Hardware for recognition of human activities: a review of smart home and AAL related technologies

Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching ev...

Full description

Autores:
Sanchez-Comas, Andres
Synnes, Kåre
Hallberg, Josef
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/7091
Acceso en línea:
https://hdl.handle.net/11323/7091
https://doi.org/10.3390/s20154227
https://repositorio.cuc.edu.co/
Palabra clave:
Smart home
AAL
Ambient assisted living
Activity recognition
Hardware
Review
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_9ff6f46c0c6c0c85764ab5e9130b6843
oai_identifier_str oai:repositorio.cuc.edu.co:11323/7091
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Hardware for recognition of human activities: a review of smart home and AAL related technologies
title Hardware for recognition of human activities: a review of smart home and AAL related technologies
spellingShingle Hardware for recognition of human activities: a review of smart home and AAL related technologies
Smart home
AAL
Ambient assisted living
Activity recognition
Hardware
Review
title_short Hardware for recognition of human activities: a review of smart home and AAL related technologies
title_full Hardware for recognition of human activities: a review of smart home and AAL related technologies
title_fullStr Hardware for recognition of human activities: a review of smart home and AAL related technologies
title_full_unstemmed Hardware for recognition of human activities: a review of smart home and AAL related technologies
title_sort Hardware for recognition of human activities: a review of smart home and AAL related technologies
dc.creator.fl_str_mv Sanchez-Comas, Andres
Synnes, Kåre
Hallberg, Josef
dc.contributor.author.spa.fl_str_mv Sanchez-Comas, Andres
Synnes, Kåre
Hallberg, Josef
dc.subject.spa.fl_str_mv Smart home
AAL
Ambient assisted living
Activity recognition
Hardware
Review
topic Smart home
AAL
Ambient assisted living
Activity recognition
Hardware
Review
description Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-09-11T19:06:55Z
dc.date.available.none.fl_str_mv 2020-09-11T19:06:55Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 1424-3210
1424-8220
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/7091
dc.identifier.doi.spa.fl_str_mv https://doi.org/10.3390/s20154227
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 1424-3210
1424-8220
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/7091
https://doi.org/10.3390/s20154227
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.spa.fl_str_mv https://www.mdpi.com/1424-8220/20/15/4227
dc.relation.references.spa.fl_str_mv 70. Khan, M.A.A.H.; Roy, N.; Hossain, H.M.S. Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments. Mob. Inf. Syst. 2018, 2018, 4570182.
71. Iwasawa, Y.; Eguchi Yairi, I.; Matsuo, Y. Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 2016, E99D, 1153–1161.
72. Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and gyroscope sensors. IEEE Sens. J. 2016, 16, 6425–6432.
73. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752.
74. Liu, Z.; Yin, J.; Li, J.; Wei, J.; Feng, Z. A new action recognition method by distinguishing ambiguous postures. Int. J. Adv. Robot. Syst. 2018, 15, 1–8.
75. Yao, B.; Hagras, H.; Alghazzawi, D.; Member, S.; Alhaddad, M.J. A Big Bang—Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World AmbientAssisted Living. IEEE Trans. Fuzzy Syst. 2016, 24, 1307–1319.
76. Trindade, P.; Langensiepen, C.; Lee, K.; Adama, D.A.; Lotfi, A. Human activity learning for assistive robotics using a classifier ensemble. Soft Comput. 2018, 22, 7027–7039.
77. Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 2016, 75, 11603–11613.
78. Eldib, M.; Deboeverie, F.; Philips, W.; Aghajan, H. Behavior analysis for elderly care using a network of low-resolution visual sensors. J. Electron. Imaging 2016, 25, 041003.
79. Wickramasinghe, A.; Shinmoto Torres, R.L.; Ranasinghe, D.C. Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 2017, 34, 14–24.
80. Chen, Z.; Wang, Y. Infrared–ultrasonic sensor fusion for support vector machine–based fall detection. J. Intell. Mater. Syst. Struct. 2018, 29, 2027–2039.
81. Chen, Z.; Wang, Y.; Liu, H. Unobtrusive Sensor based Occupancy Facing Direction Detection and Tracking using Advanced Machine Learning Algorithms. IEEE Sens. J. 2018, 18, 1–1.
82. Wang, J.; Zhang, X.; Gao, Q.; Feng, X.; Wang, H. Device-Free Simultaneous Wireless Localization and Activity Recognition With Wavelet Feature. IEEE Trans. Veh. Technol. 2017, 66, 1659–1669.
83. Rus, S.; Grosse-Puppendahl, T.; Kuijper, A. Evaluating the recognition of bed postures using mutual capacitance sensing. J. Ambient Intell. Smart Environ. 2017, 9, 113–127.
84. Cheng, A.L.; Georgoulas, C.; Bock, T. Automation in Construction Fall Detection and Intervention based on Wireless Sensor Network Technologies. Autom. Constr. 2016, 71, 116–136.
85. Hossain, H.M.S.; Khan, M.A.A.H.; Roy, N. Active learning enabled activity recognition. Pervasive Mob. Comput. 2017, 38, 312–330.
86. Aziz, S.; Id, S.; Ren, A.; Id, D.F.; Zhang, Z.; Zhao, N.; Yang, X. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 1–16.
87. Jiang, J.; Pozza, R.; Gunnarsdóttir, K.; Gilbert, N.; Moessner, K. Using Sensors to Study Home Activities. J. Sens. Actuator Netw. 2017, 6, 32.
88. Luo, X.; Guan, Q.; Tan, H.; Gao, L.; Wang, Z.; Luo, X. Simultaneous Indoor Tracking and Activity Recognition Using Pyroelectric Infrared Sensors. Sensors 2017, 17, 1–18.
89. Gill, S.; Seth, N.; Scheme, E. A multi-sensor matched filter approach to robust segmentation of assisted gait. Sensors (Switzerland) 2018, 18, 16–23.
90. Sasakawa, D. Human Posture Identification Using a MIMO Array. Electronics 2018, 7, 1–13.
91. Suyama, T. A network-type brain machine interface to support activities of daily living. IEICE Trans. Commun. 2016, E99B, 1930–1937.
92. Li, W.; Tan, B.O.; Piechocki, R. Passive Radar for Opportunistic Monitoring in E-Health Applications. IEEE J. Trans. Eng. Health Med. 2018, 6, 1–10.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv Sensors
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/0bf5e6e8-d508-4925-ab1a-75f5631042f6/download
https://repositorio.cuc.edu.co/bitstreams/afd7bb7c-81e8-4d66-bee2-ccb661b38413/download
https://repositorio.cuc.edu.co/bitstreams/f7753ef9-98d4-4e72-b7c3-36e122c48a61/download
https://repositorio.cuc.edu.co/bitstreams/76ad751e-6515-46b4-863e-b106d349fbe2/download
https://repositorio.cuc.edu.co/bitstreams/343a9176-e15e-4ea8-b73d-f5829517e257/download
bitstream.checksum.fl_str_mv d12167456daea35b3d1533428619123e
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
f5802242b83c2701ee441ca4b55f6547
af6a22854d386609d36d1ad621886bcc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166901604286464
spelling Sanchez-Comas, AndresSynnes, KåreHallberg, Josef2020-09-11T19:06:55Z2020-09-11T19:06:55Z20181424-32101424-8220https://hdl.handle.net/11323/7091https://doi.org/10.3390/s20154227Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard.Sanchez-Comas, Andres-will be generated-orcid-0000-0002-4280-8070-600Synnes, Kåre-will be generated-orcid-0000-0003-4549-6751-600Hallberg, Josef-will be generated-orcid-0000-0003-3191-8335-600engCorporación Universidad de la Costahttps://www.mdpi.com/1424-8220/20/15/422770. Khan, M.A.A.H.; Roy, N.; Hossain, H.M.S. Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments. Mob. Inf. Syst. 2018, 2018, 4570182.71. Iwasawa, Y.; Eguchi Yairi, I.; Matsuo, Y. Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 2016, E99D, 1153–1161.72. Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and gyroscope sensors. IEEE Sens. J. 2016, 16, 6425–6432.73. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752.74. Liu, Z.; Yin, J.; Li, J.; Wei, J.; Feng, Z. A new action recognition method by distinguishing ambiguous postures. Int. J. Adv. Robot. Syst. 2018, 15, 1–8.75. Yao, B.; Hagras, H.; Alghazzawi, D.; Member, S.; Alhaddad, M.J. A Big Bang—Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World AmbientAssisted Living. IEEE Trans. Fuzzy Syst. 2016, 24, 1307–1319.76. Trindade, P.; Langensiepen, C.; Lee, K.; Adama, D.A.; Lotfi, A. Human activity learning for assistive robotics using a classifier ensemble. Soft Comput. 2018, 22, 7027–7039.77. Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 2016, 75, 11603–11613.78. Eldib, M.; Deboeverie, F.; Philips, W.; Aghajan, H. Behavior analysis for elderly care using a network of low-resolution visual sensors. J. Electron. Imaging 2016, 25, 041003.79. Wickramasinghe, A.; Shinmoto Torres, R.L.; Ranasinghe, D.C. Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 2017, 34, 14–24.80. Chen, Z.; Wang, Y. Infrared–ultrasonic sensor fusion for support vector machine–based fall detection. J. Intell. Mater. Syst. Struct. 2018, 29, 2027–2039.81. Chen, Z.; Wang, Y.; Liu, H. Unobtrusive Sensor based Occupancy Facing Direction Detection and Tracking using Advanced Machine Learning Algorithms. IEEE Sens. J. 2018, 18, 1–1.82. Wang, J.; Zhang, X.; Gao, Q.; Feng, X.; Wang, H. Device-Free Simultaneous Wireless Localization and Activity Recognition With Wavelet Feature. IEEE Trans. Veh. Technol. 2017, 66, 1659–1669.83. Rus, S.; Grosse-Puppendahl, T.; Kuijper, A. Evaluating the recognition of bed postures using mutual capacitance sensing. J. Ambient Intell. Smart Environ. 2017, 9, 113–127.84. Cheng, A.L.; Georgoulas, C.; Bock, T. Automation in Construction Fall Detection and Intervention based on Wireless Sensor Network Technologies. Autom. Constr. 2016, 71, 116–136.85. Hossain, H.M.S.; Khan, M.A.A.H.; Roy, N. Active learning enabled activity recognition. Pervasive Mob. Comput. 2017, 38, 312–330.86. Aziz, S.; Id, S.; Ren, A.; Id, D.F.; Zhang, Z.; Zhao, N.; Yang, X. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 1–16.87. Jiang, J.; Pozza, R.; Gunnarsdóttir, K.; Gilbert, N.; Moessner, K. Using Sensors to Study Home Activities. J. Sens. Actuator Netw. 2017, 6, 32.88. Luo, X.; Guan, Q.; Tan, H.; Gao, L.; Wang, Z.; Luo, X. Simultaneous Indoor Tracking and Activity Recognition Using Pyroelectric Infrared Sensors. Sensors 2017, 17, 1–18.89. Gill, S.; Seth, N.; Scheme, E. A multi-sensor matched filter approach to robust segmentation of assisted gait. Sensors (Switzerland) 2018, 18, 16–23.90. Sasakawa, D. Human Posture Identification Using a MIMO Array. Electronics 2018, 7, 1–13.91. Suyama, T. A network-type brain machine interface to support activities of daily living. IEICE Trans. Commun. 2016, E99B, 1930–1937.92. Li, W.; Tan, B.O.; Piechocki, R. Passive Radar for Opportunistic Monitoring in E-Health Applications. IEEE J. Trans. Eng. Health Med. 2018, 6, 1–10.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2SensorsSmart homeAALAmbient assisted livingActivity recognitionHardwareReviewHardware for recognition of human activities: a review of smart home and AAL related technologiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALHardware for recognition of human activities. a review of smart home and AAL related technologies.pdfHardware for recognition of human activities. a review of smart home and AAL related technologies.pdfapplication/pdf2263527https://repositorio.cuc.edu.co/bitstreams/0bf5e6e8-d508-4925-ab1a-75f5631042f6/downloadd12167456daea35b3d1533428619123eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/afd7bb7c-81e8-4d66-bee2-ccb661b38413/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f7753ef9-98d4-4e72-b7c3-36e122c48a61/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.jpgHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.jpgimage/jpeg66992https://repositorio.cuc.edu.co/bitstreams/76ad751e-6515-46b4-863e-b106d349fbe2/downloadf5802242b83c2701ee441ca4b55f6547MD54TEXTHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.txtHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.txttext/plain81414https://repositorio.cuc.edu.co/bitstreams/343a9176-e15e-4ea8-b73d-f5829517e257/downloadaf6a22854d386609d36d1ad621886bccMD5511323/7091oai:repositorio.cuc.edu.co:11323/70912024-09-17 14:24:04.237http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==