat pumps: A review. Int. J. Heat Mass Transf. 179, 121723. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121723
Amaris, C., Bourouis, M., Vallès, M., Salavera, D., and Coronas, A. (2015). Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems. Heat Transf. Eng. 36. https://doi.org/10.1080/01457632.2014.923983
Amaris, C., Miranda, B. C., and Balbis -Morejón, M. (2020b). Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm. Sci. Eng. Prog. 20. https://doi.org/10.1016/j.tsep.2020.100684
Amaris, C., Rodriguez, A., Sagastume, A., and Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. Lect. Notes Mech. Eng., 311 –328. https://doi.org/10.1007/978-981-19-3467-4_19
Amaris, C., Vallès, M., and Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 231, 826–853. https://doi.org/10.1016/j.apenergy.2018.09.071
Anand, S., Suresh, S., Dhanuskodi, R., and Santhosh Kumar, D. (2020). Comparison of cfd and empirical models for predicting wall temperature at supercritical conditions of water. Front. Heat Mass Transf. 14. https://doi.org/10.5098/hmt.14.8
ANSYS (2013). ANSYS Fluent Theory Guide. , ed. Ansys New York, USA https://doi.org/10.1016/0140-3664(87)90311- 2
Asfand, F., Stiriba, Y., and Bourouis, M. (2015). CFD simulation to investigate heat and mass transfer processes in a membrane -based absorber for water -LiBr absorption cooling systems. Energy. https://doi.org/10.1016/j.energy.2015.08.018
Asfand, F., Stiriba, Y., and Bourouis, M. (2016). Performance evaluation of membrane -based absorbers employing H2O/(LiBr + LiI+ LiNO3+ LiCl) andH2O/(LiNO3+ KNO3+ NaNO3) as working pairs in absorption coolingsystems. Energy. https://doi.org/10.1016/j.energy.2016.08.103
Ayou, D. S., Bruno, J. C., Saravanan, R., and Coronas, A. (2013). An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 21, 728 –748. https://doi.org/10.1016/j.rser.2012.12.068
Bhagat, R. D., and Deshmukh, S. J. (2022). Numerical analysis to predict the behavior of liquid vapor slug flow in vertically placed u -shaped closed capillary tube. Front. Heat Mass Transf. 19. https://doi.org/10.5098/hmt.19.14
Cerezo, J. (2006). Estudio del proceso de absorción con amoníaco -agua en intercambiadores de placas para equipos de refrigeración por absorción.
Cuenca, Y., Salavera, D., Vernet, A., Teja, A. S., and Vallès, M. (2014). Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int. J. Refrig. 38, 333 –340. https://doi.org/10.1016/j.ijrefrig.2013.08.010
Elperin, T., and Fominykh, A. (2003). Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 58, 3555 –3564. https://doi.org/10.1016/S0009-2509(03)00192-1
Florides, G. A., Tassou, S. A., Kalogirou, S. A., and Wrobel, L. C. (2002). Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 6, 557 –572. https://doi.org/10.1016/S1364-0321(02)00016-3
Haltenberger, W. (1939). Enthalpy -Concentration Charts from Vapor Pressure Data. Ind. Eng. Chem. 31, 783 –786. https://doi.org/10.1021/ie50354a032
Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2016). CFD simulation of adiabatic water vapor absorption in large drops of water -LiBr solution. Appl. Therm. Eng. 102, 17 –29. https://doi.org/10.1016/j.applthermaleng.2016.03.144
Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2017). CFD simulation of water vapor absorption in laminar falling film solution of water -LiBr ─ Drop and jet modes. Appl. Therm. Eng. 115, 860 –873. https://doi.org/10.1016/j.applthermaleng.2017.01.022
Kang, Y. T., Akisawa, A., and Kashiwagi, T. (2000). Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. 23, 430 –443. https://doi.org/10.1016/S0140-7007(99)00075-4
Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998). Ammonia - water bubble absorber with a plate heat exchanger. in ASHRAE Transactions, 1565 –1575.
Karima, A., Djamel, S., Ali, N., and Houari, A. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front. Heat Mass Transf. 10. https://doi.org/10.5098/hmt.10.27
Libotean, S., Martín, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2008). Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 53, 2383 –2388. https://doi.org/10.1021/je8003035
Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2007). Vapor -liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 52, 1050 –1055. https://doi.org/10.1021/je7000045
Lima, A. A. S., Ochoa, A. A. V, Da Costa, J. A. P., and Henríquez, J. R. (2019). CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig. 98, 514 –525. https://doi.org/10.1016/j.ijrefrig.2018.11.010
McNeely, L. A. (1979). Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413 –434 .
Mendoza, J., Rhenals, J., Avila, A., Martinez, A., De la Vega, T., and Durango, E. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17, 1 –10. https://doi.org/10.17981/ingecuc.17.2.2021.01
Merrill, T. L., and Perez -Blanco, H. (1997). Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 40, 589 –603. https://doi.org/10.1016/0017-9310(96)00118 - 4
Mirzaie, M., Talebizadeh, A. R., and Hashemipour, H. (2020). CFD simulation of benzene adsorption on pistachio activated carbon porous media. Front. Heat Mass Transf. 14, 1 –7. https://doi.org/10.5098/hmt.14.1 9
Oronel, C., Amaris, C., Vallès, M., and Bourouis, M. (2010). Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). in 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 217 –225. https://doi.org/10.1109/THETA.2010.5766401
Panda, S. K., and Mani, A. (2016). CFD heat and mass transfer studies in a R134a -DMF bubble absorber with swirl flow entry of R134a vapour. Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., 1 –10.
Rodríguez -Toscano, A., Amaris, C., Sagastume -Gutiérrez, A., and Bourouis, M. (2022). Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls inthe Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743. https://doi.org/10.1016/J.CSITE.2021.101743
Soheel, A. H., Jumaah, O. M., and Saleem, A. M. (2021). Simulation and investigation of nano -refrigerant fluid characteristics with the two -phase flow in microchannel. Front. Heat Mass Transf. 17. https://doi.org/10.5098/hmt.17.21
Suresh, M., and Mani, A. (2010). Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 53, 2813 –2825. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016
Triché, D., Bonnot, S., Perier -Muzet, M., Boudéhenn, F., Demasles, H., and Caney, N. (2017). Experimental and numerical study of a falling film absorber in an ammonia -water absorption chiller. Int. J. Heat Mass Transf. 111, 374 –385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008
Turkyilmazoglu, M. (2019). Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger. J. Heat Transfer 141, 114501. https://doi.org/10.1115/1.4044590
Turkyilmazoglu, M. (2021). Heat absorption due to falling film with imposed uniform mass fraction at the wall. Int. J. Heat Mass Transf. 177, 121585. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121585
Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., and Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499 –513. https://doi.org/10.1016/j.rser.2013.03.024
Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics. The finite volume method. 1st ed. , ed. Longman Group Ltd New York.
Wu, X., Xu, S., and Jiang, M. (2018). Development of bubble absorption refrigeration technology: A review. Renew. Sustain. Energy Rev. 82, 3468 –3482. https://doi.org/10.1016/J.RSER.2017.10.109
Zapata, A., Amaris, C., Sagastume, A., and Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud. Therm. Eng. 27, 101311. https://doi.org/10.1016/J.CSITE.2021.101311
Zhou, R., Wang, M., Jin, Z., and Li, S. (2023). Modeling and experimental verification of the enhancement of TiO2 nanofluid on ammonia falling film absorption process. Int. J. Therm. Sci. 184, 107917. https://doi.org/10.1016/j.ijthermalsci.2022.107917
dc.relation.citationendpage.spa.fl_str_mv 9
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationissue.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 19
dc.rights.eng.fl_str_mv © 1997-2024 TSP (Henderson, USA) unless otherwise stated
dc.rights.license.spa.fl_str_mv Atribución 4.0 Internacional (CC BY 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución 4.0 Internacional (CC BY 4.0)
© 1997-2024 TSP (Henderson, USA) unless otherwise stated
https://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 9 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Tech Science Press
dc.publisher.place.spa.fl_str_mv United States
dc.source.spa.fl_str_mv https://www.techscience.com/fhmt/v19n1/52424
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/12889/1/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf
https://repositorio.cuc.edu.co/bitstream/11323/12889/2/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/12889/3/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf.txt
https://repositorio.cuc.edu.co/bitstream/11323/12889/4/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf.jpg
bitstream.checksum.fl_str_mv 094af13dc935b5adcb782d4c21c6e2b6
2f9959eaf5b71fae44bbf9ec84150c7a
a77876b8e650e133cbce407e35c9ff42
9abc103d71385214672618418b3d0251
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1808400102934446080
spelling Atribución 4.0 Internacional (CC BY 4.0)© 1997-2024 TSP (Henderson, USA) unless otherwise statedhttps://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata, Andrés7058507766aa9f86827857525c1e2b01Amaris, Carlos2d666509cafda55db0520d6ba6a8cfccSagastume Gutierrez, Alexis917f0f221c4f5196ff664dd7821cbdab600Rodríguez, Andrésb2462a0942977fff17a2dedac62ecf192024-04-29T14:12:51Z2024-04-29T14:12:51Z2022Amaris, C., Zapata, A., Sagastume, A., & Rodríguez, A. (2022). VAPOUR ABSORPTION PROCESS IN AN NH3/LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL. Frontiers in Heat and Mass Transfer (FHMT), 19. https://doi.org/10.5098/hmt.19.332151-8629https://hdl.handle.net/11323/1288910.5098/hmt.19.33Corporación Universidad de la CostaREDICUC – Repositorio CUChttps://repositorio.cuc.edu.co/The present study aims to assess the vapour bubble absorption into the ammonia/lithium nitrate (NH3/LiNO3) solution by using an optimized CFD model. A detailed methodology to build up the CFD model is presented, as well as its validation using experimental data. The operating conditions set corresponds to an absorption chiller driven by low-temperature heat sources such as solar energy in warm environments. Results evidenced that the Volume of Fluid and Mixture models are adequate to be used in the CFD model to predict the absorption process in the bubble absorber assessed depending on the mesh density refinement. Moreover, the heat transfer coefficient from the solution side and the absorption mass flux are the variables needed for reliable validation of the model. Finally, the absorbed flux estimated from the CFD model ranged between 3.2×10−3 kg.m−2 .s−1 and 4.4×10−3 kg.m−2 .s−1 , while the solution side heat transfer coefficient varied between 457 W.m−2 .K−1 and 786 W.m−2 .K−1 , under the conditions considered.9 páginasapplication/pdfengTech Science PressUnited Stateshttps://www.techscience.com/fhmt/v19n1/52424Vapour absorption process in an nh3/lino3 bubble absorber using an optimized CFD modelArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Frontiers in Heat and Mass TransferAggarwal, M. K., and Agarwal, R. S. (1986). Thermodynamic properties of lithium nitrate‐ammonia mixtures. Int. J. Energy Res. 10, 59 –68. https://doi.org/10.1002/er.4440100107Amaris, C. (2013). Intensification of NH3 bubble absorption process using advanced surfaces and carbon nanotubes for NH3/LiNO3 absorption chillers. Available at: https://www.tdx.cat/handle/10803/128504Amaris, C., Alvarez, M. E., Vallès, M., and Bourouis, M. (2020a). Performance assessment of an NH3/LiNO3 bubble plate absorber applying a semi -empirical model and artificial neural networks. Energies 13. https://doi.org/10.3390/en13174313Amaris, C., and Bourouis, M. (2021). Boiling process assessment for absorption heat pumps: A review. Int. J. Heat Mass Transf. 179, 121723. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121723Amaris, C., Bourouis, M., Vallès, M., Salavera, D., and Coronas, A. (2015). Thermophysical properties and heat and mass transfer of new working fluids in plate heat exchangers for absorption refrigeration systems. Heat Transf. Eng. 36. https://doi.org/10.1080/01457632.2014.923983Amaris, C., Miranda, B. C., and Balbis -Morejón, M. (2020b). Experimental thermal performance and modelling of a waste heat recovery unit in an energy cogeneration system. Therm. Sci. Eng. Prog. 20. https://doi.org/10.1016/j.tsep.2020.100684Amaris, C., Rodriguez, A., Sagastume, A., and Bourouis, M. (2023). Performance Assessment of a Solar/Gas Driven NH3/LiNO3 Absorption Cooling System for Malls. Lect. Notes Mech. Eng., 311 –328. https://doi.org/10.1007/978-981-19-3467-4_19Amaris, C., Vallès, M., and Bourouis, M. (2018). Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review. Appl. Energy 231, 826–853. https://doi.org/10.1016/j.apenergy.2018.09.071Anand, S., Suresh, S., Dhanuskodi, R., and Santhosh Kumar, D. (2020). Comparison of cfd and empirical models for predicting wall temperature at supercritical conditions of water. Front. Heat Mass Transf. 14. https://doi.org/10.5098/hmt.14.8ANSYS (2013). ANSYS Fluent Theory Guide. , ed. Ansys New York, USA https://doi.org/10.1016/0140-3664(87)90311- 2Asfand, F., Stiriba, Y., and Bourouis, M. (2015). CFD simulation to investigate heat and mass transfer processes in a membrane -based absorber for water -LiBr absorption cooling systems. Energy. https://doi.org/10.1016/j.energy.2015.08.018Asfand, F., Stiriba, Y., and Bourouis, M. (2016). Performance evaluation of membrane -based absorbers employing H2O/(LiBr + LiI+ LiNO3+ LiCl) andH2O/(LiNO3+ KNO3+ NaNO3) as working pairs in absorption coolingsystems. Energy. https://doi.org/10.1016/j.energy.2016.08.103Ayou, D. S., Bruno, J. C., Saravanan, R., and Coronas, A. (2013). An overview of combined absorption power and cooling cycles. Renew. Sustain. Energy Rev. 21, 728 –748. https://doi.org/10.1016/j.rser.2012.12.068Bhagat, R. D., and Deshmukh, S. J. (2022). Numerical analysis to predict the behavior of liquid vapor slug flow in vertically placed u -shaped closed capillary tube. Front. Heat Mass Transf. 19. https://doi.org/10.5098/hmt.19.14Cerezo, J. (2006). Estudio del proceso de absorción con amoníaco -agua en intercambiadores de placas para equipos de refrigeración por absorción.Cuenca, Y., Salavera, D., Vernet, A., Teja, A. S., and Vallès, M. (2014). Thermal conductivity of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions over a wide range of concentrations and temperatures. Int. J. Refrig. 38, 333 –340. https://doi.org/10.1016/j.ijrefrig.2013.08.010Elperin, T., and Fominykh, A. (2003). Four stages of the simultaneous mass and heat transfer during bubble formation and rise in a bubbly absorber. Chem. Eng. Sci. 58, 3555 –3564. https://doi.org/10.1016/S0009-2509(03)00192-1Florides, G. A., Tassou, S. A., Kalogirou, S. A., and Wrobel, L. C. (2002). Review of solar and low energy cooling technologies for buildings. Renew. Sustain. Energy Rev. 6, 557 –572. https://doi.org/10.1016/S1364-0321(02)00016-3Haltenberger, W. (1939). Enthalpy -Concentration Charts from Vapor Pressure Data. Ind. Eng. Chem. 31, 783 –786. https://doi.org/10.1021/ie50354a032Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2016). CFD simulation of adiabatic water vapor absorption in large drops of water -LiBr solution. Appl. Therm. Eng. 102, 17 –29. https://doi.org/10.1016/j.applthermaleng.2016.03.144Hosseinnia, S. M., Naghashzadegan, M., and Kouhikamali, R. (2017). CFD simulation of water vapor absorption in laminar falling film solution of water -LiBr ─ Drop and jet modes. Appl. Therm. Eng. 115, 860 –873. https://doi.org/10.1016/j.applthermaleng.2017.01.022Kang, Y. T., Akisawa, A., and Kashiwagi, T. (2000). Analytical investigation of two different absorption modes: falling film and bubble types. Int. J. Refrig. 23, 430 –443. https://doi.org/10.1016/S0140-7007(99)00075-4Kang, Y. T., Kashiwagi, T., and Christensen, R. N. (1998). Ammonia - water bubble absorber with a plate heat exchanger. in ASHRAE Transactions, 1565 –1575.Karima, A., Djamel, S., Ali, N., and Houari, A. (2018). CFD investigations of thermal and dynamic behaviors in a tubular heat exchanger with butterfly baffles. Front. Heat Mass Transf. 10. https://doi.org/10.5098/hmt.10.27Libotean, S., Martín, A., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2008). Densities, viscosities, and heat capacities of ammonia + lithium nitrate and ammonia + lithium nitrate + water solutions between (293.15 and 353.15) K. J. Chem. Eng. Data 53, 2383 –2388. https://doi.org/10.1021/je8003035Libotean, S., Salavera, D., Valles, M., Esteve, X., and Coronas, A. (2007). Vapor -liquid equilibrium of ammonia + lithium nitrate + water and ammonia + lithium nitrate solutions from (293.15 to 353.15) K. J. Chem. Eng. Data 52, 1050 –1055. https://doi.org/10.1021/je7000045Lima, A. A. S., Ochoa, A. A. V, Da Costa, J. A. P., and Henríquez, J. R. (2019). CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig. 98, 514 –525. https://doi.org/10.1016/j.ijrefrig.2018.11.010McNeely, L. A. (1979). Thermodynamic properties of aqueous solutions of lithium bromide. ASHRAE Trans. 85, 413 –434 .Mendoza, J., Rhenals, J., Avila, A., Martinez, A., De la Vega, T., and Durango, E. (2021). Heat absorption cooling with renewable energies: a case study with photovoltaic solar energy and biogas in Cordoba, Colombia. INGE CUC 17, 1 –10. https://doi.org/10.17981/ingecuc.17.2.2021.01Merrill, T. L., and Perez -Blanco, H. (1997). Combined heat and mass transfer during bubble absorption in binary solutions. Int. J. Heat Mass Transf. 40, 589 –603. https://doi.org/10.1016/0017-9310(96)00118 - 4Mirzaie, M., Talebizadeh, A. R., and Hashemipour, H. (2020). CFD simulation of benzene adsorption on pistachio activated carbon porous media. Front. Heat Mass Transf. 14, 1 –7. https://doi.org/10.5098/hmt.14.1 9Oronel, C., Amaris, C., Vallès, M., and Bourouis, M. (2010). Experiments on the characteristics of saturated boiling heat transfer in a plate heat exchanger for ammonia/lithium nitrate and ammonia/(lithium nitratewater). in 2010 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications - Proceedings, ThETA3 2010, 217 –225. https://doi.org/10.1109/THETA.2010.5766401Panda, S. K., and Mani, A. (2016). CFD heat and mass transfer studies in a R134a -DMF bubble absorber with swirl flow entry of R134a vapour. Int. Compress. Eng. Refrig. Air Cond. High Perform. Build. Conf., 1 –10.Rodríguez -Toscano, A., Amaris, C., Sagastume -Gutiérrez, A., and Bourouis, M. (2022). Technical, environmental, and economic evaluation of a solar/gas driven absorption chiller for shopping malls inthe Caribbean region of Colombia. Case Stud. Therm. Eng. 30, 101743. https://doi.org/10.1016/J.CSITE.2021.101743Soheel, A. H., Jumaah, O. M., and Saleem, A. M. (2021). Simulation and investigation of nano -refrigerant fluid characteristics with the two -phase flow in microchannel. Front. Heat Mass Transf. 17. https://doi.org/10.5098/hmt.17.21Suresh, M., and Mani, A. (2010). Heat and mass transfer studies on R134a bubble absorber in R134a/DMF solution based on phenomenological theory. Int. J. Heat Mass Transf. 53, 2813 –2825. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.016Triché, D., Bonnot, S., Perier -Muzet, M., Boudéhenn, F., Demasles, H., and Caney, N. (2017). Experimental and numerical study of a falling film absorber in an ammonia -water absorption chiller. Int. J. Heat Mass Transf. 111, 374 –385. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008Turkyilmazoglu, M. (2019). Cooling of Particulate Solids and Fluid in a Moving Bed Heat Exchanger. J. Heat Transfer 141, 114501. https://doi.org/10.1115/1.4044590Turkyilmazoglu, M. (2021). Heat absorption due to falling film with imposed uniform mass fraction at the wall. Int. J. Heat Mass Transf. 177, 121585. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121585Ullah, K. R., Saidur, R., Ping, H. W., Akikur, R. K., and Shuvo, N. H. (2013). A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. 24, 499 –513. https://doi.org/10.1016/j.rser.2013.03.024Versteeg, H. K., and Malalasekera, W. (1995). An introduction to computational fluid dynamics. The finite volume method. 1st ed. , ed. Longman Group Ltd New York.Wu, X., Xu, S., and Jiang, M. (2018). Development of bubble absorption refrigeration technology: A review. Renew. Sustain. Energy Rev. 82, 3468 –3482. https://doi.org/10.1016/J.RSER.2017.10.109Zapata, A., Amaris, C., Sagastume, A., and Rodríguez, A. (2021). CFD modelling of the ammonia vapour absorption in a tubular bubble absorber with NH3/LiNO3. Case Stud. Therm. Eng. 27, 101311. https://doi.org/10.1016/J.CSITE.2021.101311Zhou, R., Wang, M., Jin, Z., and Li, S. (2023). Modeling and experimental verification of the enhancement of TiO2 nanofluid on ammonia falling film absorption process. Int. J. Therm. Sci. 184, 107917. https://doi.org/10.1016/j.ijthermalsci.2022.10791791119CFD modelAbsorption chillerAmmoniaLithium nitrateBubble absorberORIGINALVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdfVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdfArtículoapplication/pdf1056508https://repositorio.cuc.edu.co/bitstream/11323/12889/1/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf094af13dc935b5adcb782d4c21c6e2b6MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstream/11323/12889/2/license.txt2f9959eaf5b71fae44bbf9ec84150c7aMD52open accessTEXTVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.txtVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.txtExtracted texttext/plain50144https://repositorio.cuc.edu.co/bitstream/11323/12889/3/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf.txta77876b8e650e133cbce407e35c9ff42MD53open accessTHUMBNAILVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.jpgVAPOUR ABSORPTION PROCESS IN AN NH3-LINO3 BUBBLE ABSORBER USING AN OPTIMIZED CFD MODEL.pdf.jpgGenerated Thumbnailimage/jpeg18446https://repositorio.cuc.edu.co/bitstream/11323/12889/4/VAPOUR%20ABSORPTION%20PROCESS%20IN%20AN%20NH3-LINO3%20BUBBLE%20ABSORBER%20USING%20AN%20OPTIMIZED%20CFD%20MODEL.pdf.jpg9abc103d71385214672618418b3d0251MD54open access11323/12889oai:repositorio.cuc.edu.co:11323/128892024-04-30 03:02:04.218An error occurred on the license name.|||https://creativecommons.org/licenses/by/4.0/open accessRepositorio Universidad de La Costarepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=0000-0003-0188-7101917f0f221c4f5196ff664dd7821cbdab600