Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques
The research field on technologies and wireless sensor networks (WSN) are becoming one of the most disruptive technologies that support different scenarios of ubiquitous and generalized computing. WSN applied to the human body is generally called wireless body sensor networks. WSN can provide large...
- Autores:
-
Rocha, Jimmy Alfonso
Piñeres Espitia, Gabriel Dario
aziz, shariq
De-La-Hoz-Franco, Emiro
Tariq, Muhammad Imran
Carmine Sinito, Diego
Comas Gonzalez, Zhoe
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/9129
- Acceso en línea:
- https://hdl.handle.net/11323/9129
https://doi.org/10.1007/978-981-16-5036-9_31
https://repositorio.cuc.edu.co/
- Palabra clave:
- Wireless body sensor networks (WBSN)
C4.5 algorithm
LMT algorithm
SEMMA
Data mining
- Rights
- openAccess
- License
- Atribución 4.0 Internacional (CC BY 4.0)
id |
RCUC2_a06063711ebf81492fa47d32fac81d46 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/9129 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
title |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
spellingShingle |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques Wireless body sensor networks (WBSN) C4.5 algorithm LMT algorithm SEMMA Data mining |
title_short |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
title_full |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
title_fullStr |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
title_full_unstemmed |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
title_sort |
Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniques |
dc.creator.fl_str_mv |
Rocha, Jimmy Alfonso Piñeres Espitia, Gabriel Dario aziz, shariq De-La-Hoz-Franco, Emiro Tariq, Muhammad Imran Carmine Sinito, Diego Comas Gonzalez, Zhoe |
dc.contributor.author.spa.fl_str_mv |
Rocha, Jimmy Alfonso Piñeres Espitia, Gabriel Dario aziz, shariq De-La-Hoz-Franco, Emiro Tariq, Muhammad Imran Carmine Sinito, Diego Comas Gonzalez, Zhoe |
dc.subject.proposal.eng.fl_str_mv |
Wireless body sensor networks (WBSN) C4.5 algorithm LMT algorithm SEMMA Data mining |
topic |
Wireless body sensor networks (WBSN) C4.5 algorithm LMT algorithm SEMMA Data mining |
description |
The research field on technologies and wireless sensor networks (WSN) are becoming one of the most disruptive technologies that support different scenarios of ubiquitous and generalized computing. WSN applied to the human body is generally called wireless body sensor networks. WSN can provide large quantities of data. The use of data mining techniques has allowed expanding WSN in new areas like biomedicine or telemedicine. The identification of psychological patterns and human activity recognition are two important trends to follow. In the current study, it is applied a SEMMA methodology to implement data mining clustering and classification techniques over RSS signal samples of a WBSN, based on IEEE 802.15.4 networks, with the intention of recognizing human activities based on samples. Two algorithms are applied, C4.5 and LTM for evaluate the rate success in the prediction. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-11-26 |
dc.date.accessioned.none.fl_str_mv |
2022-04-18T14:32:18Z |
dc.date.available.none.fl_str_mv |
2022-04-18T14:32:18Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.citation.spa.fl_str_mv |
Rocha, J.A. et al. (2022). Human Activity Recognition Through Wireless Body Sensor Networks (WBSN) Applying Data Mining Techniques. In: Pan, JS., Balas, V.E., Chen, CM. (eds) Advances in Intelligent Data Analysis and Applications. Smart Innovation, Systems and Technologies, vol 253. Springer, Singapore. https://doi.org/10.1007/978-981-16-5036-9_31 |
dc.identifier.issn.spa.fl_str_mv |
2190-3018 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/9129 |
dc.identifier.url.spa.fl_str_mv |
https://doi.org/10.1007/978-981-16-5036-9_31 |
dc.identifier.doi.spa.fl_str_mv |
10.1007/978-981-16-5036-9_31 |
dc.identifier.eissn.spa.fl_str_mv |
2190-3026 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
Rocha, J.A. et al. (2022). Human Activity Recognition Through Wireless Body Sensor Networks (WBSN) Applying Data Mining Techniques. In: Pan, JS., Balas, V.E., Chen, CM. (eds) Advances in Intelligent Data Analysis and Applications. Smart Innovation, Systems and Technologies, vol 253. Springer, Singapore. https://doi.org/10.1007/978-981-16-5036-9_31 2190-3018 10.1007/978-981-16-5036-9_31 2190-3026 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/9129 https://doi.org/10.1007/978-981-16-5036-9_31 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartofjournal.spa.fl_str_mv |
Smart Innovation, Systems and Technologies |
dc.relation.references.spa.fl_str_mv |
Sohraby, K., Minoli, D., Znati, T.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley, USA (2007) Cama-Pinto, A., Piñeres-Espitia, G., Comas-González, Z., Vélez-Zapata, J., Gómez-Mula, F.: Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista chilena de ingeniería 25(4), 585–598 (2017) Yang, G.: Body Sensor Networks, vol. 1. Springer, London (2006) Bouza, C.N., Santiago, A.: La minería de datos: árboles de decisión y su aplicación en estudios médicos. Modelación Matemática de Fenómenos del Medio Ambiente y la Salud 2, 64–78 (2012) Pradeep, S., Kallimani, J.S.: A survey on various challenges and aspects in handling big data. In: 2017 Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 1–5. IEEE (2017) Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010) Korting, T.S.: C4. 5 algorithm and multivariate decision trees. Image Processing Division, National Institute for Space Research–INPE Sao Jose dos Campos–SP, Brazil. (2006) Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H.: Machine Learning: ECML 2003: 14th European Conference on Machine Learning, Cavtat-Dubrovnik. Springer. Croatia (2003) James, D.A.: The application of inertial sensors in elite sports monitoring. In: The Engineering of Sport, vol. 6, pp. 289–294. Springer, New York, NY (2006) Merentitis, A., Kranitis, N., Paschalis, A., Gizopoulos, D.: Low energy online self-test of embedded processors in dependable WSN nodes. IEEE Trans. Dependable Secure Comput. 9(1), 86–100 (2011) Llosa, J., Vilajosana, I., Vilajosana, X., Marquès, J.M.: Design of a motion detector to monitor rowing performance based on wireless sensor networks. In: 2009 International Conference on Intelligent Networking and Collaborative Systems, pp. 397–400. IEEE, Barcelona (2009) Wu, J.K., Dong, L., Xiao, W.: Real-time physical activity classification and tracking using wearble sensors. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–6. IEEE (2007) Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016) Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: International Competition on Evaluating AAL Systems through Competitive Benchmarking, pp. 24–35. Springer, Berlin, Heidelberg (2013) Butt, S.A., Jamal, T., Azad, M.A., Ali, A., Safa, N.S.: A multivariant secure framework for smart mobile health application. Trans. Emerg. Telecommun. Technol. e3684 (2019) Tambe, S.B., Thool, R.C., Thool, V.R.: Cluster based wireless mobile healthcare system for physiological data monitoring. Proc. Comput. Sci. 78, 40–47 (2016) Synnes, K., Lilja, M., Nyman, A., Espinilla, M., Cleland, I., Comas, A.G.S., Comas-Gonzalez, Z., Hallberg, J., Karvonen, N., Ourique de Morais, W., Cruciani, F., Nugent, C.: H2Al—The human health and activity laboratory. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2(19), pp. 1241. Dominican Republic (2018) Lee, J.H., Jeong, S.N., Choi, S.H.: Predictive data mining for diagnosing periodontal disease: the Korea National Health and Nutrition Examination Surveys (KNHANES V and VI) from 2010 to 2015. J. Public Health Dent. 79(1), 44–52 (2019) Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M., De la Hoz-Franco, E., Echeverri-Ocampo, I., Salas-Navarro, K.: Parkinson disease analysis using supervised and unsupervised techniques. In: International Conference on Swarm Intelligence, July 2019, pp. 191–199. Springer, Cham (2019) Singh, N., Kanthwal, A., Bidhuri, P.: Soccer competitiveness using shots on target: data mining approach. In: International Conference on Human-Computer Interaction, pp. 141–150. Springer, Cham (2019) Jamal, T., Butt, S.A.: Malicious node analysis in MANETS. Int. J. Inf. Technol. 1–9 (2018) De-La-Hoz-Correa, E., Mendoza Palechor, F., De-La-Hoz-Manotas, A., Morales Ortega, R., Sánchez Hernández, A.B.: Obesity level estimation software based on decision trees. J. Comput. Sci. 15(1), 67–77 (2019) De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition—a systematic review of literature. IEEE Access 6, 59192–59210 (2018) Butt, S.A., Diaz-Martinez, J.L., Jamal, T., Ali, A., De-La-Hoz-Franco, E., Shoaib, M.: IoT smart health security threats. In: 2019 19th International Conference on Computational Science and Its Applications (ICCSA), Saint Petersburg, Russia, 2019, pp. 26–31. https://doi.org/10.1109/ICCSA.2019.000-8 |
dc.relation.citationendpage.spa.fl_str_mv |
339 |
dc.relation.citationstartpage.spa.fl_str_mv |
327 |
dc.rights.spa.fl_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. |
dc.rights.uri.spa.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución 4.0 Internacional (CC BY 4.0) © 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. https://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
1 página |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Springer Verlag |
dc.publisher.place.spa.fl_str_mv |
Germany |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://link.springer.com/chapter/10.1007/978-981-16-5036-9_31 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/2754312a-a05b-473e-868c-6a00d114318f/download https://repositorio.cuc.edu.co/bitstreams/8e48fb0c-ef08-4dda-a1dd-51888ec1e85a/download https://repositorio.cuc.edu.co/bitstreams/07326f61-d126-4d50-a01a-8094d74eb853/download https://repositorio.cuc.edu.co/bitstreams/821c9452-07bc-4c27-a686-dea9280bfa94/download |
bitstream.checksum.fl_str_mv |
21a219091f95d80125400450d6f42360 e30e9215131d99561d40d6b0abbe9bad 1483f63ed4f5489a46a140e13755ab8c 8963a812480d115338d04de006f5cff1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166847857426432 |
spelling |
Rocha, Jimmy AlfonsoPiñeres Espitia, Gabriel Darioaziz, shariqDe-La-Hoz-Franco, EmiroTariq, Muhammad ImranCarmine Sinito, DiegoComas Gonzalez, Zhoe2022-04-18T14:32:18Z2022-04-18T14:32:18Z2021-11-26Rocha, J.A. et al. (2022). Human Activity Recognition Through Wireless Body Sensor Networks (WBSN) Applying Data Mining Techniques. In: Pan, JS., Balas, V.E., Chen, CM. (eds) Advances in Intelligent Data Analysis and Applications. Smart Innovation, Systems and Technologies, vol 253. Springer, Singapore. https://doi.org/10.1007/978-981-16-5036-9_312190-3018https://hdl.handle.net/11323/9129https://doi.org/10.1007/978-981-16-5036-9_3110.1007/978-981-16-5036-9_312190-3026Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/The research field on technologies and wireless sensor networks (WSN) are becoming one of the most disruptive technologies that support different scenarios of ubiquitous and generalized computing. WSN applied to the human body is generally called wireless body sensor networks. WSN can provide large quantities of data. The use of data mining techniques has allowed expanding WSN in new areas like biomedicine or telemedicine. The identification of psychological patterns and human activity recognition are two important trends to follow. In the current study, it is applied a SEMMA methodology to implement data mining clustering and classification techniques over RSS signal samples of a WBSN, based on IEEE 802.15.4 networks, with the intention of recognizing human activities based on samples. Two algorithms are applied, C4.5 and LTM for evaluate the rate success in the prediction.1 páginaapplication/pdfengSpringer VerlagGermanyAtribución 4.0 Internacional (CC BY 4.0)© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.https://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Human activity recognition through wireless body sensor networks (WBSN) applying data mining techniquesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_b1a7d7d4d402bccehttps://link.springer.com/chapter/10.1007/978-981-16-5036-9_31Smart Innovation, Systems and TechnologiesSohraby, K., Minoli, D., Znati, T.: Wireless Sensor Networks: Technology, Protocols, and Applications. Wiley, USA (2007)Cama-Pinto, A., Piñeres-Espitia, G., Comas-González, Z., Vélez-Zapata, J., Gómez-Mula, F.: Diseño de una red de monitorización de variables meteorológicas relacionadas a los tornados en Barranquilla-Colombia y su área metropolitana. Ingeniare. Revista chilena de ingeniería 25(4), 585–598 (2017)Yang, G.: Body Sensor Networks, vol. 1. Springer, London (2006)Bouza, C.N., Santiago, A.: La minería de datos: árboles de decisión y su aplicación en estudios médicos. Modelación Matemática de Fenómenos del Medio Ambiente y la Salud 2, 64–78 (2012)Pradeep, S., Kallimani, J.S.: A survey on various challenges and aspects in handling big data. In: 2017 Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), pp. 1–5. IEEE (2017)Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)Korting, T.S.: C4. 5 algorithm and multivariate decision trees. Image Processing Division, National Institute for Space Research–INPE Sao Jose dos Campos–SP, Brazil. (2006)Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H.: Machine Learning: ECML 2003: 14th European Conference on Machine Learning, Cavtat-Dubrovnik. Springer. Croatia (2003)James, D.A.: The application of inertial sensors in elite sports monitoring. In: The Engineering of Sport, vol. 6, pp. 289–294. Springer, New York, NY (2006)Merentitis, A., Kranitis, N., Paschalis, A., Gizopoulos, D.: Low energy online self-test of embedded processors in dependable WSN nodes. IEEE Trans. Dependable Secure Comput. 9(1), 86–100 (2011)Llosa, J., Vilajosana, I., Vilajosana, X., Marquès, J.M.: Design of a motion detector to monitor rowing performance based on wireless sensor networks. In: 2009 International Conference on Intelligent Networking and Collaborative Systems, pp. 397–400. IEEE, Barcelona (2009)Wu, J.K., Dong, L., Xiao, W.: Real-time physical activity classification and tracking using wearble sensors. In: 2007 6th International Conference on Information, Communications & Signal Processing, pp. 1–6. IEEE (2007)Palumbo, F., Gallicchio, C., Pucci, R., Micheli, A.: Human activity recognition using multisensor data fusion based on reservoir computing. J. Ambient Intell. Smart Environ. 8(2), 87–107 (2016)Palumbo, F., Barsocchi, P., Gallicchio, C., Chessa, S., Micheli, A.: Multisensor data fusion for activity recognition based on reservoir computing. In: International Competition on Evaluating AAL Systems through Competitive Benchmarking, pp. 24–35. Springer, Berlin, Heidelberg (2013)Butt, S.A., Jamal, T., Azad, M.A., Ali, A., Safa, N.S.: A multivariant secure framework for smart mobile health application. Trans. Emerg. Telecommun. Technol. e3684 (2019)Tambe, S.B., Thool, R.C., Thool, V.R.: Cluster based wireless mobile healthcare system for physiological data monitoring. Proc. Comput. Sci. 78, 40–47 (2016)Synnes, K., Lilja, M., Nyman, A., Espinilla, M., Cleland, I., Comas, A.G.S., Comas-Gonzalez, Z., Hallberg, J., Karvonen, N., Ourique de Morais, W., Cruciani, F., Nugent, C.: H2Al—The human health and activity laboratory. In: Multidisciplinary Digital Publishing Institute Proceedings, vol. 2(19), pp. 1241. Dominican Republic (2018)Lee, J.H., Jeong, S.N., Choi, S.H.: Predictive data mining for diagnosing periodontal disease: the Korea National Health and Nutrition Examination Surveys (KNHANES V and VI) from 2010 to 2015. J. Public Health Dent. 79(1), 44–52 (2019)Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M., De la Hoz-Franco, E., Echeverri-Ocampo, I., Salas-Navarro, K.: Parkinson disease analysis using supervised and unsupervised techniques. In: International Conference on Swarm Intelligence, July 2019, pp. 191–199. Springer, Cham (2019)Singh, N., Kanthwal, A., Bidhuri, P.: Soccer competitiveness using shots on target: data mining approach. In: International Conference on Human-Computer Interaction, pp. 141–150. Springer, Cham (2019)Jamal, T., Butt, S.A.: Malicious node analysis in MANETS. Int. J. Inf. Technol. 1–9 (2018)De-La-Hoz-Correa, E., Mendoza Palechor, F., De-La-Hoz-Manotas, A., Morales Ortega, R., Sánchez Hernández, A.B.: Obesity level estimation software based on decision trees. J. Comput. Sci. 15(1), 67–77 (2019)De-La-Hoz-Franco, E., Ariza-Colpas, P., Quero, J.M., Espinilla, M.: Sensor-based datasets for human activity recognition—a systematic review of literature. IEEE Access 6, 59192–59210 (2018)Butt, S.A., Diaz-Martinez, J.L., Jamal, T., Ali, A., De-La-Hoz-Franco, E., Shoaib, M.: IoT smart health security threats. In: 2019 19th International Conference on Computational Science and Its Applications (ICCSA), Saint Petersburg, Russia, 2019, pp. 26–31. https://doi.org/10.1109/ICCSA.2019.000-8339327Wireless body sensor networks (WBSN)C4.5 algorithmLMT algorithmSEMMAData miningPublicationORIGINALHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdfHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdfapplication/pdf57826https://repositorio.cuc.edu.co/bitstreams/2754312a-a05b-473e-868c-6a00d114318f/download21a219091f95d80125400450d6f42360MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/8e48fb0c-ef08-4dda-a1dd-51888ec1e85a/downloade30e9215131d99561d40d6b0abbe9badMD52TEXTHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdf.txtHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdf.txttext/plain1286https://repositorio.cuc.edu.co/bitstreams/07326f61-d126-4d50-a01a-8094d74eb853/download1483f63ed4f5489a46a140e13755ab8cMD53THUMBNAILHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdf.jpgHuman activity recognition through wireless body sensor networks (WBSN) applying data mining techniques.pdf.jpgimage/jpeg11990https://repositorio.cuc.edu.co/bitstreams/821c9452-07bc-4c27-a686-dea9280bfa94/download8963a812480d115338d04de006f5cff1MD5411323/9129oai:repositorio.cuc.edu.co:11323/91292024-09-17 14:17:35.515https://creativecommons.org/licenses/by/4.0/Atribución 4.0 Internacional (CC BY 4.0)open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |