Coverage reduction: a mathematical model

This paper deals with a mathematical model for reduction of the lack of coverage (LC) involving multiple coverage in presence of partial covering. The model proposes a new structure of assignment of facilities in a facility location system to cover in greater proportion of the demand territory, avoi...

Full description

Autores:
Obredor Baldovino, Thalia Patricia
Barcasnegras Moreno, Evis Alberto
Mercado Caruso, Nohora Nubia
Salas Navarro, Katherinne Paola
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1041
Acceso en línea:
https://hdl.handle.net/11323/1041
https://repositorio.cuc.edu.co/
Palabra clave:
Facility Location
Integer Programming
Lack Of Coverage Reduction
Multiple Coverage
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_9fca8abb37f008c3878778a2ab99b1d8
oai_identifier_str oai:repositorio.cuc.edu.co:11323/1041
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Coverage reduction: a mathematical model
title Coverage reduction: a mathematical model
spellingShingle Coverage reduction: a mathematical model
Facility Location
Integer Programming
Lack Of Coverage Reduction
Multiple Coverage
title_short Coverage reduction: a mathematical model
title_full Coverage reduction: a mathematical model
title_fullStr Coverage reduction: a mathematical model
title_full_unstemmed Coverage reduction: a mathematical model
title_sort Coverage reduction: a mathematical model
dc.creator.fl_str_mv Obredor Baldovino, Thalia Patricia
Barcasnegras Moreno, Evis Alberto
Mercado Caruso, Nohora Nubia
Salas Navarro, Katherinne Paola
dc.contributor.author.spa.fl_str_mv Obredor Baldovino, Thalia Patricia
Barcasnegras Moreno, Evis Alberto
Mercado Caruso, Nohora Nubia
Salas Navarro, Katherinne Paola
dc.subject.eng.fl_str_mv Facility Location
Integer Programming
Lack Of Coverage Reduction
Multiple Coverage
topic Facility Location
Integer Programming
Lack Of Coverage Reduction
Multiple Coverage
description This paper deals with a mathematical model for reduction of the lack of coverage (LC) involving multiple coverage in presence of partial covering. The model proposes a new structure of assignment of facilities in a facility location system to cover in greater proportion of the demand territory, avoiding assignment of several facilities in the same space of the territory. A comparison between the engendered solution and its representation is carried out through known indicators to measure the improvement of the solution. The results of our proposed model are contrast and better compared to defined referred models in order to evaluate the reduction of LC.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-15T18:03:48Z
dc.date.available.none.fl_str_mv 2018-11-15T18:03:48Z
dc.date.issued.none.fl_str_mv 2018-07-12
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 02196867
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/1041
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 02196867
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/1041
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv 1. G. Alexandris and I. Giannikos, A new model for maximal coverage exploiting GIS capabilities, Eur. J. Oper. Res. 202(2) (2010) 328–338. 2. A. Basar, B. Catay and T. Unluyurt, A multi-period double coverage approach for locating the emergency medical service stations in Istanbul, Oper. Res. Soc. 62(4) (2011) 627–637. 3. O. Berman and D. Krass, The generalized maximal covering location problem, Comput. Oper. Res. 29(6) (2002) 563–581. 4. O. Berman, D. Krass and Z. Drezner, The gradual covering decay location problem on a network, Eur. J. Oper. Res. 151(3) (2003) 474–480. 5. O. Berman, D. Krass, Z. Drezner and G. Wesolowsky, The variable radius covering problem, Eur. J. Oper. Res. 196 (2009) 516–525. 6. O. Berman and J. Wang, The minmax regret gradual covering location problem on a network with incomplete information of demand weights, Eur. J. Oper. Res. 208 (2011) 233–238. 7. S. Cespedes and C. Amaya, Localizacion y relocalizacion de ambulancias del centro regulador de urgencias y emergencias de Bogota, Thesis, Universidad de los Andes, Bogota, Colombia (2008). 8. R. Church, The maximal covering location problem, Reg. Sci. 32 (1974) 101–118. 9. R. Church, The planar maximal covering location problem, Reg. Sci. 24 (1984) 185–201. 10. M. Daskin, A maximum expected covering location model: Formulation, properties and heuristic solution, Transport. Sci. 17(1) (1983) 48–70. 11. S. Davari, M. Zarandi and B. Turksen, A greedy variable neighborhood search heuristic for the maximal covering location problem with fuzzy coverage radii, Knowl.-Based Syst. 41 (2013) 68–76. 12. E. Erdemir, R. Batta, S. Spielman, P. Rogerson, A. Blatt and M. Flanigan, Location coverage models with demand originating from nodes and paths: Application to cellular network design, Eur. J. Oper. Res. 190(3) (2008) 610–632. 13. M. Gendreau, G. Laporte and F. Semet, Solving an ambulance location model by Tabu Search, Location Sci. 5(2) (1997) 75–88. 14. R. Ghasemiyeh, R. Moghdani and S. S. Sana, A hybrid arti¯cial neural network with metaheuristic algorithms for predicting stock price, Cybernet. Syst., Int. J. 48(4) (2017) 365–392. 15. R. Guerra-Olivares, N. R. Smith, R. G. Gonzalez-Ramírez, E. G. Mendoza and L. E. Cardenas-Barron, A heuristic procedure for the outbound container space assignment problem for small and midsize maritime terminals, Int. J. Mach. Learn. Cybernet. (2017) 1–14. 16. H. Jia, F. Ordoñez and M. Dessouky, Solution approaches for facility location of medical supplies for large-scale emergencies, Comput. Indus. Eng. 52(2) (2007) 257–276. 17. O. Karasakal and E. Karasakal, A maximal covering location model in the presence of partial coverage, Comput. Oper. Res. 31(9) (2004) 1515–1526. 18. G. Lee and A. Murray, Maximal covering with network survivability requirements in wireless mesh networks, Comput. Environ. Urban Syst. 34(1) (2010) 49–57. 19. G. Moore, The hierarchical service location problem, Manage. Sci. 28(7) (1982) 775–780. 20. A. F. Muñoz-Villamizar, J. R. Montoya-Torres and N. Herazo-Padilla, Mathematical programming modeling and resolution of the location-routing problem in urban logistics, Ingenier{a y Universidad 18(2) (2014) 271–289, http://dx.doi.org/10.11144/Javeriana. IYU18-2.mpmr. 21. C. Revelle and K. Hogan, The maximum availability location problem, Transport. Sci. 23(3) (1989) 192–200. 22. S. S. Sana, G. Herrera-Vidal and J. A. Chedid, Collaborative model on the agro-industrial supply chain of Cocoa, Cybernet. Syst., Int. J. 48(4) (2017) 325–347. 23. B. Sarkar and A. Majumder, A study on three di®erent dimensional facility location problems, Econ. Model. 30 (2013) 879–887. 24. B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Appl. Math. Model. 37(5) (2013) 3138–3151 25. B. Sarkar, B. Ganguly, M. Sarkar and S. Pareek, E®ect of variable transportation and carbon emission in a three-echelon supply chain model, Transport. Res. E, Log. Transport. Rev. 91 (2016) 112–128. 26. B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for ¯xed lifetime products, Math. Problem Eng. 2016 (2016) 6318737. 27. B. Sarkar, M. Ullah and N. Kim, Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items, Comput. Indus. Eng. 111 (2017) 148–163. 28. N. H. Shah and H. Soni, Periodic review inventory model with service level constraint in fuzzy environment, Int. J. Appl. Dec. Sci. 4(2) (2011) 129–147. 29. M. Valipour, Number of required observation data for rainfall forecasting according to the climate conditions, Am. J. Sci. Res. 74 (2012) 79–86. 30. M. Valipour, Increasing irrigation e±ciency by management strategies: Cutback and surge irrigation, ARPN J. Agricultural Biol. Sci. 8(1) (2013) 35–43. 31. M. Valipour, Study of di®erent climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations, Arch. Agronomy Soil Sci. 61(5) (2015) 679–694. 32. M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms, Meteorol. Appl. 23 (2016) 91–100. 33. M. Valipour, Global experience on irrigation management under di®erent scenarios, J. Water Land Develop. 32(I–III) (2017) 95–102. 34. H. Younies and G. Wesolowsky, A mixed integer formulation for maximal covering by inclined parallelograms, Eur. J. Oper. Res. 159(1) (2004) 83–94. 35. M. Zarandi, S. Davari and S. Sisakht, The large-scale dynamic maximal covering location problem, Math. Comput. Model. 57(3–4) (2013) 710–719.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Journal of Advanced Manufacturing Systems
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/7a506a1c-26d9-418d-b9d7-eaaa503477e1/download
https://repositorio.cuc.edu.co/bitstreams/7e6a1204-2c2b-41f0-96c6-346d01461382/download
https://repositorio.cuc.edu.co/bitstreams/4dfab2cc-3788-4863-8015-ec8c2cbaf222/download
https://repositorio.cuc.edu.co/bitstreams/a252e00d-af9d-478f-bc56-da89e758d832/download
bitstream.checksum.fl_str_mv 5f650ee471d59e758a4749ab0c36db5c
8a4605be74aa9ea9d79846c1fba20a33
4301bafb2102fd832c34696dc71b0461
b707f3542a157d46266776ae4f366a6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760775237206016
spelling Obredor Baldovino, Thalia PatriciaBarcasnegras Moreno, Evis AlbertoMercado Caruso, Nohora NubiaSalas Navarro, Katherinne Paola2018-11-15T18:03:48Z2018-11-15T18:03:48Z2018-07-1202196867https://hdl.handle.net/11323/1041Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper deals with a mathematical model for reduction of the lack of coverage (LC) involving multiple coverage in presence of partial covering. The model proposes a new structure of assignment of facilities in a facility location system to cover in greater proportion of the demand territory, avoiding assignment of several facilities in the same space of the territory. A comparison between the engendered solution and its representation is carried out through known indicators to measure the improvement of the solution. The results of our proposed model are contrast and better compared to defined referred models in order to evaluate the reduction of LC.Obredor Baldovino, Thalia Patricia-0000-0002-7482-4825-600Barcasnegras Moreno, Evis Alberto-98da352f-7476-444f-98b7-bfbc51dd45a9-0Mercado Caruso, Nohora Nubia-0000-0001-9261-8331-600Salas Navarro, Katherinne Paola-0000-0002-6290-3542-600engJournal of Advanced Manufacturing SystemsAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Facility LocationInteger ProgrammingLack Of Coverage ReductionMultiple CoverageCoverage reduction: a mathematical modelArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion1. G. Alexandris and I. Giannikos, A new model for maximal coverage exploiting GIS capabilities, Eur. J. Oper. Res. 202(2) (2010) 328–338. 2. A. Basar, B. Catay and T. Unluyurt, A multi-period double coverage approach for locating the emergency medical service stations in Istanbul, Oper. Res. Soc. 62(4) (2011) 627–637. 3. O. Berman and D. Krass, The generalized maximal covering location problem, Comput. Oper. Res. 29(6) (2002) 563–581. 4. O. Berman, D. Krass and Z. Drezner, The gradual covering decay location problem on a network, Eur. J. Oper. Res. 151(3) (2003) 474–480. 5. O. Berman, D. Krass, Z. Drezner and G. Wesolowsky, The variable radius covering problem, Eur. J. Oper. Res. 196 (2009) 516–525. 6. O. Berman and J. Wang, The minmax regret gradual covering location problem on a network with incomplete information of demand weights, Eur. J. Oper. Res. 208 (2011) 233–238. 7. S. Cespedes and C. Amaya, Localizacion y relocalizacion de ambulancias del centro regulador de urgencias y emergencias de Bogota, Thesis, Universidad de los Andes, Bogota, Colombia (2008). 8. R. Church, The maximal covering location problem, Reg. Sci. 32 (1974) 101–118. 9. R. Church, The planar maximal covering location problem, Reg. Sci. 24 (1984) 185–201. 10. M. Daskin, A maximum expected covering location model: Formulation, properties and heuristic solution, Transport. Sci. 17(1) (1983) 48–70. 11. S. Davari, M. Zarandi and B. Turksen, A greedy variable neighborhood search heuristic for the maximal covering location problem with fuzzy coverage radii, Knowl.-Based Syst. 41 (2013) 68–76. 12. E. Erdemir, R. Batta, S. Spielman, P. Rogerson, A. Blatt and M. Flanigan, Location coverage models with demand originating from nodes and paths: Application to cellular network design, Eur. J. Oper. Res. 190(3) (2008) 610–632. 13. M. Gendreau, G. Laporte and F. Semet, Solving an ambulance location model by Tabu Search, Location Sci. 5(2) (1997) 75–88. 14. R. Ghasemiyeh, R. Moghdani and S. S. Sana, A hybrid arti¯cial neural network with metaheuristic algorithms for predicting stock price, Cybernet. Syst., Int. J. 48(4) (2017) 365–392. 15. R. Guerra-Olivares, N. R. Smith, R. G. Gonzalez-Ramírez, E. G. Mendoza and L. E. Cardenas-Barron, A heuristic procedure for the outbound container space assignment problem for small and midsize maritime terminals, Int. J. Mach. Learn. Cybernet. (2017) 1–14. 16. H. Jia, F. Ordoñez and M. Dessouky, Solution approaches for facility location of medical supplies for large-scale emergencies, Comput. Indus. Eng. 52(2) (2007) 257–276. 17. O. Karasakal and E. Karasakal, A maximal covering location model in the presence of partial coverage, Comput. Oper. Res. 31(9) (2004) 1515–1526. 18. G. Lee and A. Murray, Maximal covering with network survivability requirements in wireless mesh networks, Comput. Environ. Urban Syst. 34(1) (2010) 49–57. 19. G. Moore, The hierarchical service location problem, Manage. Sci. 28(7) (1982) 775–780. 20. A. F. Muñoz-Villamizar, J. R. Montoya-Torres and N. Herazo-Padilla, Mathematical programming modeling and resolution of the location-routing problem in urban logistics, Ingenier{a y Universidad 18(2) (2014) 271–289, http://dx.doi.org/10.11144/Javeriana. IYU18-2.mpmr. 21. C. Revelle and K. Hogan, The maximum availability location problem, Transport. Sci. 23(3) (1989) 192–200. 22. S. S. Sana, G. Herrera-Vidal and J. A. Chedid, Collaborative model on the agro-industrial supply chain of Cocoa, Cybernet. Syst., Int. J. 48(4) (2017) 325–347. 23. B. Sarkar and A. Majumder, A study on three di®erent dimensional facility location problems, Econ. Model. 30 (2013) 879–887. 24. B. Sarkar, A production-inventory model with probabilistic deterioration in two-echelon supply chain management, Appl. Math. Model. 37(5) (2013) 3138–3151 25. B. Sarkar, B. Ganguly, M. Sarkar and S. Pareek, E®ect of variable transportation and carbon emission in a three-echelon supply chain model, Transport. Res. E, Log. Transport. Rev. 91 (2016) 112–128. 26. B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for ¯xed lifetime products, Math. Problem Eng. 2016 (2016) 6318737. 27. B. Sarkar, M. Ullah and N. Kim, Environmental and economic assessment of closed-loop supply chain with remanufacturing and returnable transport items, Comput. Indus. Eng. 111 (2017) 148–163. 28. N. H. Shah and H. Soni, Periodic review inventory model with service level constraint in fuzzy environment, Int. J. Appl. Dec. Sci. 4(2) (2011) 129–147. 29. M. Valipour, Number of required observation data for rainfall forecasting according to the climate conditions, Am. J. Sci. Res. 74 (2012) 79–86. 30. M. Valipour, Increasing irrigation e±ciency by management strategies: Cutback and surge irrigation, ARPN J. Agricultural Biol. Sci. 8(1) (2013) 35–43. 31. M. Valipour, Study of di®erent climatic conditions to assess the role of solar radiation in reference crop evapotranspiration equations, Arch. Agronomy Soil Sci. 61(5) (2015) 679–694. 32. M. Valipour, Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms, Meteorol. Appl. 23 (2016) 91–100. 33. M. Valipour, Global experience on irrigation management under di®erent scenarios, J. Water Land Develop. 32(I–III) (2017) 95–102. 34. H. Younies and G. Wesolowsky, A mixed integer formulation for maximal covering by inclined parallelograms, Eur. J. Oper. Res. 159(1) (2004) 83–94. 35. M. Zarandi, S. Davari and S. Sisakht, The large-scale dynamic maximal covering location problem, Math. Comput. Model. 57(3–4) (2013) 710–719.PublicationORIGINALCoverage Reduction.pdfCoverage Reduction.pdfapplication/pdf418566https://repositorio.cuc.edu.co/bitstreams/7a506a1c-26d9-418d-b9d7-eaaa503477e1/download5f650ee471d59e758a4749ab0c36db5cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/7e6a1204-2c2b-41f0-96c6-346d01461382/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILCoverage Reduction.pdf.jpgCoverage Reduction.pdf.jpgimage/jpeg29208https://repositorio.cuc.edu.co/bitstreams/4dfab2cc-3788-4863-8015-ec8c2cbaf222/download4301bafb2102fd832c34696dc71b0461MD54TEXTCoverage Reduction.pdf.txtCoverage Reduction.pdf.txttext/plain35914https://repositorio.cuc.edu.co/bitstreams/a252e00d-af9d-478f-bc56-da89e758d832/downloadb707f3542a157d46266776ae4f366a6aMD5511323/1041oai:repositorio.cuc.edu.co:11323/10412024-09-17 11:05:48.339open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=