Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica

The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energ...

Full description

Autores:
Balbis Morejon, Milen
Tovar Ospino, Ivan
Castro Pena, Juan Jose
Cardenas Escorcia, Yulineth del Carmen
Tipo de recurso:
Article of journal
Fecha de publicación:
2017
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
spa
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4600
Acceso en línea:
http://hdl.handle.net/11323/4600
https://repositorio.cuc.edu.co/
Palabra clave:
Air conditioning system
Buildings efficiency
Dynamic simulation buildings
Pumping system
Sistema de climatización chiller
Sistema de bombeo
Desempeño energético
Simulación dinámica edificios
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_a0766866fe8d83b5f51f422c2206c2cf
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4600
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
dc.title.translated.spa.fl_str_mv Energy evaluation of the pumping system of an air conditioning scheme with water chillers for an educational building using dynamic simulation
title Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
spellingShingle Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
Air conditioning system
Buildings efficiency
Dynamic simulation buildings
Pumping system
Sistema de climatización chiller
Sistema de bombeo
Desempeño energético
Simulación dinámica edificios
title_short Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
title_full Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
title_fullStr Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
title_full_unstemmed Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
title_sort Evaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámica
dc.creator.fl_str_mv Balbis Morejon, Milen
Tovar Ospino, Ivan
Castro Pena, Juan Jose
Cardenas Escorcia, Yulineth del Carmen
dc.contributor.author.spa.fl_str_mv Balbis Morejon, Milen
Tovar Ospino, Ivan
Castro Pena, Juan Jose
Cardenas Escorcia, Yulineth del Carmen
dc.subject.spa.fl_str_mv Air conditioning system
Buildings efficiency
Dynamic simulation buildings
Pumping system
Sistema de climatización chiller
Sistema de bombeo
Desempeño energético
Simulación dinámica edificios
topic Air conditioning system
Buildings efficiency
Dynamic simulation buildings
Pumping system
Sistema de climatización chiller
Sistema de bombeo
Desempeño energético
Simulación dinámica edificios
description The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energy performance where they operate, such as climate, dynamic flows and thermal inertia in materials. Results showed a reduction of 3,1% of the annual energy demand in an educational building, reducing energy consumption and operating costs for a typical year of operation.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-09-01
dc.date.accessioned.none.fl_str_mv 2019-05-21T13:21:02Z
dc.date.available.none.fl_str_mv 2019-05-21T13:21:02Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 07981015
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/4600
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 07981015
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/4600
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ASHRAE. (2011). ASHRAE Handbook-HVAC Applications (SI). Atlanta, USA: ASHRAE Inc. Balbis, M. (2010). Caracterización energética y ahorro de energía en instituciones educativas. Barranquilla: EduCosta. Cabello, J., Sousa, V., Sagastume, A., Guerra, M., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 803-812. Cheng, Q., Wang, S., & Yan, C. (2016). Robust optimal design of chilled water systems in buildings with quantified uncertainty and reliability for minimized life-cycle cost. Energy and Buildings, 159-169. Chien, T. C. (2005). Modeling packaged heat pumps in a quasi-steady state energy simulation program. Oklahoma. ENERGYPLUS. (2017). ENERGYPLUS. Obtenido de https://energyplus.net/sites/default/files/pdfs_v8.3.0/AuxiliaryPrograms.pdf. Fang, X., Jin, X., Du, Z., Wang, Y., & Shi, W. (2017). Evaluation of the design of chilled water system based on the optimal. Applied Thermal Engineering, 435-448. H. X. Zhao, F. M. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586-3592. Hubbard, R. (19 de 11 de 2015). HPAC Engineering. Obtenido de http://hpac.com/november2011-digital-edition IEA. (2013). WORLD ENERGY OUTLOOK 2013. Kaplan, M., & Canner, P. (1992). Guidelines for energy simulation of commercial. . Portland. Bonneville Power Administration. Kim, G., Stumpf, A., & Kim, W. (2011). Analysis of an energy efficient building design through data mining approach. Automation in Construction, 37-43. Li, X. Q., Chena, Y., Spitler, J., & Fisher, D. (2009). Applicability of calculation methods for conduction transfer function of building constructions. International Journal of Thermal Sciences, 1441-1451. Liua, Z., Tana, H., Luod, D., Yud, G., Lid, J., & Lia, Z. (2017). Optimal chiller sequencing control in an office building consideringthe variation of chiller maximum cooling capacity. Energy and Buildings, 430–442. Luo, C., & Moghtaderi, B. (2010). Modelling of wall heat transfer using modified conduction transfer function, finite volume and complex Fourier analysis methods. Energy and Buildings, 605-617. Mui, K., & Wong, L. (2007). Cooling load calculations in subtropical climate. Building and Environment, 42, 2498–2504. Omar, M., AL-Rabghi, & K.AL-Johani. (1997). Utilizing transfer funtion method for hourly cooling load calculations. Energy Conversion, 38(4), 319-332. Pan, Y., Zuo, M., & Wu, G. (2009). Whole building energy simulation and energy saving potential analysis of a large public building. Journal of Building Performance Simulation, 4, 37– 47. Papakostas, K., Michopoulos, A., & Kyriakis, N. (2009). Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study. Applied Energy, 86, 757–761. Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 619–629. Qinglin, M., Jiejin, C., Hiroshi, Y., & M, M. A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86, 2249–2256. Rahman, M., Rasul, M., & Khan, M. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 2994–3004. S.N.AL-Saadi, & Z.Zhai. (2013). Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21, 659–673. Shahrestani, M. A., Yao, R., & K.Cook, G. (2013). Characterising the energy performance of centralised HVAC&R systems in the UK. Energy and Buildings, 239-247. Tolga, N., Yunho, H., & Reinhard, R. (2009). Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy and Buildings, 1143- 1150. V.S.K.V.Harish, & Kumar, A. (2016). A review on modeling and simulation of building energy systems. RenewableandSustainableEnergyReviews, 56, 1272–1292. Wanga., F., Linb., H., Tub., W., Wanga., Y., & Huanga., Y. (2015). Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building. Procedia Engineering, 1812-1818. Yu, F. W., & Chan, K. T. (2005). Energy signatures for assessing the energy performance of chillers. Energy and Buildings, 739–746. Yu, F., & Chan, K. (2007). Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Building and Environment, 3816-3829. Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption,. Renewable and Sustainable Energy Reviews, 3586-3592.
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Espacios
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstream/11323/4600/2/license_rdf
https://repositorio.cuc.edu.co/bitstream/11323/4600/1/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf
https://repositorio.cuc.edu.co/bitstream/11323/4600/3/license.txt
https://repositorio.cuc.edu.co/bitstream/11323/4600/5/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf.jpg
https://repositorio.cuc.edu.co/bitstream/11323/4600/6/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf.txt
bitstream.checksum.fl_str_mv 934f4ca17e109e0a05eaeaba504d7ce4
026af95c379ca195fa8b425fab9ab066
8a4605be74aa9ea9d79846c1fba20a33
51547d5604a2cd8e16c0618e61218022
0d7c74c05d38a601b8b032467e8ca248
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de La Costa
repository.mail.fl_str_mv bdigital@metabiblioteca.com
_version_ 1808400199117176832
spelling Balbis Morejon, Milencad2c8a479f7d452b4fb574c6ab477b9Tovar Ospino, Ivanbf96e14299e4b5efbf892bea1ac4a62e300Castro Pena, Juan Jose900614135302ddf36799720e1fb0b039300Cardenas Escorcia, Yulineth del Carmen03fd6a99d8c63fdc544119cb52765c402019-05-21T13:21:02Z2019-05-21T13:21:02Z2017-09-0107981015http://hdl.handle.net/11323/4600Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The present work is focused on energy evaluation in different configurations in a pumping system for an air conditioning scheme provided with water chiller. The study considered a building simulation software EnergyPlus V8.6, also there are considered factors that exhibit influence on building energy performance where they operate, such as climate, dynamic flows and thermal inertia in materials. Results showed a reduction of 3,1% of the annual energy demand in an educational building, reducing energy consumption and operating costs for a typical year of operation.El presente trabajo se centra en la evaluación energética de diferentes configuraciones de un sistema de bombeo para un esquema de climatización provisto con enfriadora por agua (Chiller). En el estudio se utilizó el software de simulación de edificios EnergyPlus V8.6 y se consideran factores que ejercen mayor influencia en el desempeño energético de los edificios cuando están en operación, como el clima, flujos dinámicos e inercia térmica de los materiales. Los resultados mostraron reducción del 3,1 % de la demanda anual de energía de un edificio educativo, logrando minimizar el consumo energético y el costo operacional para un año típico de operación.spaEspaciosAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Air conditioning systemBuildings efficiencyDynamic simulation buildingsPumping systemSistema de climatización chillerSistema de bombeoDesempeño energéticoSimulación dinámica edificiosEvaluación energética del sistema bombeo de un esquema de climatización con enfriadoras de agua para un edificio educativo utilizando simulación dinámicaEnergy evaluation of the pumping system of an air conditioning scheme with water chillers for an educational building using dynamic simulationArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionASHRAE. (2011). ASHRAE Handbook-HVAC Applications (SI). Atlanta, USA: ASHRAE Inc. Balbis, M. (2010). Caracterización energética y ahorro de energía en instituciones educativas. Barranquilla: EduCosta. Cabello, J., Sousa, V., Sagastume, A., Guerra, M., Haeseldonckx, D., & Vandecasteele, C. (2016). Tools to improve forecasting and control of the electricity consumption in hotels. Journal of Cleaner Production, 803-812. Cheng, Q., Wang, S., & Yan, C. (2016). Robust optimal design of chilled water systems in buildings with quantified uncertainty and reliability for minimized life-cycle cost. Energy and Buildings, 159-169. Chien, T. C. (2005). Modeling packaged heat pumps in a quasi-steady state energy simulation program. Oklahoma. ENERGYPLUS. (2017). ENERGYPLUS. Obtenido de https://energyplus.net/sites/default/files/pdfs_v8.3.0/AuxiliaryPrograms.pdf. Fang, X., Jin, X., Du, Z., Wang, Y., & Shi, W. (2017). Evaluation of the design of chilled water system based on the optimal. Applied Thermal Engineering, 435-448. H. X. Zhao, F. M. (2012). A review on the prediction of building energy consumption. Renewable and Sustainable Energy Reviews, 16, 3586-3592. Hubbard, R. (19 de 11 de 2015). HPAC Engineering. Obtenido de http://hpac.com/november2011-digital-edition IEA. (2013). WORLD ENERGY OUTLOOK 2013. Kaplan, M., & Canner, P. (1992). Guidelines for energy simulation of commercial. . Portland. Bonneville Power Administration. Kim, G., Stumpf, A., & Kim, W. (2011). Analysis of an energy efficient building design through data mining approach. Automation in Construction, 37-43. Li, X. Q., Chena, Y., Spitler, J., & Fisher, D. (2009). Applicability of calculation methods for conduction transfer function of building constructions. International Journal of Thermal Sciences, 1441-1451. Liua, Z., Tana, H., Luod, D., Yud, G., Lid, J., & Lia, Z. (2017). Optimal chiller sequencing control in an office building consideringthe variation of chiller maximum cooling capacity. Energy and Buildings, 430–442. Luo, C., & Moghtaderi, B. (2010). Modelling of wall heat transfer using modified conduction transfer function, finite volume and complex Fourier analysis methods. Energy and Buildings, 605-617. Mui, K., & Wong, L. (2007). Cooling load calculations in subtropical climate. Building and Environment, 42, 2498–2504. Omar, M., AL-Rabghi, & K.AL-Johani. (1997). Utilizing transfer funtion method for hourly cooling load calculations. Energy Conversion, 38(4), 319-332. Pan, Y., Zuo, M., & Wu, G. (2009). Whole building energy simulation and energy saving potential analysis of a large public building. Journal of Building Performance Simulation, 4, 37– 47. Papakostas, K., Michopoulos, A., & Kyriakis, N. (2009). Equivalent full-load hours for estimating heating and cooling energy requirements in buildings: Greece case study. Applied Energy, 86, 757–761. Pérez-Lombard, L., Ortiz, J., Maestre, I. R., & Coronel, J. F. (2012). Constructing HVAC energy efficiency indicators. Energy and Buildings, 619–629. Qinglin, M., Jiejin, C., Hiroshi, Y., & M, M. A. (2009). Applying support vector machine to predict hourly cooling load in the building. Applied Energy, 86, 2249–2256. Rahman, M., Rasul, M., & Khan, M. (2010). Energy conservation measures in an institutional building in sub-tropical climate in Australia. Applied Energy, 2994–3004. S.N.AL-Saadi, & Z.Zhai. (2013). Modeling phase change materials embedded in building enclosure: A review. Renewable and Sustainable Energy Reviews, 21, 659–673. Shahrestani, M. A., Yao, R., & K.Cook, G. (2013). Characterising the energy performance of centralised HVAC&R systems in the UK. Energy and Buildings, 239-247. Tolga, N., Yunho, H., & Reinhard, R. (2009). Simulation comparison of VAV and VRF air conditioning systems in an existing building for the cooling season. Energy and Buildings, 1143- 1150. V.S.K.V.Harish, & Kumar, A. (2016). A review on modeling and simulation of building energy systems. RenewableandSustainableEnergyReviews, 56, 1272–1292. Wanga., F., Linb., H., Tub., W., Wanga., Y., & Huanga., Y. (2015). Energy Modeling and Chillers Sizing of HVAC System for a Hotel Building. Procedia Engineering, 1812-1818. Yu, F. W., & Chan, K. T. (2005). Energy signatures for assessing the energy performance of chillers. Energy and Buildings, 739–746. Yu, F., & Chan, K. (2007). Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control. Building and Environment, 3816-3829. Zhao, H. X., & Magoulès, F. (2012). A review on the prediction of building energy consumption,. Renewable and Sustainable Energy Reviews, 3586-3592.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstream/11323/4600/2/license_rdf934f4ca17e109e0a05eaeaba504d7ce4MD52open accessORIGINALEvaluación Energética Del Sistema Bombeo.pdfEvaluación Energética Del Sistema Bombeo.pdfapplication/pdf571797https://repositorio.cuc.edu.co/bitstream/11323/4600/1/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf026af95c379ca195fa8b425fab9ab066MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstream/11323/4600/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAILEvaluación Energética Del Sistema Bombeo.pdf.jpgEvaluación Energética Del Sistema Bombeo.pdf.jpgimage/jpeg92397https://repositorio.cuc.edu.co/bitstream/11323/4600/5/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf.jpg51547d5604a2cd8e16c0618e61218022MD55open accessTEXTEvaluación Energética Del Sistema Bombeo.pdf.txtEvaluación Energética Del Sistema Bombeo.pdf.txttext/plain29440https://repositorio.cuc.edu.co/bitstream/11323/4600/6/Evaluaci%c3%b3n%20Energ%c3%a9tica%20Del%20Sistema%20Bombeo.pdf.txt0d7c74c05d38a601b8b032467e8ca248MD56open access11323/4600oai:repositorio.cuc.edu.co:11323/46002023-12-14 16:36:23.596Attribution-NonCommercial-ShareAlike 4.0 International|||http://creativecommons.org/licenses/by-nc-sa/4.0/open accessRepositorio Universidad de La Costabdigital@metabiblioteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=