Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energ...
- Autores:
-
Balbis Morejon, Milen
Tovar Ospino, Ivan
Castro Pena, Juan Jose
Cardenas Escorcia, Yulineth del Carmen
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/4600
- Acceso en línea:
- https://hdl.handle.net/11323/4600
https://repositorio.cuc.edu.co/
- Palabra clave:
- Air conditioning system
Buildings efficiency
Dynamic simulation buildings
Pumping system
Sistema de climatización chiller
Sistema de bombeo
Desempeño energético
Simulación dinámica edificios
- Rights
- openAccess
- License
- Attribution-NonCommercial-ShareAlike 4.0 International
id |
RCUC2_a0766866fe8d83b5f51f422c2206c2cf |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/4600 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
dc.title.translated.spa.fl_str_mv |
Energy evaluation of the pumping system of an air conditioning scheme with water chillers for an educational building using dynamic simulation |
title |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
spellingShingle |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica Air conditioning system Buildings efficiency Dynamic simulation buildings Pumping system Sistema de climatización chiller Sistema de bombeo Desempeño energético Simulación dinámica edificios |
title_short |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
title_full |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
title_fullStr |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
title_full_unstemmed |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
title_sort |
Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica |
dc.creator.fl_str_mv |
Balbis Morejon, Milen Tovar Ospino, Ivan Castro Pena, Juan Jose Cardenas Escorcia, Yulineth del Carmen |
dc.contributor.author.spa.fl_str_mv |
Balbis Morejon, Milen Tovar Ospino, Ivan Castro Pena, Juan Jose Cardenas Escorcia, Yulineth del Carmen |
dc.subject.spa.fl_str_mv |
Air conditioning system Buildings efficiency Dynamic simulation buildings Pumping system Sistema de climatización chiller Sistema de bombeo Desempeño energético Simulación dinámica edificios |
topic |
Air conditioning system Buildings efficiency Dynamic simulation buildings Pumping system Sistema de climatización chiller Sistema de bombeo Desempeño energético Simulación dinámica edificios |
description |
The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energy performance where they operate, such as climate, dynamic flows and thermal inertia in materials. Results showed a reduction of 3,1% of the annual energy demand in an educational building, reducing energy consumption and operating costs for a typical year of operation. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-09-01 |
dc.date.accessioned.none.fl_str_mv |
2019-05-21T13:21:02Z |
dc.date.available.none.fl_str_mv |
2019-05-21T13:21:02Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
07981015 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/4600 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
07981015 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/4600 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
ASHRAE. (2011). ASHRAE Handbook-HVAC Applications (SI). Atlanta, USA: ASHRAE Inc. Balbis, M. (2010). Caracterización energética y ahorro de energía en instituciones educativas. Barranquilla: EduCosta. Cabello, J., Sousa, V., Sagastume, A., Guerra, M., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 803-812. Cheng, Q., Wang, S., & Yan, C. (2016). Robust optimal design of chilled water systems in buildings with quantified uncertainty and reliability for minimized life-cycle cost. Energy and Buildings, 159-169. Chien, T. C. (2005). Modeling packaged heat pumps in a quasi-steady state energy simulation program. Oklahoma. ENERGYPLUS. (2017). ENERGYPLUS. Obtenido de https://energyplus.net/sites/default/files/pdfs_v8.3.0/AuxiliaryPrograms.pdf. Fang, X., Jin, X., Du, Z., Wang, Y., & Shi, W. (2017). Evaluation of the design of chilled water system based on the optimal. Applied Thermal Engineering, 435-448. H. X. Zhao, F. M. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586-3592. Hubbard, R. (19 de 11 de 2015). HPAC Engineering. Obtenido de http://hpac.com/november2011-digital-edition IEA. (2013). WORLD ENERGY OUTLOOK 2013. Kaplan, M., & Canner, P. (1992). Guidelines for energy simulation of commercial. . Portland. Bonneville Power Administration. Kim, G., Stumpf, A., & Kim, W. (2011). Analysis of an energy efficient building design through data mining approach. Automation in Construction, 37-43. Li, X. Q., Chena, Y., Spitler, J., & Fisher, D. (2009). Applicability of calculation methods for conduction transfer function of building constructions. International Journal of Thermal Sciences, 1441-1451. Liua, Z., Tana, H., Luod, D., Yud, G., Lid, J., & Lia, Z. (2017). Optimal chiller sequencing control in an office building consideringthe variation of chiller maximum cooling capacity. Energy and Buildings, 430–442. Luo, C., & Moghtaderi, B. (2010). Modelling of wall heat transfer using modified conduction transfer function, finite volume and complex Fourier analysis methods. Energy and Buildings, 605-617. Mui, K., & Wong, L. (2007). Cooling load calculations in subtropical climate. Building and Environment, 42, 2498–2504. Omar, M., AL-Rabghi, & K.AL-Johani. (1997). Utilizing transfer funtion method for hourly cooling load calculations. Energy Conversion, 38(4), 319-332. Pan, Y., Zuo, M., & Wu, G. (2009). Whole building energy simulation and energy saving potential analysis of a large public building. Journal of Building Performance Simulation, 4, 37– 47. Papakostas, K., Michopoulos, A., & Kyriakis, N. (2009). Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study. Applied Energy, 86, 757–761. Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 619–629. Qinglin, M., Jiejin, C., Hiroshi, Y., & M, M. A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86, 2249–2256. Rahman, M., Rasul, M., & Khan, M. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 2994–3004. S.N.AL-Saadi, & Z.Zhai. (2013). Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21, 659–673. Shahrestani, M. A., Yao, R., & K.Cook, G. (2013). Characterising the energy performance of centralised HVAC&R systems in the UK. Energy and Buildings, 239-247. Tolga, N., Yunho, H., & Reinhard, R. (2009). Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy and Buildings, 1143- 1150. V.S.K.V.Harish, & Kumar, A. (2016). A review on modeling and simulation of building energy systems. RenewableandSustainableEnergyReviews, 56, 1272–1292. Wanga., F., Linb., H., Tub., W., Wanga., Y., & Huanga., Y. (2015). Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building. Procedia Engineering, 1812-1818. Yu, F. W., & Chan, K. T. (2005). Energy signatures for assessing the energy performance of chillers. Energy and Buildings, 739–746. Yu, F., & Chan, K. (2007). Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Building and Environment, 3816-3829. Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption,. Renewable and Sustainable Energy Reviews, 3586-3592. |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Espacios |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/296722aa-3ffd-45bb-a851-e6c82f19be21/download https://repositorio.cuc.edu.co/bitstreams/0eaadf6b-b96f-495b-ab99-179e226bc150/download https://repositorio.cuc.edu.co/bitstreams/d85fe8f2-a525-4867-895b-2b3e07af2858/download https://repositorio.cuc.edu.co/bitstreams/5febd42c-220e-42c1-afd9-907ac68f7cc4/download https://repositorio.cuc.edu.co/bitstreams/f616f243-6188-4526-9e5c-17202ce1f28c/download |
bitstream.checksum.fl_str_mv |
934f4ca17e109e0a05eaeaba504d7ce4 026af95c379ca195fa8b425fab9ab066 8a4605be74aa9ea9d79846c1fba20a33 51547d5604a2cd8e16c0618e61218022 0d7c74c05d38a601b8b032467e8ca248 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166815927238656 |
spelling |
Balbis Morejon, MilenTovar Ospino, IvanCastro Pena, Juan JoseCardenas Escorcia, Yulineth del Carmen2019-05-21T13:21:02Z2019-05-21T13:21:02Z2017-09-0107981015https://hdl.handle.net/11323/4600Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energy performance where they operate, such as climate, dynamic flows and thermal inertia in materials. Results showed a reduction of 3,1% of the annual energy demand in an educational building, reducing energy consumption and operating costs for a typical year of operation.El presente trabajo se centra en la evaluación energética de diferentes configuraciones de un sistema de bombeo para un esquema de climatización provisto con enfriadora por agua (Chiller). En el estudio se utilizó el software de simulación de edificios EnergyPlus V8.6 y se consideran factores que ejercen mayor influencia en el desempeño energético de los edificios cuando están en operación, como el clima, flujos dinámicos e inercia térmica de los materiales. Los resultados mostraron reducción del 3,1 % de la demanda anual de energía de un edificio educativo, logrando minimizar el consumo energético y el costo operacional para un año típico de operación.Balbis Morejon, Milen-0000-0002-8053-6651-600Tovar Ospino, Ivan-e5b58671-a29a-4284-9f44-763103d172c6-0Castro Pena, Juan Jose-c182540b-9b73-40b1-9847-1eb1301fee6e-0Cardenas Escorcia, Yulineth del Carmen-0000-0002-9841-701X-600spaEspaciosAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Air conditioning systemBuildings efficiencyDynamic simulation buildingsPumping systemSistema de climatización chillerSistema de bombeoDesempeño energéticoSimulación dinámica edificiosEvaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámicaEnergy evaluation of the pumping system of an air conditioning scheme with water chillers for an educational building using dynamic simulationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionASHRAE. (2011). ASHRAE Handbook-HVAC Applications (SI). Atlanta, USA: ASHRAE Inc. Balbis, M. (2010). Caracterización energética y ahorro de energía en instituciones educativas. Barranquilla: EduCosta. Cabello, J., Sousa, V., Sagastume, A., Guerra, M., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 803-812. Cheng, Q., Wang, S., & Yan, C. (2016). Robust optimal design of chilled water systems in buildings with quantified uncertainty and reliability for minimized life-cycle cost. Energy and Buildings, 159-169. Chien, T. C. (2005). Modeling packaged heat pumps in a quasi-steady state energy simulation program. Oklahoma. ENERGYPLUS. (2017). ENERGYPLUS. Obtenido de https://energyplus.net/sites/default/files/pdfs_v8.3.0/AuxiliaryPrograms.pdf. Fang, X., Jin, X., Du, Z., Wang, Y., & Shi, W. (2017). Evaluation of the design of chilled water system based on the optimal. Applied Thermal Engineering, 435-448. H. X. Zhao, F. M. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586-3592. Hubbard, R. (19 de 11 de 2015). HPAC Engineering. Obtenido de http://hpac.com/november2011-digital-edition IEA. (2013). WORLD ENERGY OUTLOOK 2013. Kaplan, M., & Canner, P. (1992). Guidelines for energy simulation of commercial. . Portland. Bonneville Power Administration. Kim, G., Stumpf, A., & Kim, W. (2011). Analysis of an energy efficient building design through data mining approach. Automation in Construction, 37-43. Li, X. Q., Chena, Y., Spitler, J., & Fisher, D. (2009). Applicability of calculation methods for conduction transfer function of building constructions. International Journal of Thermal Sciences, 1441-1451. Liua, Z., Tana, H., Luod, D., Yud, G., Lid, J., & Lia, Z. (2017). Optimal chiller sequencing control in an office building consideringthe variation of chiller maximum cooling capacity. Energy and Buildings, 430–442. Luo, C., & Moghtaderi, B. (2010). Modelling of wall heat transfer using modified conduction transfer function, finite volume and complex Fourier analysis methods. Energy and Buildings, 605-617. Mui, K., & Wong, L. (2007). Cooling load calculations in subtropical climate. Building and Environment, 42, 2498–2504. Omar, M., AL-Rabghi, & K.AL-Johani. (1997). Utilizing transfer funtion method for hourly cooling load calculations. Energy Conversion, 38(4), 319-332. Pan, Y., Zuo, M., & Wu, G. (2009). Whole building energy simulation and energy saving potential analysis of a large public building. Journal of Building Performance Simulation, 4, 37– 47. Papakostas, K., Michopoulos, A., & Kyriakis, N. (2009). Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study. Applied Energy, 86, 757–761. Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 619–629. Qinglin, M., Jiejin, C., Hiroshi, Y., & M, M. A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86, 2249–2256. Rahman, M., Rasul, M., & Khan, M. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 2994–3004. S.N.AL-Saadi, & Z.Zhai. (2013). Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21, 659–673. Shahrestani, M. A., Yao, R., & K.Cook, G. (2013). Characterising the energy performance of centralised HVAC&R systems in the UK. Energy and Buildings, 239-247. Tolga, N., Yunho, H., & Reinhard, R. (2009). Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy and Buildings, 1143- 1150. V.S.K.V.Harish, & Kumar, A. (2016). A review on modeling and simulation of building energy systems. RenewableandSustainableEnergyReviews, 56, 1272–1292. Wanga., F., Linb., H., Tub., W., Wanga., Y., & Huanga., Y. (2015). Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building. Procedia Engineering, 1812-1818. Yu, F. W., & Chan, K. T. (2005). Energy signatures for assessing the energy performance of chillers. Energy and Buildings, 739–746. Yu, F., & Chan, K. (2007). Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Building and Environment, 3816-3829. Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption,. Renewable and Sustainable Energy Reviews, 3586-3592.PublicationCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/296722aa-3ffd-45bb-a851-e6c82f19be21/download934f4ca17e109e0a05eaeaba504d7ce4MD52ORIGINALEvaluación Energética Del Sistema Bombeo.pdfEvaluación Energética Del Sistema Bombeo.pdfapplication/pdf571797https://repositorio.cuc.edu.co/bitstreams/0eaadf6b-b96f-495b-ab99-179e226bc150/download026af95c379ca195fa8b425fab9ab066MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/d85fe8f2-a525-4867-895b-2b3e07af2858/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILEvaluación Energética Del Sistema Bombeo.pdf.jpgEvaluación Energética Del Sistema Bombeo.pdf.jpgimage/jpeg92397https://repositorio.cuc.edu.co/bitstreams/5febd42c-220e-42c1-afd9-907ac68f7cc4/download51547d5604a2cd8e16c0618e61218022MD55TEXTEvaluación Energética Del Sistema Bombeo.pdf.txtEvaluación Energética Del Sistema Bombeo.pdf.txttext/plain29440https://repositorio.cuc.edu.co/bitstreams/f616f243-6188-4526-9e5c-17202ce1f28c/download0d7c74c05d38a601b8b032467e8ca248MD5611323/4600oai:repositorio.cuc.edu.co:11323/46002024-09-17 14:13:17.157http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |