Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method

Introduction− Magnesium alloys have been known for its bio-compatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys.Objective−In this work, the dip-coating technique was used to coat the magnesium all...

Full description

Autores:
López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/2385
Acceso en línea:
http://hdl.handle.net/11323/2385
https://doi.org/10.17981/ingecuc.14.2.2018.04
https://repositorio.cuc.edu.co/
Palabra clave:
Dip-coating
Corrosion
TiO2 particles
Mg alloys
Hydrogen evolution
Recubrimientos por inmersión
Corrosión
Partículas de TiO2
Aleaciones de Mg
Evolución del hidrógeno
Rights
openAccess
License
http://purl.org/coar/access_right/c_abf2
id RCUC2_9e98d7297bee96098f071f0489f2867b
oai_identifier_str oai:repositorio.cuc.edu.co:11323/2385
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
dc.title.translated.spa.fl_str_mv Modificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión
title Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
spellingShingle Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
Dip-coating
Corrosion
TiO2 particles
Mg alloys
Hydrogen evolution
Recubrimientos por inmersión
Corrosión
Partículas de TiO2
Aleaciones de Mg
Evolución del hidrógeno
title_short Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
title_full Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
title_fullStr Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
title_full_unstemmed Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
title_sort Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method
dc.creator.fl_str_mv López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
dc.contributor.author.spa.fl_str_mv López Herrera, Johan Esteban
Hernández Montes, Vanessa
Betancur Henao, Claudia Patricia
Santa Marín, Juan Felipe
Buitrago Sierra, Robison
dc.subject.proposal.eng.fl_str_mv Dip-coating
Corrosion
TiO2 particles
Mg alloys
Hydrogen evolution
topic Dip-coating
Corrosion
TiO2 particles
Mg alloys
Hydrogen evolution
Recubrimientos por inmersión
Corrosión
Partículas de TiO2
Aleaciones de Mg
Evolución del hidrógeno
dc.subject.proposal.spa.fl_str_mv Recubrimientos por inmersión
Corrosión
Partículas de TiO2
Aleaciones de Mg
Evolución del hidrógeno
description Introduction− Magnesium alloys have been known for its bio-compatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys.Objective−In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evalu-ate its corrosion resistance.Methodology−The particles were analyzed by Scanning Elec-tron Microscopy (SEM) and visual inspection. Additionally, hy-drogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys.Results− The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corro-sion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thin-ner than 20 nm. Conclusions−TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropyl-ene discs entirely.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018-12-03
dc.date.accessioned.none.fl_str_mv 2019-02-11T21:45:12Z
dc.date.available.none.fl_str_mv 2019-02-11T21:45:12Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.citation.spa.fl_str_mv J. López H., V. Hernández-Montes, C. Betancur-Henao, J. F. Santa-Marín, R. Buitrago-Sierra “Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method,” INGE CUC, vol. 14, no. 2, pp. 45-54, 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.04
dc.identifier.uri.spa.fl_str_mv http://hdl.handle.net/11323/2385
dc.identifier.url.spa.fl_str_mv https://doi.org/10.17981/ingecuc.14.2.2018.04
dc.identifier.doi.spa.fl_str_mv 10.17981/ingecuc.14.2.2018.04
dc.identifier.eissn.spa.fl_str_mv 2382-4700
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.pissn.spa.fl_str_mv 0122-6517
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv J. López H., V. Hernández-Montes, C. Betancur-Henao, J. F. Santa-Marín, R. Buitrago-Sierra “Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method,” INGE CUC, vol. 14, no. 2, pp. 45-54, 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.04
10.17981/ingecuc.14.2.2018.04
2382-4700
Corporación Universidad de la Costa
0122-6517
REDICUC - Repositorio CUC
url http://hdl.handle.net/11323/2385
https://doi.org/10.17981/ingecuc.14.2.2018.04
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofseries.spa.fl_str_mv INGE CUC; Vol. 14, Núm. 2 (2018)
dc.relation.ispartofjournal.spa.fl_str_mv INGE CUC
INGE CUC
dc.relation.references.spa.fl_str_mv S. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020
J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106
Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058
M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130
R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168
S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022
R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003
M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011
I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113
X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018
R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011
M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002
A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361
M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109
A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069
M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004
S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332
Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917
K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.
P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.
M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdf
S. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7
T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.
V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.
X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056
Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.
N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4
G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017
N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014
H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237
E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830
O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0
C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-T
G. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001
S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803
M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/9780857093677
dc.relation.citationendpage.none.fl_str_mv 54
dc.relation.citationstartpage.spa.fl_str_mv 45
dc.relation.citationissue.spa.fl_str_mv 2
dc.relation.citationvolume.spa.fl_str_mv 14
dc.relation.ispartofjournalabbrev.spa.fl_str_mv INGE CUC
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.extent.spa.fl_str_mv 10 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Corporación Universidad de la Costa
dc.source.spa.fl_str_mv INGE CUC
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://revistascientificas.cuc.edu.co/ingecuc/article/view/1756
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/c4c9fae4-93f5-49ef-a25d-3fcb7a09cf53/download
https://repositorio.cuc.edu.co/bitstreams/6645c68d-89fa-449d-8d45-b25db704497c/download
https://repositorio.cuc.edu.co/bitstreams/568cc326-ea6f-4f63-89d4-aa3f9d0bb362/download
https://repositorio.cuc.edu.co/bitstreams/cd0a2736-7294-404d-bcda-2fb7b56e4219/download
bitstream.checksum.fl_str_mv 0914c45c494e531992d9fd35dbead80c
8a4605be74aa9ea9d79846c1fba20a33
28146ed73169b02cd1e41590a2716ef5
9c226a13fe5bb460c36a6fac28bbac67
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760674496315392
spelling López Herrera, Johan EstebanHernández Montes, VanessaBetancur Henao, Claudia PatriciaSanta Marín, Juan FelipeBuitrago Sierra, Robison2019-02-11T21:45:12Z2019-02-11T21:45:12Z2018-12-03J. López H., V. Hernández-Montes, C. Betancur-Henao, J. F. Santa-Marín, R. Buitrago-Sierra “Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating method,” INGE CUC, vol. 14, no. 2, pp. 45-54, 2018. DOI: http://doi.org/10.17981/ingecuc.14.2.2018.04http://hdl.handle.net/11323/2385https://doi.org/10.17981/ingecuc.14.2.2018.0410.17981/ingecuc.14.2.2018.042382-4700Corporación Universidad de la Costa0122-6517REDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Introduction− Magnesium alloys have been known for its bio-compatible characteristics and tissue restoration properties. On the other hand, TiO2 has been found to decrease the corrosion rates of the magnesium alloys.Objective−In this work, the dip-coating technique was used to coat the magnesium alloy with TiO2 particles in order to evalu-ate its corrosion resistance.Methodology−The particles were analyzed by Scanning Elec-tron Microscopy (SEM) and visual inspection. Additionally, hy-drogen evolution tests were performed to understand the effect of adding TiO2 in corrosion rates of Mg-alloys.Results− The results showed the positive effect of TiO2 in the improvement of the ASTM B107 AZ31B Mg alloys corro-sion by an indirect measurement through hydrogen evolution tests. The bare ASTM B107 AZ31B showed a corrosion 29 times faster compared to the coated alloy. The thickness of the coatings obtained using the dip-coating method is thin-ner than 20 nm. Conclusions−TiO2 particles were aggregated on the surface of the ASTM B107 AZ31B alloy with a controlled speed. SEM images have shown the improvement of the coating when the H2O concentration in the sol increased. Another important parameter is the withdrawal speed during the dip-coat process which was found to be better at a speed of 3mm/min. Hydrogen evolution in the acid solution showed that coated ASTM B107 AZ31B has less hydrogen production during the corrosion test. The dip-coating technique can also be used to coat polypropyl-ene discs entirely.Introducción− Las aleaciones de magnesio son conocidas por sus ca-racterísticas biocompatibles y propiedades de restauración de tejidos; por otro lado, se ha encontrado que el TiO2 disminuye las velocidades de corrosión de las aleaciones de magnesio.Objetivo− En este trabajo, la técnica de recubrimiento por inmersión se usó para recubrir una aleación de magnesio con partículas de TiO2 y evaluar su comportamiento a corrosión.Metodología− Las partículas se analizaron por microscopía electrónica de barrido (SEM) e inspección visual. Además, se realizaron pruebas de evolución de hidrógeno para comprender el efecto de la adición de TiO2en la velocidad de corrosión de la aleación de Mg.Resultados− Los resultados mostraron el efecto positivo de TiO2 en la mejora de la corrosión de aleaciones de ASTM B107 AZ31B Mg mediante una medición indirecta a través de pruebas de evolución de hidrógeno. La aleación ASTM B107 AZ31B sin recubrimiento muestra una corro-sión 29 veces más rápida en comparación con la aleación recubierta. El espesor obtenido mediante el método de recubrimiento por inmersión es inferior a 20 nm. Conclusiones− Las partículas de TiO2 se agregaron en la superficie de la aleación ASTM B107 AZ31B con una velocidad controlada. Las imáge-nes SEM mostraron la mejora del recubrimiento cuando aumenta la con-centración de H2O en el sol. Otro parámetro importante es la velocidad de extracción durante el proceso de recubrimiento por inmersión, que resultó ser mejor a una velocidad de 3 mm/min. La evolución del hidró-geno en la solución mostró que la aleación ASTM B107 AZ31B recubierta reportó menos producción de hidrógeno durante la prueba de corrosión. La técnica de recubrimiento por inmersión puede realizarse en polipro-pileno y, finalmente, obtener una superficie completamente recubierta.López Herrera, Johan Esteban-e5b1bd98-a1f0-41c7-bf23-651309167658-0Hernández Montes, Vanessa-d24669ba-0d35-46cb-acfc-53a4d7134539-0Betancur Henao, Claudia Patricia-9d1f8a7c-cbd1-4a3b-b088-0649281a23e6-0Santa Marín, Juan Felipe-ff030cd3-55bd-4abf-a4e5-5156002babd7-0Buitrago Sierra, Robison-b4e2b10a-9db9-4e2e-9646-6ced2ae9d034-010 páginasapplication/pdfengCorporación Universidad de la CostaINGE CUC; Vol. 14, Núm. 2 (2018)INGE CUCINGE CUCS. Agarwal, J. Curtin, B. Duffy, and S. Jaiswal, “Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications,” Mater. Sci. Eng. C, vol. 68, pp. 948–963, Nov. 2016. https://doi.org/10.1016/j.msec.2016.06.020J. Fei et al., “Biocompatibility and neurotoxicity of magnesium alloys potentially used for neural repairs,” Mater. Sci. Eng. C, vol. 78, pp. 1155–1163, Sep. 2017. https://doi.org/10.1016/j.msec.2017.04.106Y. Liu, Y. Liu, N. Liao, F. Cui, M. Park, and H.-Y. Kim, “Fabrication and durable antibacterial properties of electrospun chitosan nanofibers with silver nanoparticles,” Int. J. Biol. Macromol., vol. 79, pp. 638–643, 2015. https://doi.org/10.1016/j.ijbiomac.2015.05.058M. Razavi et al., “In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants,” Appl. Surf. Sci., vol. 313, pp. 60–66, Sep. 2014. https://doi.org/10.1016/j.apsusc.2014.05.130R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “The Effect of Cooling Strategies and Machining Feed Rate on the Corrosion Behavior and Wettability of AZ31 Alloy for Biomedical Applications,” Procedia CIRP, vol. 65, pp. 7–12, Jan. 2017. https://doi.org/10.1016/j.procir.2017.03.168S. Castiglioni, A. Cazzaniga, W. Albisetti, and J. A. M. Maier, “Magnesium and osteoporosis: current state of knowledge and future research directions,” Nutrients, vol. 5, no. 8, pp. 3022–33, Jul. 2013. https://doi.org/10.3390/nu5083022R. Radha and D. Sreekanth, “Insight of magnesium alloys and composites for orthopedic implant applications – a review,” J. Magnes. Alloy., vol. 5, no. 3, pp. 286–312, 2017. https://doi.org/10.1016/j.jma.2017.08.003M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion,” Prog. Mater. Sci., vol. 89, pp. 92–193, Aug. 2017. https://doi.org/10.1016/j.pmatsci.2017.04.011I. A. Shahar, T. Hosaka, S. Yoshihara, and B. J. Macdonald, “Mechanical and Corrosion Properties of AZ31 Mg Alloy Processed by Equal-Channel Angular Pressing and Aging,” Procedia Eng., vol. 184, pp. 423–431, 2017. https://doi.org/10.1016/j.proeng.2017.04.113X. Zhang et al., “Layer-by-layer assembly of silver nanoparticles embedded polyelectrolyte multilayer on magnesium alloy with enhanced antibacterial property,” Surf. Coatings Technol., vol. 286, pp. 103–112, Jan. 2016. https://doi.org/10.1016/j.surfcoat.2015.12.018R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, “Recent progress in corrosion protection of magnesium alloys by organic coatings,” Prog. Org. Coatings, vol. 73, no. 2–3, pp. 129–141, Feb. 2012. https://doi.org/10.1016/j.porgcoat.2011.10.011M. Kulkarni et al., “Titanium nanostructures for biomedical applications,” Nanotechnology, vol. 26, no. 6, p. 062002, Feb. 2015. https://doi.org/10.1088/0957-4484/26/6/062002A. M. Khorasani, M. Goldberg, E. H. Doeven, and G. Littlefair, “Titanium in Biomedical Applications –Properties and Fabrication: a Review,” Tissue Eng. J. Biomater. Tissue Eng., vol. 5, no. 5, pp. 593–619, 2015. https://doi.org/10.1166/jbt.2015.1361M. A. Shaheed and F. H. Hussein, “Preparation and Applications of Titanium Dioxide and Zinc Oxide Nanoparticles,” J. Environ. Anal. Chem., vol. 02, no. 01, 2014. https://doi.org/10.4172/2380-2391.1000e109A. Saffar, P. J. Carreau, M. R. Kamal, and A. Ajji, “Hydrophilic modification of polypropylene microporous membranes by grafting TiO2 nanoparticles with acrylic acid groups on the surface,” Polymer (Guildf)., vol. 55, no. 23, pp. 6069–6075, Nov. 2014. https://doi.org/10.1016/j.polymer.2014.09.069M. Lu et al., “Photo- and thermo-oxidative aging of polypropylene filled with surface modified fumed nanosilica,” Compos. Commun., vol. 3, pp. 51–58, Mar. 2017. https://doi.org/10.1016/j.coco.2017.02.004S. C. Tjong, K. Yeung, H. M. Wong, and C. Z. Liao, “The development, fabrication, and material characterization of polypropylene composites reinforced with carbon nanofiber and hydroxyapatite nanorod hybrid fillers,” Int. J. Nanomedicine, vol. 9, p. 1299, Mar. 2014. https://doi.org/10.2147/IJN.S58332Y. Liu and M. Wang, “Fabrication and characteristics of hydroxyapatite reinforced polypropylene as a bone analogue biomaterial,” J. Appl. Polym. Sci., vol. 106, no. 4, pp. 2780–2790, Nov. 2007. https://doi.org/10.1002/app.26917K. Seshan, Handbook of thin film deposition: techniques, processes, and technologies. William Andrew, 2012.P. Saravanan, M. Ganapathy, A. Charles, S. Tamilselvan, and R. Jeyasekaran, “Electrical properties of green synthesized TiO2 nanoparticles,” Adv. Appl. Sci. Res., vol. 7, no. 3, pp. 158–168, 2016.M. Poté, (2016). Dip Coating vs. Spin Coating. Satisloh Italy S.r.l. [Online]. Available http://www.satisloh.com/fileadmin/contents/Whitepaper/Dip-Coating-vs-Spin-Coating_EN.pdfS. Thirugnanaselvi, S. Kuttirani, and A. R. Emelda, “Effect of Schiff base as corrosion inhibitor on AZ31 magnesium alloy in hydrochloric acid solution,” Trans. Nonferrous Met. Soc. China, vol. 24, no. 6, pp. 1969–1977, Jul.2014. https://doi.org/10.1016/S1003-6326(14)63278-7T. Schneller, R. Waser, M. Kosec, and D. Payne Editors, Chemical Solution Deposition of Functional Oxide Thin Films. New york: Springer, 2013.V. G. Parale, D. B. Mahadik, V. D. Phadtare, A. A. Pisal, H. H. Park, and S. B. Wategaonkar, “Dip Coated Superhydrophobic and Anticorrosive Silica Coatings,” Int. J. Mater. Sciene Eng., vol. 4, no. 1, pp. 60–68, 2016.X. Wang, F. Shi, X. Gao, C. Fan, W. Huang, and X. Feng, “A sol-gel dip/spin coating method to prepare titanium oxide films,” Thin Solid Films, vol. 548, pp. 34–39, 2013. https://doi.org/10.1016/j.tsf.2013.08.056Y. Reyes, A. Durán, and Y. Castro, “Glass-like cerium sol-gel coatings on AZ31B magnesium alloy for controlling the biodegradation of temporary implants,” Surf. Coatings Technol., vol. 307, no. Part A, pp. 574–582, 2016.N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy,” Trans. Nonferrous Met. Soc. China, vol. 27, no. 5, pp. 1087–1095, May 2017. https://doi.org/10.1016/S1003-6326(17)60127-4G. S. Frankel, A. Samaniego, and N. Birbilis, “Evolution of hydrogen at dissolving magnesium surfaces,” Corros. Sci., vol. 70, pp. 104–111, May 2013. https://doi.org/10.1016/j.corsci.2013.01.017N. T. Kirkland, N. Birbilis, and M. P. Staiger, “Assessing the corrosion of biodegradable magnesium implants: A critical review of current methodologies and their limitations,” Acta Biomater., vol. 8, no. 3, pp. 925–936, Mar. 2012. https://doi.org/10.1016/j.actbio.2011.11.014H.-S. Chen, C. Su, J.-L. Chen, T.-Y. Yang, N.-M. Hsu, and W.-R. Li, “Preparation and Characterization of Pure Rutile TiO 2 Nanoparticles for Photocatalytic Study and Thin Films for Dye-Sensitized Solar Cells,” J. Nanomater., vol. 2011, pp. 1–8, Nov. 2011. https://doi.org/10.1155/2011/510237E. Firlar, S. Çınar, S. Kashyap, M. Akinc, and T. Prozorov, “Direct Visualization of the Hydration Layer on Alumina Nanoparticles with the Fluid Cell STEM in situ,” Sci. Rep., vol. 5, no. 1, p. 9830, Sep. 2015. https://doi.org/10.1038/srep09830O. Cohu and H. Benkreira, “Air entrainment in angled dip coating,” Chem. Eng. Sci., vol. 53, no. 3, pp. 533–540, Feb. 1998. https://doi.org/10.1016/S0009-2509(97)00323-0C. J. Brinker, G. C. Frye, A. J. Hurd, and C. S. Ashley, “Fundamentals of sol-gel dip coating,” Thin Solid Films, vol. 201, no. 1, pp. 97–108, Jun. 1991. https://doi.org/10.1016/0040-6090(91)90158-TG. Berteloot, A. Daerr, F. Lequeux, and L. Limat, “Dip coating with colloids and evaporation,” Chem. Eng. Process. Process Intensif., vol. 68, pp. 69–73, Jun. 2013. https://doi.org/10.1016/j.cep.2012.09.001S. Zhang, Hydroxyapatite coatings for biomedical applications. Boca Ratón: CRC Press, Taylor & Francis Group, 2013. https://doi.org/10.1201/b14803M. Driver, "Coatings for biomedical applications," Woodhead Publishing Series in Biomaterials, 2012. pp. 353- 366. https://doi.org/10.1533/97808570936775445214INGE CUCINGE CUChttps://revistascientificas.cuc.edu.co/ingecuc/article/view/1756Modification of ASTM B107 AZ31 alloy with TiO2 particles using the dip-coating methodModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersiónArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Dip-coatingCorrosionTiO2 particlesMg alloysHydrogen evolutionRecubrimientos por inmersiónCorrosiónPartículas de TiO2Aleaciones de MgEvolución del hidrógenoPublicationORIGINALModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdfModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdfapplication/pdf2535452https://repositorio.cuc.edu.co/bitstreams/c4c9fae4-93f5-49ef-a25d-3fcb7a09cf53/download0914c45c494e531992d9fd35dbead80cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/6645c68d-89fa-449d-8d45-b25db704497c/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdf.jpgModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdf.jpgimage/jpeg60888https://repositorio.cuc.edu.co/bitstreams/568cc326-ea6f-4f63-89d4-aa3f9d0bb362/download28146ed73169b02cd1e41590a2716ef5MD54TEXTModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdf.txtModificación de la aleación ASTM B107 AZ31 con partículas de TiO2 utilizando el método de recubrimiento por inmersión.pdf.txttext/plain36091https://repositorio.cuc.edu.co/bitstreams/cd0a2736-7294-404d-bcda-2fb7b56e4219/download9c226a13fe5bb460c36a6fac28bbac67MD5511323/2385oai:repositorio.cuc.edu.co:11323/23852024-09-16 16:43:08.36open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=