Mixture structural equation models for classifying university student dropout in latin america
This research seeks to develop a model that allows consider the different forms of heterogeneity of international dropout data and also classify students who continue studying and those who drop out. Specifically, through the use of Mixture Structural Equation Models (MSEM), the study seeks to devel...
- Autores:
-
Amelec, Viloria
Pineda Lezama, Omar Bonerge
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2019
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/5992
- Acceso en línea:
- https://hdl.handle.net/11323/5992
https://repositorio.cuc.edu.co/
- Palabra clave:
- Mixture structural equations models
Student satisfaction
Student dropout
Mezcla de modelos de ecuaciones estructurales
Satisfacción del estudiante
Abandono estudiantil
- Rights
- openAccess
- License
- CC0 1.0 Universal
id |
RCUC2_9f2d498ccb5ad1dbb6504ba6290160f8 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/5992 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Mixture structural equation models for classifying university student dropout in latin america |
dc.title.translated.spa.fl_str_mv |
Mezcla de modelos de ecuaciones estructurales para clasificar el abandono de estudiantes universitarios en América Latina |
title |
Mixture structural equation models for classifying university student dropout in latin america |
spellingShingle |
Mixture structural equation models for classifying university student dropout in latin america Mixture structural equations models Student satisfaction Student dropout Mezcla de modelos de ecuaciones estructurales Satisfacción del estudiante Abandono estudiantil |
title_short |
Mixture structural equation models for classifying university student dropout in latin america |
title_full |
Mixture structural equation models for classifying university student dropout in latin america |
title_fullStr |
Mixture structural equation models for classifying university student dropout in latin america |
title_full_unstemmed |
Mixture structural equation models for classifying university student dropout in latin america |
title_sort |
Mixture structural equation models for classifying university student dropout in latin america |
dc.creator.fl_str_mv |
Amelec, Viloria Pineda Lezama, Omar Bonerge |
dc.contributor.author.spa.fl_str_mv |
Amelec, Viloria Pineda Lezama, Omar Bonerge |
dc.subject.spa.fl_str_mv |
Mixture structural equations models Student satisfaction Student dropout Mezcla de modelos de ecuaciones estructurales Satisfacción del estudiante Abandono estudiantil |
topic |
Mixture structural equations models Student satisfaction Student dropout Mezcla de modelos de ecuaciones estructurales Satisfacción del estudiante Abandono estudiantil |
description |
This research seeks to develop a model that allows consider the different forms of heterogeneity of international dropout data and also classify students who continue studying and those who drop out. Specifically, through the use of Mixture Structural Equation Models (MSEM), the study seeks to develop a model for classifying dropout and applying it to an international database. The aim is then to determine the classification accuracy degree of the proposed model. The development and application of the model showed that the student´s health, the interpersonal relationships, and class attendance positively influence college adaptation, and in turn college adaptation positively influences college satisfaction. Additionally, the developed model can correctly classify 55.45% of continuing students and 61.68% of students who abandon their careers. These results suggest that the use of MSEM for international databases, characterized by heterogeneity, allows more robust and generalizable studies of dropouts in higher education. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-02-05T13:29:04Z |
dc.date.available.none.fl_str_mv |
2020-02-05T13:29:04Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
00002010 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/5992 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
00002010 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/5992 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1] Ebrahimzadeh, I., Shahraki, A., Shahnaz, A. y Myandoab, A. (2016) Progressing urban development and life quality simultaneously. City, Culture and Society 7, (3), 186-193. 9. [2] Węziak-Białowolska, D. (2016) Quality of life in cities – Empirical evidence in comparative European perspective. Cities, 58, 87-96. 10.Putra, K. y Sitanggang, J. (2016). The Effect of Public Transport Services on Quality of Life in Medan City. Procedia - Social and Behavioral Sciences, 234, 383-389. [3] Kubickova, M., Croes, R. y Rivera, M. (2017) Human agency shaping tourism competitiveness and quality of life in developing economies. Tourism Management Perspectives, 22, 120-131. [4] Biagia, B., Ladub, M., y Meleddub, M. (2018) Analysis Urban Quality of Life and Capabilities: An Experimental Study. Ecological Economics, 150, 137-152 [5] Hu, S. y Das, D. (2018). Quality of life among older adults in China and India: Does productive engagement help? Social Science & Medicine.DOI: //doi.org/10.1016/j.socscimed.2018.06.028. [6] Wang, Hongying. "New multilateral development banks: Opportunities and challenges for global governance." Global Policy 8.1 (2017): 113- 118. [7] Amelec, Viloria, and Vasquez Carmen. "Relationship Between Variables of Performance Social and Financial of Microfinance Institutions." Advanced Science Letters 21.6 (2015): 1931-1934. [8] Bonilla, E. (2017). Posibilidades y límites del crecimiento y desarollo económico-social en países de Europa, Asia, África y América Latina. Revista Questionar, 5, 149-159. [9] Aroca, P., Gonzalez, P. y Valdebenito, R. (2017). The heterogeneous level of life quality across Chilean regions. Habitat International, 68, 84- 98. [10] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018). [11] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. [12] Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996) [13] Sekmen, F., Kurkcu, M.: An Early Warning System for Turkey: The Forecasting of Economic Crisis by Using the Artificial Neural Networks. Asian Economic and Financial Review 4(1), 529-43 (2014). [14] Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. West Sussex, England: John Wiley & Sons, Ltd. Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999). [15] Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004). [16] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009). [17] Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (1), 159-75 (2003). [18] Kuan, C.M.: Artificial neural networks. In the New Palgrave Dictionary of Economics, ed. S.N. Durlauf and L.E Blume. UK: Palgrave Macmillan (2008) |
dc.rights.spa.fl_str_mv |
CC0 1.0 Universal |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/publicdomain/zero/1.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
CC0 1.0 Universal http://creativecommons.org/publicdomain/zero/1.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
Procedia Computer Science |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6adff191-cd94-4465-a985-39981251955a/download https://repositorio.cuc.edu.co/bitstreams/ee480905-e851-4c79-9f93-bab3a158a62e/download https://repositorio.cuc.edu.co/bitstreams/ee33de69-c620-4dd4-9b0b-3e10d3ec4cfb/download https://repositorio.cuc.edu.co/bitstreams/970c4edd-51db-415e-8a83-09721eca1c43/download https://repositorio.cuc.edu.co/bitstreams/8c8bbabb-7592-470d-9c19-5e3a0ea36c82/download |
bitstream.checksum.fl_str_mv |
980db67d9eadc95a5b6bb3aaf688de84 42fd4ad1e89814f5e4a476b409eb708c 8a4605be74aa9ea9d79846c1fba20a33 42a6b08a994a2cabd23c8ce37a9ab574 36b8137304960846e46b6399f72c1054 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1828166831503835136 |
spelling |
Amelec, ViloriaPineda Lezama, Omar Bonerge2020-02-05T13:29:04Z2020-02-05T13:29:04Z201900002010https://hdl.handle.net/11323/5992Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This research seeks to develop a model that allows consider the different forms of heterogeneity of international dropout data and also classify students who continue studying and those who drop out. Specifically, through the use of Mixture Structural Equation Models (MSEM), the study seeks to develop a model for classifying dropout and applying it to an international database. The aim is then to determine the classification accuracy degree of the proposed model. The development and application of the model showed that the student´s health, the interpersonal relationships, and class attendance positively influence college adaptation, and in turn college adaptation positively influences college satisfaction. Additionally, the developed model can correctly classify 55.45% of continuing students and 61.68% of students who abandon their careers. These results suggest that the use of MSEM for international databases, characterized by heterogeneity, allows more robust and generalizable studies of dropouts in higher education.Esta investigación busca desarrollar un modelo que permita considerar las diferentes formas de heterogeneidad de los datos de deserción internacional y también clasificar a los estudiantes que continúan estudiando y aquellos que abandonan. Específicamente, mediante el uso de los Modelos de ecuaciones estructurales mixtas (MSEM), el estudio busca desarrollar un modelo para clasificar el abandono y aplicarlo a una base de datos internacional. El objetivo es determinar el grado de precisión de clasificación del modelo propuesto. El desarrollo y la aplicación del modelo mostraron que la salud del estudiante, las relaciones interpersonales y la asistencia a clase influyen positivamente en la adaptación universitaria y, a su vez, la adaptación universitaria influye positivamente en la satisfacción universitaria. Además, el modelo desarrollado puede clasificar correctamente el 55.45% de los estudiantes que continúan y el 61.68% de los estudiantes que abandonan sus carreras. Estos resultados sugieren que el uso de MSEM para bases de datos internacionales, caracterizadas por la heterogeneidad, permite estudios más robustos y generalizables de deserciones en la educación superior.Amelec, Viloria-will be generated-orcid-0000-0003-2673-6350-600Pineda Lezama, Omar BonergeengProcedia Computer ScienceCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mixture structural equations modelsStudent satisfactionStudent dropoutMezcla de modelos de ecuaciones estructuralesSatisfacción del estudianteAbandono estudiantilMixture structural equation models for classifying university student dropout in latin americaMezcla de modelos de ecuaciones estructurales para clasificar el abandono de estudiantes universitarios en América LatinaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1] Ebrahimzadeh, I., Shahraki, A., Shahnaz, A. y Myandoab, A. (2016) Progressing urban development and life quality simultaneously. City, Culture and Society 7, (3), 186-193. 9.[2] Węziak-Białowolska, D. (2016) Quality of life in cities – Empirical evidence in comparative European perspective. Cities, 58, 87-96. 10.Putra, K. y Sitanggang, J. (2016). The Effect of Public Transport Services on Quality of Life in Medan City. Procedia - Social and Behavioral Sciences, 234, 383-389.[3] Kubickova, M., Croes, R. y Rivera, M. (2017) Human agency shaping tourism competitiveness and quality of life in developing economies. Tourism Management Perspectives, 22, 120-131.[4] Biagia, B., Ladub, M., y Meleddub, M. (2018) Analysis Urban Quality of Life and Capabilities: An Experimental Study. Ecological Economics, 150, 137-152[5] Hu, S. y Das, D. (2018). Quality of life among older adults in China and India: Does productive engagement help? Social Science & Medicine.DOI: //doi.org/10.1016/j.socscimed.2018.06.028.[6] Wang, Hongying. "New multilateral development banks: Opportunities and challenges for global governance." Global Policy 8.1 (2017): 113- 118.[7] Amelec, Viloria, and Vasquez Carmen. "Relationship Between Variables of Performance Social and Financial of Microfinance Institutions." Advanced Science Letters 21.6 (2015): 1931-1934.[8] Bonilla, E. (2017). Posibilidades y límites del crecimiento y desarollo económico-social en países de Europa, Asia, África y América Latina. Revista Questionar, 5, 149-159.[9] Aroca, P., Gonzalez, P. y Valdebenito, R. (2017). The heterogeneous level of life quality across Chilean regions. Habitat International, 68, 84- 98.[10] Torres-Samuel, M., Vásquez, C., Viloria, A., Lis-Gutiérrez, J.P., Borrero, T.C., Varela, N.: Web Visibility Profiles of Top100 Latin American Universities. In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data. DMBD 2018. Lecture Notes in Computer Science, Springer, Cham, vol 10943, 1-12 (2018).[11] Viloria, A., Lis-Gutiérrez, J.P., Gaitán-Angulo, M., Godoy, A.R.M., Moreno, G.C., Kamatkar, S.J. : Methodology for the Design of a Student Pattern Recognition Tool to Facilitate the Teaching – Learning Process Through Knowledge Data Discovery (Big Data). In: Tan Y., Shi Y., Tang Q. (eds) Data Mining and Big Data.[12] Jain, A. K., Mao, J., Mohiuddin, K. M.: Artificial neural networks: a tutorial. IEEE Computer 29 (3), 1- 32 (1996)[13] Sekmen, F., Kurkcu, M.: An Early Warning System for Turkey: The Forecasting of Economic Crisis by Using the Artificial Neural Networks. Asian Economic and Financial Review 4(1), 529-43 (2014).[14] Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. West Sussex, England: John Wiley & Sons, Ltd. Haykin, S.: Neural Networks a Comprehensive Foundation. Second Edition. Macmillan College Publishing, Inc. USA. ISBN 9780023527616 (1999).[15] Isasi, P., Galván, I.: Redes de Neuronas Artificiales. Un enfoque Práctico. Pearson. ISBN 8420540250 (2004).[16] Haykin, S.: Neural Networks and Learning Machines. New Jersey, Prentice Hall International (2009).[17] Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50 (1), 159-75 (2003).[18] Kuan, C.M.: Artificial neural networks. In the New Palgrave Dictionary of Economics, ed. S.N. Durlauf and L.E Blume. UK: Palgrave Macmillan (2008)PublicationORIGINALMixture Structural Equation Models for Classifying University.pdfMixture Structural Equation Models for Classifying University.pdfapplication/pdf383214https://repositorio.cuc.edu.co/bitstreams/6adff191-cd94-4465-a985-39981251955a/download980db67d9eadc95a5b6bb3aaf688de84MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/ee480905-e851-4c79-9f93-bab3a158a62e/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/ee33de69-c620-4dd4-9b0b-3e10d3ec4cfb/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILMixture Structural Equation Models for Classifying University.pdf.jpgMixture Structural Equation Models for Classifying University.pdf.jpgimage/jpeg43577https://repositorio.cuc.edu.co/bitstreams/970c4edd-51db-415e-8a83-09721eca1c43/download42a6b08a994a2cabd23c8ce37a9ab574MD55TEXTMixture Structural Equation Models for Classifying University.pdf.txtMixture Structural Equation Models for Classifying University.pdf.txttext/plain25799https://repositorio.cuc.edu.co/bitstreams/8c8bbabb-7592-470d-9c19-5e3a0ea36c82/download36b8137304960846e46b6399f72c1054MD5611323/5992oai:repositorio.cuc.edu.co:11323/59922024-09-17 14:15:23.939http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |