Hardware for recognition of human activities: a review of smart home and AAL related technologies
Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching ev...
- Autores:
-
Sanchez-Comas, Andres
Synnes, Kåre
Hallberg, Josef
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2018
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/7091
- Acceso en línea:
- https://hdl.handle.net/11323/7091
https://doi.org/10.3390/s20154227
https://repositorio.cuc.edu.co/
- Palabra clave:
- Smart home
AAL
Ambient assisted living
Activity recognition
Hardware
Review
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_9ff6f46c0c6c0c85764ab5e9130b6843 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/7091 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
title |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
spellingShingle |
Hardware for recognition of human activities: a review of smart home and AAL related technologies Smart home AAL Ambient assisted living Activity recognition Hardware Review |
title_short |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
title_full |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
title_fullStr |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
title_full_unstemmed |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
title_sort |
Hardware for recognition of human activities: a review of smart home and AAL related technologies |
dc.creator.fl_str_mv |
Sanchez-Comas, Andres Synnes, Kåre Hallberg, Josef |
dc.contributor.author.spa.fl_str_mv |
Sanchez-Comas, Andres Synnes, Kåre Hallberg, Josef |
dc.subject.spa.fl_str_mv |
Smart home AAL Ambient assisted living Activity recognition Hardware Review |
topic |
Smart home AAL Ambient assisted living Activity recognition Hardware Review |
description |
Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-09-11T19:06:55Z |
dc.date.available.none.fl_str_mv |
2020-09-11T19:06:55Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
1424-3210 1424-8220 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/7091 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.3390/s20154227 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
1424-3210 1424-8220 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/7091 https://doi.org/10.3390/s20154227 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.spa.fl_str_mv |
https://www.mdpi.com/1424-8220/20/15/4227 |
dc.relation.references.spa.fl_str_mv |
70. Khan, M.A.A.H.; Roy, N.; Hossain, H.M.S. Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments. Mob. Inf. Syst. 2018, 2018, 4570182. 71. Iwasawa, Y.; Eguchi Yairi, I.; Matsuo, Y. Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 2016, E99D, 1153–1161. 72. Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and gyroscope sensors. IEEE Sens. J. 2016, 16, 6425–6432. 73. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752. 74. Liu, Z.; Yin, J.; Li, J.; Wei, J.; Feng, Z. A new action recognition method by distinguishing ambiguous postures. Int. J. Adv. Robot. Syst. 2018, 15, 1–8. 75. Yao, B.; Hagras, H.; Alghazzawi, D.; Member, S.; Alhaddad, M.J. A Big Bang—Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World AmbientAssisted Living. IEEE Trans. Fuzzy Syst. 2016, 24, 1307–1319. 76. Trindade, P.; Langensiepen, C.; Lee, K.; Adama, D.A.; Lotfi, A. Human activity learning for assistive robotics using a classifier ensemble. Soft Comput. 2018, 22, 7027–7039. 77. Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 2016, 75, 11603–11613. 78. Eldib, M.; Deboeverie, F.; Philips, W.; Aghajan, H. Behavior analysis for elderly care using a network of low-resolution visual sensors. J. Electron. Imaging 2016, 25, 041003. 79. Wickramasinghe, A.; Shinmoto Torres, R.L.; Ranasinghe, D.C. Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 2017, 34, 14–24. 80. Chen, Z.; Wang, Y. Infrared–ultrasonic sensor fusion for support vector machine–based fall detection. J. Intell. Mater. Syst. Struct. 2018, 29, 2027–2039. 81. Chen, Z.; Wang, Y.; Liu, H. Unobtrusive Sensor based Occupancy Facing Direction Detection and Tracking using Advanced Machine Learning Algorithms. IEEE Sens. J. 2018, 18, 1–1. 82. Wang, J.; Zhang, X.; Gao, Q.; Feng, X.; Wang, H. Device-Free Simultaneous Wireless Localization and Activity Recognition With Wavelet Feature. IEEE Trans. Veh. Technol. 2017, 66, 1659–1669. 83. Rus, S.; Grosse-Puppendahl, T.; Kuijper, A. Evaluating the recognition of bed postures using mutual capacitance sensing. J. Ambient Intell. Smart Environ. 2017, 9, 113–127. 84. Cheng, A.L.; Georgoulas, C.; Bock, T. Automation in Construction Fall Detection and Intervention based on Wireless Sensor Network Technologies. Autom. Constr. 2016, 71, 116–136. 85. Hossain, H.M.S.; Khan, M.A.A.H.; Roy, N. Active learning enabled activity recognition. Pervasive Mob. Comput. 2017, 38, 312–330. 86. Aziz, S.; Id, S.; Ren, A.; Id, D.F.; Zhang, Z.; Zhao, N.; Yang, X. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 1–16. 87. Jiang, J.; Pozza, R.; Gunnarsdóttir, K.; Gilbert, N.; Moessner, K. Using Sensors to Study Home Activities. J. Sens. Actuator Netw. 2017, 6, 32. 88. Luo, X.; Guan, Q.; Tan, H.; Gao, L.; Wang, Z.; Luo, X. Simultaneous Indoor Tracking and Activity Recognition Using Pyroelectric Infrared Sensors. Sensors 2017, 17, 1–18. 89. Gill, S.; Seth, N.; Scheme, E. A multi-sensor matched filter approach to robust segmentation of assisted gait. Sensors (Switzerland) 2018, 18, 16–23. 90. Sasakawa, D. Human Posture Identification Using a MIMO Array. Electronics 2018, 7, 1–13. 91. Suyama, T. A network-type brain machine interface to support activities of daily living. IEICE Trans. Commun. 2016, E99B, 1930–1937. 92. Li, W.; Tan, B.O.; Piechocki, R. Passive Radar for Opportunistic Monitoring in E-Health Applications. IEEE J. Trans. Eng. Health Med. 2018, 6, 1–10. |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.source.spa.fl_str_mv |
Sensors |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/0bf5e6e8-d508-4925-ab1a-75f5631042f6/download https://repositorio.cuc.edu.co/bitstreams/afd7bb7c-81e8-4d66-bee2-ccb661b38413/download https://repositorio.cuc.edu.co/bitstreams/f7753ef9-98d4-4e72-b7c3-36e122c48a61/download https://repositorio.cuc.edu.co/bitstreams/76ad751e-6515-46b4-863e-b106d349fbe2/download https://repositorio.cuc.edu.co/bitstreams/343a9176-e15e-4ea8-b73d-f5829517e257/download |
bitstream.checksum.fl_str_mv |
d12167456daea35b3d1533428619123e 42fd4ad1e89814f5e4a476b409eb708c e30e9215131d99561d40d6b0abbe9bad f5802242b83c2701ee441ca4b55f6547 af6a22854d386609d36d1ad621886bcc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166901604286464 |
spelling |
Sanchez-Comas, AndresSynnes, KåreHallberg, Josef2020-09-11T19:06:55Z2020-09-11T19:06:55Z20181424-32101424-8220https://hdl.handle.net/11323/7091https://doi.org/10.3390/s20154227Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Activity recognition (AR) from an applied perspective of ambient assisted living (AAL) and smart homes (SH) has become a subject of great interest. Promising a better quality of life, AR applied in contexts such as health, security, and energy consumption can lead to solutions capable of reaching even the people most in need. This study was strongly motivated because levels of development, deployment, and technology of AR solutions transferred to society and industry are based on software development, but also depend on the hardware devices used. The current paper identifies contributions to hardware uses for activity recognition through a scientific literature review in the Web of Science (WoS) database. This work found four dominant groups of technologies used for AR in SH and AAL—smartphones, wearables, video, and electronic components—and two emerging technologies: Wi-Fi and assistive robots. Many of these technologies overlap across many research works. Through bibliometric networks analysis, the present review identified some gaps and new potential combinations of technologies for advances in this emerging worldwide field and their uses. The review also relates the use of these six technologies in health conditions, health care, emotion recognition, occupancy, mobility, posture recognition, localization, fall detection, and generic activity recognition applications. The above can serve as a road map that allows readers to execute approachable projects and deploy applications in different socioeconomic contexts, and the possibility to establish networks with the community involved in this topic. This analysis shows that the research field in activity recognition accepts that specific goals cannot be achieved using one single hardware technology, but can be using joint solutions, this paper shows how such technology works in this regard.Sanchez-Comas, Andres-will be generated-orcid-0000-0002-4280-8070-600Synnes, Kåre-will be generated-orcid-0000-0003-4549-6751-600Hallberg, Josef-will be generated-orcid-0000-0003-3191-8335-600engCorporación Universidad de la Costahttps://www.mdpi.com/1424-8220/20/15/422770. Khan, M.A.A.H.; Roy, N.; Hossain, H.M.S. Wearable Sensor-Based Location-Specific Occupancy Detection in Smart Environments. Mob. Inf. Syst. 2018, 2018, 4570182.71. Iwasawa, Y.; Eguchi Yairi, I.; Matsuo, Y. Combining human action sensing of wheelchair users and machine learning for autonomous accessibility data collection. IEICE Trans. Inf. Syst. 2016, E99D, 1153–1161.72. Gupta, H.P.; Chudgar, H.S.; Mukherjee, S.; Dutta, T.; Sharma, K. A Continuous Hand Gestures Recognition Technique for Human-Machine Interaction Using Accelerometer and gyroscope sensors. IEEE Sens. J. 2016, 16, 6425–6432.73. Saha, J.; Chowdhury, C.; Biswas, S. Two phase ensemble classifier for smartphone based human activity recognition independent of hardware configuration and usage behaviour. Microsyst. Technol. 2018, 24, 2737–2752.74. Liu, Z.; Yin, J.; Li, J.; Wei, J.; Feng, Z. A new action recognition method by distinguishing ambiguous postures. Int. J. Adv. Robot. Syst. 2018, 15, 1–8.75. Yao, B.; Hagras, H.; Alghazzawi, D.; Member, S.; Alhaddad, M.J. A Big Bang—Big Crunch Type-2 Fuzzy Logic System for Machine-Vision-Based Event Detection and Summarization in Real-World AmbientAssisted Living. IEEE Trans. Fuzzy Syst. 2016, 24, 1307–1319.76. Trindade, P.; Langensiepen, C.; Lee, K.; Adama, D.A.; Lotfi, A. Human activity learning for assistive robotics using a classifier ensemble. Soft Comput. 2018, 22, 7027–7039.77. Wang, S.; Chen, L.; Zhou, Z.; Sun, X.; Dong, J. Human fall detection in surveillance video based on PCANet. Multimed. Tools Appl. 2016, 75, 11603–11613.78. Eldib, M.; Deboeverie, F.; Philips, W.; Aghajan, H. Behavior analysis for elderly care using a network of low-resolution visual sensors. J. Electron. Imaging 2016, 25, 041003.79. Wickramasinghe, A.; Shinmoto Torres, R.L.; Ranasinghe, D.C. Recognition of falls using dense sensing in an ambient assisted living environment. Pervasive Mob. Comput. 2017, 34, 14–24.80. Chen, Z.; Wang, Y. Infrared–ultrasonic sensor fusion for support vector machine–based fall detection. J. Intell. Mater. Syst. Struct. 2018, 29, 2027–2039.81. Chen, Z.; Wang, Y.; Liu, H. Unobtrusive Sensor based Occupancy Facing Direction Detection and Tracking using Advanced Machine Learning Algorithms. IEEE Sens. J. 2018, 18, 1–1.82. Wang, J.; Zhang, X.; Gao, Q.; Feng, X.; Wang, H. Device-Free Simultaneous Wireless Localization and Activity Recognition With Wavelet Feature. IEEE Trans. Veh. Technol. 2017, 66, 1659–1669.83. Rus, S.; Grosse-Puppendahl, T.; Kuijper, A. Evaluating the recognition of bed postures using mutual capacitance sensing. J. Ambient Intell. Smart Environ. 2017, 9, 113–127.84. Cheng, A.L.; Georgoulas, C.; Bock, T. Automation in Construction Fall Detection and Intervention based on Wireless Sensor Network Technologies. Autom. Constr. 2016, 71, 116–136.85. Hossain, H.M.S.; Khan, M.A.A.H.; Roy, N. Active learning enabled activity recognition. Pervasive Mob. Comput. 2017, 38, 312–330.86. Aziz, S.; Id, S.; Ren, A.; Id, D.F.; Zhang, Z.; Zhao, N.; Yang, X. Internet of Things for Sensing: A Case Study in the Healthcare System. Appl. Sci. 2018, 8, 1–16.87. Jiang, J.; Pozza, R.; Gunnarsdóttir, K.; Gilbert, N.; Moessner, K. Using Sensors to Study Home Activities. J. Sens. Actuator Netw. 2017, 6, 32.88. Luo, X.; Guan, Q.; Tan, H.; Gao, L.; Wang, Z.; Luo, X. Simultaneous Indoor Tracking and Activity Recognition Using Pyroelectric Infrared Sensors. Sensors 2017, 17, 1–18.89. Gill, S.; Seth, N.; Scheme, E. A multi-sensor matched filter approach to robust segmentation of assisted gait. Sensors (Switzerland) 2018, 18, 16–23.90. Sasakawa, D. Human Posture Identification Using a MIMO Array. Electronics 2018, 7, 1–13.91. Suyama, T. A network-type brain machine interface to support activities of daily living. IEICE Trans. Commun. 2016, E99B, 1930–1937.92. Li, W.; Tan, B.O.; Piechocki, R. Passive Radar for Opportunistic Monitoring in E-Health Applications. IEEE J. Trans. Eng. Health Med. 2018, 6, 1–10.CC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2SensorsSmart homeAALAmbient assisted livingActivity recognitionHardwareReviewHardware for recognition of human activities: a review of smart home and AAL related technologiesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALHardware for recognition of human activities. a review of smart home and AAL related technologies.pdfHardware for recognition of human activities. a review of smart home and AAL related technologies.pdfapplication/pdf2263527https://repositorio.cuc.edu.co/bitstreams/0bf5e6e8-d508-4925-ab1a-75f5631042f6/downloadd12167456daea35b3d1533428619123eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/afd7bb7c-81e8-4d66-bee2-ccb661b38413/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/f7753ef9-98d4-4e72-b7c3-36e122c48a61/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.jpgHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.jpgimage/jpeg66992https://repositorio.cuc.edu.co/bitstreams/76ad751e-6515-46b4-863e-b106d349fbe2/downloadf5802242b83c2701ee441ca4b55f6547MD54TEXTHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.txtHardware for recognition of human activities. a review of smart home and AAL related technologies.pdf.txttext/plain81414https://repositorio.cuc.edu.co/bitstreams/343a9176-e15e-4ea8-b73d-f5829517e257/downloadaf6a22854d386609d36d1ad621886bccMD5511323/7091oai:repositorio.cuc.edu.co:11323/70912024-09-17 14:24:04.237http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |