Green building's heat loss reduction analysis through two novel hybrid approaches

One of the key reasons for the performance discrepancy between a building's intended usage and the actual operation is Heat Loss, which describes a building's envelope efficiency during in-use circumstances. In this setting, the ANN models’ use for energy analysis of green buildings has be...

Full description

Autores:
Moayedi, Hossein
YILDIZHAN, Hasan
Aungkulanon, Pasura
Cardenas Escorcia, Yulineth
Al-Bahrani, Mohammed
Binh, Le Nguyen
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/9940
Acceso en línea:
https://hdl.handle.net/11323/9940
https://repositorio.cuc.edu.co/
Palabra clave:
Heat loss
Green building
Energy efficiency
Artificial intelligence
Rights
embargoedAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_9e5f3e2877032aadf7e264dbbcadbe75
oai_identifier_str oai:repositorio.cuc.edu.co:11323/9940
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Green building's heat loss reduction analysis through two novel hybrid approaches
title Green building's heat loss reduction analysis through two novel hybrid approaches
spellingShingle Green building's heat loss reduction analysis through two novel hybrid approaches
Heat loss
Green building
Energy efficiency
Artificial intelligence
title_short Green building's heat loss reduction analysis through two novel hybrid approaches
title_full Green building's heat loss reduction analysis through two novel hybrid approaches
title_fullStr Green building's heat loss reduction analysis through two novel hybrid approaches
title_full_unstemmed Green building's heat loss reduction analysis through two novel hybrid approaches
title_sort Green building's heat loss reduction analysis through two novel hybrid approaches
dc.creator.fl_str_mv Moayedi, Hossein
YILDIZHAN, Hasan
Aungkulanon, Pasura
Cardenas Escorcia, Yulineth
Al-Bahrani, Mohammed
Binh, Le Nguyen
dc.contributor.author.none.fl_str_mv Moayedi, Hossein
YILDIZHAN, Hasan
Aungkulanon, Pasura
Cardenas Escorcia, Yulineth
Al-Bahrani, Mohammed
Binh, Le Nguyen
dc.subject.proposal.eng.fl_str_mv Heat loss
Green building
Energy efficiency
Artificial intelligence
topic Heat loss
Green building
Energy efficiency
Artificial intelligence
description One of the key reasons for the performance discrepancy between a building's intended usage and the actual operation is Heat Loss, which describes a building's envelope efficiency during in-use circumstances. In this setting, the ANN models’ use for energy analysis of green buildings has become more established. This research aims to anticipate the heat loss of green buildings utilizing two artificial neural network-based methodologies (ANN). In particular, TLBO and BBO are used and contrasted. Additionally, RMSE, MAE, and R2 are used to calculate an absolute error for predicting heat loss to gauge the accuracy of the findings. The suggested TLBO-MLP standard is a reliable method with a positive outcome (RMSE = 0.01012 and 0.05216, and R2 = 0.99536 and 0.9651). Also, according to the training error ranges of [−0.0006078, 0.01133] and [−0.00040708, 0.010181] and testing error ranges of [0.0004724, 0.068666] and [0.0021984, 0.057688] for BBO-MLP and TLBO-MLP, respectively, shows that the TLBO-MLP reaches the lower range of error and can predict the heat loss with higher accuracy and it could properly forecast the heat loss of building technologies. Even so, the BBO-MLP standard provides this research with satisfactory performance (R2 = 0.9943 and 0.95175, and RMSE = 0.01122 and 0.06112). To increase the precision of calculating the heat loss of buildings, specifically integrating them with optimization algorithms, further study is required.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-02T16:33:18Z
dc.date.available.none.fl_str_mv 2023-03-02T16:33:18Z
2025
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.spa.fl_str_mv Hossein Moayedi, Hasan Yildizhan, Pasura Aungkulanon, Yulineth Cardenas Escorcia, Mohammed Al-Bahrani, Binh Nguyen Le, Green building’s heat loss reduction analysis through two novel hybrid approaches, Sustainable Energy Technologies and Assessments, Volume 55, 2023, 102951, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102951.
dc.identifier.issn.spa.fl_str_mv 2213-1388
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/9940
dc.identifier.doi.none.fl_str_mv 10.1016/j.seta.2022.102951
dc.identifier.eissn.spa.fl_str_mv 2213-1396
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Hossein Moayedi, Hasan Yildizhan, Pasura Aungkulanon, Yulineth Cardenas Escorcia, Mohammed Al-Bahrani, Binh Nguyen Le, Green building’s heat loss reduction analysis through two novel hybrid approaches, Sustainable Energy Technologies and Assessments, Volume 55, 2023, 102951, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102951.
2213-1388
10.1016/j.seta.2022.102951
2213-1396
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/9940
https://repositorio.cuc.edu.co/
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.ispartofjournal.spa.fl_str_mv Sustainable Energy Technologies and Assessments
dc.relation.references.spa.fl_str_mv [1] CHANGE, I.P.O.C., Report of the Nineteenth Session of the Intergovernmental Panel on Climate Change (IPCC) Geneva, 17-20 (am only) April 2002. 2007.
[2] Yan B, et al. Geometrically enabled soft electroactuators via laser cutting. Adv Eng Mater 2019;21(11):1900664.
[3] Heydari A, Sadati SE, Gharib MR. Effects of different window configurations on energy consumption in building: optimization and economic analysis. J Build Eng 2021;35:102099.
[4] de Gastines M, Correa E, ´ Pattini A. Heat transfer through window frames in EnergyPlus: model evaluation and improvement. Adv Build Energy Res 2019;13 (1):138–55.
[5] Al-Ghaili AM, et al. Energy management systems and strategies in buildings sector: A scoping review. IEEE Access 2021;9:63790–813.
[6] Agency EE. Final energy consumption by sector and fuel. Belgium: European Environment Agency Brussels; 2015.
[7] Ahmadi-Karvigh S, et al. Real-time activity recognition for energy efficiency in buildings. Appl Energy 2018;211:146–60.
[8] Sadeghian O, et al. A comprehensive review on energy saving options and saving potential in low voltage electricity distribution networks: Building and public lighting. Sustain Cities Soc 2021;72:103064.
[9] Huang Y, Li C. Accurate heating, ventilation and air conditioning system load prediction for residential buildings using improved ant colony optimization and wavelet neural network. Journal of Building Engineering 2021;35:101972.
[10] Sarihi S, Saradj FM, Faizi M. A critical review of façade retrofit measures for minimizing heating and cooling demand in existing buildings. Sustain Cities Soc 2021;64:102525.
[11] Chen Y, et al. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energ Conver Manage 2017;134:382–98.
[12] Adnan Ikram RM, Ewees AA, Parmar KS, Yaseen ZM, Shahid S, Kisi O. The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction. Applied Soft Computing 2022;131:109739. https://doi.org/10.1016/j.asoc.2022.109739.
[13] Hewawasam V, Matsui K. Historical development of climate change policies and the Climate Change Secretariat in Sri Lanka. Environ Sci Policy 2019;101:255–61.
[14] Ascione F, et al. Building envelope design: multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy 2019;174:359–74.
[15] Echenagucia TM, et al. The early design stage of a building envelope: multiobjective search through heating, cooling and lighting energy performance analysis. Appl Energy 2015;154:577–91.
[16] Ciulla G, et al. Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level. Energy 2019;176:380–91.
[17] Wu W, et al. A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy Build 2018;158:1613–24.
[18] Li H, Wang S, Cheung H. Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions. Appl Energy 2018; 228:1280–91.
[19] Wu P, et al. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Eng Struct 2022;272: 114962.
[20] Alnaqi AA, et al. Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energ Conver Manage 2019;183:137–48.
[21] Zhao Y, et al. Fragility analyses of bridge structures using the logarithmic piecewise function-based probabilistic seismic demand model. Sustainability 2021;13(14): 7814.
[22] Muhammad S, et al. Sustainable green information systems design: a theoretical model. Acta Informatica Malaysia 2017;1(2):3–4.
[23] Nebot A, ` Mugica F. Energy performance forecasting of residential buildings using fuzzy approaches. Appl Sci 2020;10(2):720.
[24] Almutairi K, et al. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. Sustainability 2022;14(10):5924.
[25] Xie X, Sun Y. A piecewise probabilistic harmonic power flow approach in unbalanced residential distribution systems. Int J Electr Power Energy Syst 2022; 141:108114.
[26] Nguyen H, et al. Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system. Eng Comput 2020;36 (3):857–66.
[27] Guo Z, et al. Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing. Energy Build 2020;214:109866.
[28] Wang R, Lu S, Feng W. A novel improved model for building energy consumption prediction based on model integration. Appl Energy 2020;262:114561.
[29] Abd Alla S, et al. Life-cycle approach to the estimation of energy efficiency measures in the buildings sector. Appl Energy 2020;264:114745.
[30] Sadeghi A, et al. An intelligent model to predict energy performances of residential buildings based on deep neural networks. Energies 2020;13(3):571.
[31] Metallidou CK, Psannis KE, Egyptiadou EA. Energy efficiency in smart buildings: IoT approaches. IEEE Access 2020;8:63679–99.
[32] Bui X-N, Moayedi H, Rashid ASA. Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energy-efficient building system. Eng Comput 2020;36(3):931–40.
[33] Luo X, et al. Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads. Sustain Cities Soc 2020; 61:102283.
[34] Foong LK, et al. Efficient metaheuristic-retrofitted techniques for concrete slump simulation. Smart Struct Syst Int J 2021;27(5):745–59.
[35] Zhao Y, et al. Deterministic snap-through buckling and energy trapping in axiallyloaded notched strips for compliant building blocks. Smart Mater Struct 2020;29 (2):p. 02LT03.
[36] Wang Z, Hong T, Piette MA. Building thermal load prediction through shallow machine learning and deep learning. Appl Energy 2020;263:114683.
[37] Adnan Ikram RM, Dai H-L, Ewees AA, Shiri J, Kisi O, Zounemat-Kermani M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Reports 2022;8:12063–80. https://doi.org/10.1016/j.egyr.2022.09.015.
[38] Ozarisoy B. Energy effectiveness of passive cooling design strategies to reduce the impact of long-term heatwaves on occupants’ thermal comfort in Europe: climate change and mitigation. J Clean Prod 2022;330:129675.
[39] Yu D, et al. Optimal performance of hybrid energy system in the presence of electrical and heat storage systems under uncertainties using stochastic p-robust optimization technique. Sustain Cities Soc 2022;83:103935.
[40] Uriarte I, et al. Estimation of the heat loss coefficient of two occupied residential buildings through an average method. Energies 2020;13(21):5724.
[41] Naphon P, et al. ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int J Heat Mass Transf 2019;131:329–40.
[42] Gao W, et al. Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms. Appl Soft Comput 2019;84:105748.
[43] Moya-Rico J, et al. Characterization of a triple concentric-tube heat exchanger with corrugated tubes using Artificial Neural Networks (ANN). Appl Therm Eng 2019; 147:1036–46.
[44] Zhou G, Moayedi H, Foong LK. Teaching–learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building. Eng Comput 2021;37(4):3037–48.
[45] Ren Z, Motlagh O, Chen D. A correlation-based model for building ground-coupled heat loss calculation using Artificial Neural Network techniques. J Build Perform Simul 2020;13(1):48–58.
[46] Abiodun OI, et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018;4(11):e00938.
[47] Wang, S.-C., Artificial Neural Network, in Interdisciplinary Computing in Java Programming, S.-C. Wang, Editor. 2003, Springer US: Boston, MA. p. 81-100.
[48] Zhao Y, Foong LK. Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm. Measurement 2022:111405.
[49] Zhao Y, et al. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement 2022;194:110993.
[50] Liu L, et al. Optimizing an ANN model with genetic algorithm (GA) predicting loadsettlement behaviours of eco-friendly raft-pile foundation (ERP) system. Eng Comput 2020;36(1):421–33.
[51] Zhao Y, et al. A novel artificial bee colony algorithm for structural damage detection. Adv Civ Eng 2020;2020.
[52] Feindt M, Kerzel U. The NeuroBayes neural network package. Nucl Instrum Methods Phys Res, Sect A 2006;559(1):190–4.
[53] Zhao Y, Wang Z. Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach. Struct Multidiscip Optim 2022;65(6):1–22.
[54] Moayedi H, et al. Applicability and comparison of four nature-inspired hybrid techniques in predicting driven piles’ friction capacity. Transp Geotech 2022: 100875.
[55] Hecht-Nielsen, R., III.3 - Theory of the Backpropagation Neural Network**Based on “nonindent” by Robert Hecht-Nielsen, which appeared in Proceedings of the International Joint Conference on Neural Networks 1, 593–611, June 1989. © 1989 IEEE, in Neural Networks for Perception, H. Wechsler, Editor. 1992, Academic Press. p. 65-93.
[56] Yilmaz I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 2009;35(6):1125–38.
[57] Prakash N, Manconi A, Loew S. A new strategy to map landslides with a generalized convolutional neural network. Sci Rep 2021;11(1):9722.
[58] Moayedi H, et al. Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis. Geomat Nat Haz Risk 2019;10(1):2429–53.
[59] Wilson, E.O. and R.H. MacArthur, The theory of island biogeography. Vol. 1. 1967: JSTOR.
[60] Simon D. Biogeography-based optimization. IEEE Trans Evol Comput 2008;12(6): 702–13.
[61] Ma H. An analysis of the equilibrium of migration models for biogeography-based optimization. Inf Sci 2010;180(18):3444–64.
[62] Ma H, Simon D. Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intel 2011;24(3):517–25.
[63] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 2011;43(3):303–15.
[64] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 2012; 183(1):1–15.
[65] Rao R, Patel V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 2012;3 (4):535–60.
[66] Zhao Y, et al. Employing TLBO and SCE for optimal prediction of the compressive strength of concrete. Smart Struct Syst 2020;26(6):753–63.
[67] Zhao Y, Zhong X, Foong LK. Predicting the splitting tensile strength of concrete using an equilibrium optimization model. Steel Compos Struct Int J 2021;39(1): 81–93.
[68] Acikgoz O, et al. A novel ANN-based approach to estimate heat transfer coefficients in radiant wall heating systems. Energy Build 2017;144:401–15.
[69] Reynoso-Jardon ´ E, et al. Artificial neural networks (ANN) to predict overall heat transfer coefficient and pressure drop on a simulated heat exchanger. Int J Appl Eng Res 2019;14(13):3097–103.
[70] Bakas I, Kontoleon KJ. Performance Evaluation of Artificial Neural Networks (ANN) Predicting Heat Transfer through Masonry Walls Exposed to Fire. Appl Sci 2021;11(23):11435.
[71] Martínez-Comesana ˜ M, et al. Heat loss coefficient estimation applied to existing buildings through machine learning models. Appl Sci 2020;10(24):8968.
[72] Wang H, et al. Application of wall and insulation materials on green building: a review. Sustainability 2018;10(9):3331.
[73] Agoudjil B, et al. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build 2011;43(2–3):491–7.
dc.relation.citationendpage.spa.fl_str_mv 15
dc.relation.citationstartpage.spa.fl_str_mv 1
dc.relation.citationvolume.spa.fl_str_mv 55
dc.rights.eng.fl_str_mv © 2022 Elsevier Ltd. All rights reserved.
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.spa.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/embargoedAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_f1cf
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
© 2022 Elsevier Ltd. All rights reserved.
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_f1cf
eu_rights_str_mv embargoedAccess
dc.format.extent.spa.fl_str_mv 15 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Elsevier Ltd.
dc.publisher.place.spa.fl_str_mv United Kingdom
dc.source.spa.fl_str_mv https://www.sciencedirect.com/science/article/pii/S2213138822009997
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/f883ddb1-81f9-4928-86e3-137f4ccd6aea/download
https://repositorio.cuc.edu.co/bitstreams/d409e913-88b6-439b-9246-7e26eb365c48/download
https://repositorio.cuc.edu.co/bitstreams/cc658901-6fb6-4986-ac44-65385e776921/download
https://repositorio.cuc.edu.co/bitstreams/300fc229-3935-42da-bcd0-d92ca8ac6a9d/download
bitstream.checksum.fl_str_mv cd3379caf48e7b88a55fb97060c71ce9
2f9959eaf5b71fae44bbf9ec84150c7a
ed3f7b4b8808394aa8e6d5555388b01e
58b0125cb025d62f45ab9ccfba62570f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1828166840441896960
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)© 2022 Elsevier Ltd. All rights reserved.https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/embargoedAccesshttp://purl.org/coar/access_right/c_f1cfMoayedi, HosseinYILDIZHAN, HasanAungkulanon, PasuraCardenas Escorcia, YulinethAl-Bahrani, MohammedBinh, Le Nguyen2023-03-02T16:33:18Z20252023-03-02T16:33:18Z2023Hossein Moayedi, Hasan Yildizhan, Pasura Aungkulanon, Yulineth Cardenas Escorcia, Mohammed Al-Bahrani, Binh Nguyen Le, Green building’s heat loss reduction analysis through two novel hybrid approaches, Sustainable Energy Technologies and Assessments, Volume 55, 2023, 102951, ISSN 2213-1388, https://doi.org/10.1016/j.seta.2022.102951.2213-1388https://hdl.handle.net/11323/994010.1016/j.seta.2022.1029512213-1396Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/One of the key reasons for the performance discrepancy between a building's intended usage and the actual operation is Heat Loss, which describes a building's envelope efficiency during in-use circumstances. In this setting, the ANN models’ use for energy analysis of green buildings has become more established. This research aims to anticipate the heat loss of green buildings utilizing two artificial neural network-based methodologies (ANN). In particular, TLBO and BBO are used and contrasted. Additionally, RMSE, MAE, and R2 are used to calculate an absolute error for predicting heat loss to gauge the accuracy of the findings. The suggested TLBO-MLP standard is a reliable method with a positive outcome (RMSE = 0.01012 and 0.05216, and R2 = 0.99536 and 0.9651). Also, according to the training error ranges of [−0.0006078, 0.01133] and [−0.00040708, 0.010181] and testing error ranges of [0.0004724, 0.068666] and [0.0021984, 0.057688] for BBO-MLP and TLBO-MLP, respectively, shows that the TLBO-MLP reaches the lower range of error and can predict the heat loss with higher accuracy and it could properly forecast the heat loss of building technologies. Even so, the BBO-MLP standard provides this research with satisfactory performance (R2 = 0.9943 and 0.95175, and RMSE = 0.01122 and 0.06112). To increase the precision of calculating the heat loss of buildings, specifically integrating them with optimization algorithms, further study is required.15 páginasapplication/pdfengElsevier Ltd.United Kingdomhttps://www.sciencedirect.com/science/article/pii/S2213138822009997Green building's heat loss reduction analysis through two novel hybrid approachesArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Sustainable Energy Technologies and Assessments[1] CHANGE, I.P.O.C., Report of the Nineteenth Session of the Intergovernmental Panel on Climate Change (IPCC) Geneva, 17-20 (am only) April 2002. 2007.[2] Yan B, et al. Geometrically enabled soft electroactuators via laser cutting. Adv Eng Mater 2019;21(11):1900664.[3] Heydari A, Sadati SE, Gharib MR. Effects of different window configurations on energy consumption in building: optimization and economic analysis. J Build Eng 2021;35:102099.[4] de Gastines M, Correa E, ´ Pattini A. Heat transfer through window frames in EnergyPlus: model evaluation and improvement. Adv Build Energy Res 2019;13 (1):138–55.[5] Al-Ghaili AM, et al. Energy management systems and strategies in buildings sector: A scoping review. IEEE Access 2021;9:63790–813.[6] Agency EE. Final energy consumption by sector and fuel. Belgium: European Environment Agency Brussels; 2015.[7] Ahmadi-Karvigh S, et al. Real-time activity recognition for energy efficiency in buildings. Appl Energy 2018;211:146–60.[8] Sadeghian O, et al. A comprehensive review on energy saving options and saving potential in low voltage electricity distribution networks: Building and public lighting. Sustain Cities Soc 2021;72:103064.[9] Huang Y, Li C. Accurate heating, ventilation and air conditioning system load prediction for residential buildings using improved ant colony optimization and wavelet neural network. Journal of Building Engineering 2021;35:101972.[10] Sarihi S, Saradj FM, Faizi M. A critical review of façade retrofit measures for minimizing heating and cooling demand in existing buildings. Sustain Cities Soc 2021;64:102525.[11] Chen Y, et al. Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales. Energ Conver Manage 2017;134:382–98.[12] Adnan Ikram RM, Ewees AA, Parmar KS, Yaseen ZM, Shahid S, Kisi O. The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction. Applied Soft Computing 2022;131:109739. https://doi.org/10.1016/j.asoc.2022.109739.[13] Hewawasam V, Matsui K. Historical development of climate change policies and the Climate Change Secretariat in Sri Lanka. Environ Sci Policy 2019;101:255–61.[14] Ascione F, et al. Building envelope design: multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy 2019;174:359–74.[15] Echenagucia TM, et al. The early design stage of a building envelope: multiobjective search through heating, cooling and lighting energy performance analysis. Appl Energy 2015;154:577–91.[16] Ciulla G, et al. Application of optimized artificial intelligence algorithm to evaluate the heating energy demand of non-residential buildings at European level. Energy 2019;176:380–91.[17] Wu W, et al. A multi-objective optimization design method in zero energy building study: A case study concerning small mass buildings in cold district of China. Energy Build 2018;158:1613–24.[18] Li H, Wang S, Cheung H. Sensitivity analysis of design parameters and optimal design for zero/low energy buildings in subtropical regions. Appl Energy 2018; 228:1280–91.[19] Wu P, et al. Autonomous surface crack identification of concrete structures based on an improved one-stage object detection algorithm. Eng Struct 2022;272: 114962.[20] Alnaqi AA, et al. Prediction of energetic performance of a building integrated photovoltaic/thermal system thorough artificial neural network and hybrid particle swarm optimization models. Energ Conver Manage 2019;183:137–48.[21] Zhao Y, et al. Fragility analyses of bridge structures using the logarithmic piecewise function-based probabilistic seismic demand model. Sustainability 2021;13(14): 7814.[22] Muhammad S, et al. Sustainable green information systems design: a theoretical model. Acta Informatica Malaysia 2017;1(2):3–4.[23] Nebot A, ` Mugica F. Energy performance forecasting of residential buildings using fuzzy approaches. Appl Sci 2020;10(2):720.[24] Almutairi K, et al. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. Sustainability 2022;14(10):5924.[25] Xie X, Sun Y. A piecewise probabilistic harmonic power flow approach in unbalanced residential distribution systems. Int J Electr Power Energy Syst 2022; 141:108114.[26] Nguyen H, et al. Proposing a novel predictive technique using M5Rules-PSO model estimating cooling load in energy-efficient building system. Eng Comput 2020;36 (3):857–66.[27] Guo Z, et al. Optimal modification of heating, ventilation, and air conditioning system performances in residential buildings using the integration of metaheuristic optimization and neural computing. Energy Build 2020;214:109866.[28] Wang R, Lu S, Feng W. A novel improved model for building energy consumption prediction based on model integration. Appl Energy 2020;262:114561.[29] Abd Alla S, et al. Life-cycle approach to the estimation of energy efficiency measures in the buildings sector. Appl Energy 2020;264:114745.[30] Sadeghi A, et al. An intelligent model to predict energy performances of residential buildings based on deep neural networks. Energies 2020;13(3):571.[31] Metallidou CK, Psannis KE, Egyptiadou EA. Energy efficiency in smart buildings: IoT approaches. IEEE Access 2020;8:63679–99.[32] Bui X-N, Moayedi H, Rashid ASA. Developing a predictive method based on optimized M5Rules–GA predicting heating load of an energy-efficient building system. Eng Comput 2020;36(3):931–40.[33] Luo X, et al. Comparative study of machine learning-based multi-objective prediction framework for multiple building energy loads. Sustain Cities Soc 2020; 61:102283.[34] Foong LK, et al. Efficient metaheuristic-retrofitted techniques for concrete slump simulation. Smart Struct Syst Int J 2021;27(5):745–59.[35] Zhao Y, et al. Deterministic snap-through buckling and energy trapping in axiallyloaded notched strips for compliant building blocks. Smart Mater Struct 2020;29 (2):p. 02LT03.[36] Wang Z, Hong T, Piette MA. Building thermal load prediction through shallow machine learning and deep learning. Appl Energy 2020;263:114683.[37] Adnan Ikram RM, Dai H-L, Ewees AA, Shiri J, Kisi O, Zounemat-Kermani M. Application of improved version of multi verse optimizer algorithm for modeling solar radiation. Energy Reports 2022;8:12063–80. https://doi.org/10.1016/j.egyr.2022.09.015.[38] Ozarisoy B. Energy effectiveness of passive cooling design strategies to reduce the impact of long-term heatwaves on occupants’ thermal comfort in Europe: climate change and mitigation. J Clean Prod 2022;330:129675.[39] Yu D, et al. Optimal performance of hybrid energy system in the presence of electrical and heat storage systems under uncertainties using stochastic p-robust optimization technique. Sustain Cities Soc 2022;83:103935.[40] Uriarte I, et al. Estimation of the heat loss coefficient of two occupied residential buildings through an average method. Energies 2020;13(21):5724.[41] Naphon P, et al. ANN, numerical and experimental analysis on the jet impingement nanofluids flow and heat transfer characteristics in the micro-channel heat sink. Int J Heat Mass Transf 2019;131:329–40.[42] Gao W, et al. Comprehensive preference learning and feature validity for designing energy-efficient residential buildings using machine learning paradigms. Appl Soft Comput 2019;84:105748.[43] Moya-Rico J, et al. Characterization of a triple concentric-tube heat exchanger with corrugated tubes using Artificial Neural Networks (ANN). Appl Therm Eng 2019; 147:1036–46.[44] Zhou G, Moayedi H, Foong LK. Teaching–learning-based metaheuristic scheme for modifying neural computing in appraising energy performance of building. Eng Comput 2021;37(4):3037–48.[45] Ren Z, Motlagh O, Chen D. A correlation-based model for building ground-coupled heat loss calculation using Artificial Neural Network techniques. J Build Perform Simul 2020;13(1):48–58.[46] Abiodun OI, et al. State-of-the-art in artificial neural network applications: A survey. Heliyon 2018;4(11):e00938.[47] Wang, S.-C., Artificial Neural Network, in Interdisciplinary Computing in Java Programming, S.-C. Wang, Editor. 2003, Springer US: Boston, MA. p. 81-100.[48] Zhao Y, Foong LK. Predicting electrical power output of combined cycle power plants using a novel artificial neural network optimized by electrostatic discharge algorithm. Measurement 2022:111405.[49] Zhao Y, et al. Predicting compressive strength of manufactured-sand concrete using conventional and metaheuristic-tuned artificial neural network. Measurement 2022;194:110993.[50] Liu L, et al. Optimizing an ANN model with genetic algorithm (GA) predicting loadsettlement behaviours of eco-friendly raft-pile foundation (ERP) system. Eng Comput 2020;36(1):421–33.[51] Zhao Y, et al. A novel artificial bee colony algorithm for structural damage detection. Adv Civ Eng 2020;2020.[52] Feindt M, Kerzel U. The NeuroBayes neural network package. Nucl Instrum Methods Phys Res, Sect A 2006;559(1):190–4.[53] Zhao Y, Wang Z. Subset simulation with adaptable intermediate failure probability for robust reliability analysis: an unsupervised learning-based approach. Struct Multidiscip Optim 2022;65(6):1–22.[54] Moayedi H, et al. Applicability and comparison of four nature-inspired hybrid techniques in predicting driven piles’ friction capacity. Transp Geotech 2022: 100875.[55] Hecht-Nielsen, R., III.3 - Theory of the Backpropagation Neural Network**Based on “nonindent” by Robert Hecht-Nielsen, which appeared in Proceedings of the International Joint Conference on Neural Networks 1, 593–611, June 1989. © 1989 IEEE, in Neural Networks for Perception, H. Wechsler, Editor. 1992, Academic Press. p. 65-93.[56] Yilmaz I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat—Turkey). Comput Geosci 2009;35(6):1125–38.[57] Prakash N, Manconi A, Loew S. A new strategy to map landslides with a generalized convolutional neural network. Sci Rep 2021;11(1):9722.[58] Moayedi H, et al. Two novel neural-evolutionary predictive techniques of dragonfly algorithm (DA) and biogeography-based optimization (BBO) for landslide susceptibility analysis. Geomat Nat Haz Risk 2019;10(1):2429–53.[59] Wilson, E.O. and R.H. MacArthur, The theory of island biogeography. Vol. 1. 1967: JSTOR.[60] Simon D. Biogeography-based optimization. IEEE Trans Evol Comput 2008;12(6): 702–13.[61] Ma H. An analysis of the equilibrium of migration models for biogeography-based optimization. Inf Sci 2010;180(18):3444–64.[62] Ma H, Simon D. Blended biogeography-based optimization for constrained optimization. Eng Appl Artif Intel 2011;24(3):517–25.[63] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput Aided Des 2011;43(3):303–15.[64] Rao RV, Savsani VJ, Vakharia D. Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 2012; 183(1):1–15.[65] Rao R, Patel V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int J Ind Eng Comput 2012;3 (4):535–60.[66] Zhao Y, et al. Employing TLBO and SCE for optimal prediction of the compressive strength of concrete. Smart Struct Syst 2020;26(6):753–63.[67] Zhao Y, Zhong X, Foong LK. Predicting the splitting tensile strength of concrete using an equilibrium optimization model. Steel Compos Struct Int J 2021;39(1): 81–93.[68] Acikgoz O, et al. A novel ANN-based approach to estimate heat transfer coefficients in radiant wall heating systems. Energy Build 2017;144:401–15.[69] Reynoso-Jardon ´ E, et al. Artificial neural networks (ANN) to predict overall heat transfer coefficient and pressure drop on a simulated heat exchanger. Int J Appl Eng Res 2019;14(13):3097–103.[70] Bakas I, Kontoleon KJ. Performance Evaluation of Artificial Neural Networks (ANN) Predicting Heat Transfer through Masonry Walls Exposed to Fire. Appl Sci 2021;11(23):11435.[71] Martínez-Comesana ˜ M, et al. Heat loss coefficient estimation applied to existing buildings through machine learning models. Appl Sci 2020;10(24):8968.[72] Wang H, et al. Application of wall and insulation materials on green building: a review. Sustainability 2018;10(9):3331.[73] Agoudjil B, et al. Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy Build 2011;43(2–3):491–7.15155Heat lossGreen buildingEnergy efficiencyArtificial intelligencePublicationORIGINALGreen building's heat loss reduction analysis through two novel hybrid approaches.pdfGreen building's heat loss reduction analysis through two novel hybrid approaches.pdfArtículoapplication/pdf6830440https://repositorio.cuc.edu.co/bitstreams/f883ddb1-81f9-4928-86e3-137f4ccd6aea/downloadcd3379caf48e7b88a55fb97060c71ce9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-814828https://repositorio.cuc.edu.co/bitstreams/d409e913-88b6-439b-9246-7e26eb365c48/download2f9959eaf5b71fae44bbf9ec84150c7aMD52TEXTGreen building's heat loss reduction analysis through two novel hybrid approaches.pdf.txtGreen building's heat loss reduction analysis through two novel hybrid approaches.pdf.txtExtracted texttext/plain54278https://repositorio.cuc.edu.co/bitstreams/cc658901-6fb6-4986-ac44-65385e776921/downloaded3f7b4b8808394aa8e6d5555388b01eMD53THUMBNAILGreen building's heat loss reduction analysis through two novel hybrid approaches.pdf.jpgGreen building's heat loss reduction analysis through two novel hybrid approaches.pdf.jpgGenerated Thumbnailimage/jpeg14756https://repositorio.cuc.edu.co/bitstreams/300fc229-3935-42da-bcd0-d92ca8ac6a9d/download58b0125cb025d62f45ab9ccfba62570fMD5411323/9940oai:repositorio.cuc.edu.co:11323/99402024-09-17 14:16:42.402https://creativecommons.org/licenses/by-nc-nd/4.0/© 2022 Elsevier Ltd. All rights reserved.open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuCgpNRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuCjEuIERlZmluaWNpb25lcwoKYS4JT2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLgoKYi4JT2JyYSBEZXJpdmFkYSBzaWduaWZpY2EgdW5hIG9icmEgYmFzYWRhIGVuIGxhIG9icmEgb2JqZXRvIGRlIGVzdGEgbGljZW5jaWEgbyBlbiDDqXN0YSB5IG90cmFzIG9icmFzIHByZWV4aXN0ZW50ZXMsIHRhbGVzIGNvbW8gdHJhZHVjY2lvbmVzLCBhcnJlZ2xvcyBtdXNpY2FsZXMsIGRyYW1hdGl6YWNpb25lcywg4oCcZmljY2lvbmFsaXphY2lvbmVz4oCdLCB2ZXJzaW9uZXMgcGFyYSBjaW5lLCDigJxncmFiYWNpb25lcyBkZSBzb25pZG/igJ0sIHJlcHJvZHVjY2lvbmVzIGRlIGFydGUsIHJlc8O6bWVuZXMsIGNvbmRlbnNhY2lvbmVzLCBvIGN1YWxxdWllciBvdHJhIGVuIGxhIHF1ZSBsYSBvYnJhIHB1ZWRhIHNlciB0cmFuc2Zvcm1hZGEsIGNhbWJpYWRhIG8gYWRhcHRhZGEsIGV4Y2VwdG8gYXF1ZWxsYXMgcXVlIGNvbnN0aXR1eWFuIHVuYSBvYnJhIGNvbGVjdGl2YSwgbGFzIHF1ZSBubyBzZXLDoW4gY29uc2lkZXJhZGFzIHVuYSBvYnJhIGRlcml2YWRhIHBhcmEgZWZlY3RvcyBkZSBlc3RhIGxpY2VuY2lhLiAoUGFyYSBldml0YXIgZHVkYXMsIGVuIGVsIGNhc28gZGUgcXVlIGxhIE9icmEgc2VhIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbCBvIHVuYSBncmFiYWNpw7NuIHNvbm9yYSwgcGFyYSBsb3MgZWZlY3RvcyBkZSBlc3RhIExpY2VuY2lhIGxhIHNpbmNyb25pemFjacOzbiB0ZW1wb3JhbCBkZSBsYSBPYnJhIGNvbiB1bmEgaW1hZ2VuIGVuIG1vdmltaWVudG8gc2UgY29uc2lkZXJhcsOhIHVuYSBPYnJhIERlcml2YWRhIHBhcmEgbG9zIGZpbmVzIGRlIGVzdGEgbGljZW5jaWEpLgoKYy4JTGljZW5jaWFudGUsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IgcXVlIG9mcmVjZSBsYSBPYnJhIGVuIGNvbmZvcm1pZGFkIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYS4KCmQuCUF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuCgplLglPYnJhLCBlcyBhcXVlbGxhIG9icmEgc3VzY2VwdGlibGUgZGUgcHJvdGVjY2nDs24gcG9yIGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IgeSBxdWUgZXMgb2ZyZWNpZGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhCgpmLglVc3RlZCwgZXMgZWwgaW5kaXZpZHVvIG8gbGEgZW50aWRhZCBxdWUgZWplcmNpdGEgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSB5IHF1ZSBjb24gYW50ZXJpb3JpZGFkIG5vIGhhIHZpb2xhZG8gbGFzIGNvbmRpY2lvbmVzIGRlIGxhIG1pc21hIHJlc3BlY3RvIGEgbGEgT2JyYSwgbyBxdWUgaGF5YSBvYnRlbmlkbyBhdXRvcml6YWNpw7NuIGV4cHJlc2EgcG9yIHBhcnRlIGRlbCBMaWNlbmNpYW50ZSBwYXJhIGVqZXJjZXIgbG9zIGRlcmVjaG9zIGFsIGFtcGFybyBkZSBlc3RhIExpY2VuY2lhIHBlc2UgYSB1bmEgdmlvbGFjacOzbiBhbnRlcmlvci4KCjIuIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgpOYWRhIGVuIGVzdGEgTGljZW5jaWEgcG9kcsOhIHNlciBpbnRlcnByZXRhZG8gY29tbyB1bmEgZGlzbWludWNpw7NuLCBsaW1pdGFjacOzbiBvIHJlc3RyaWNjacOzbiBkZSBsb3MgZGVyZWNob3MgZGVyaXZhZG9zIGRlbCB1c28gaG9ucmFkbyB5IG90cmFzIGxpbWl0YWNpb25lcyBvIGV4Y2VwY2lvbmVzIGEgbG9zIGRlcmVjaG9zIGRlbCBhdXRvciBiYWpvIGVsIHLDqWdpbWVuIGxlZ2FsIHZpZ2VudGUgbyBkZXJpdmFkbyBkZSBjdWFscXVpZXIgb3RyYSBub3JtYSBxdWUgc2UgbGUgYXBsaXF1ZS4KCjMuIENvbmNlc2nDs24gZGUgbGEgTGljZW5jaWEuCkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246CgphLglSZXByb2R1Y2lyIGxhIE9icmEsIGluY29ycG9yYXIgbGEgT2JyYSBlbiB1bmEgbyBtw6FzIE9icmFzIENvbGVjdGl2YXMsIHkgcmVwcm9kdWNpciBsYSBPYnJhIGluY29ycG9yYWRhIGVuIGxhcyBPYnJhcyBDb2xlY3RpdmFzLgoKYi4JRGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLgoKYy4JRGlzdHJpYnVpciBjb3BpYXMgZGUgbGFzIE9icmFzIERlcml2YWRhcyBxdWUgc2UgZ2VuZXJlbiwgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4KTG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuCgo0LiBSZXN0cmljY2lvbmVzLgpMYSBsaWNlbmNpYSBvdG9yZ2FkYSBlbiBsYSBhbnRlcmlvciBTZWNjacOzbiAzIGVzdMOhIGV4cHJlc2FtZW50ZSBzdWpldGEgeSBsaW1pdGFkYSBwb3IgbGFzIHNpZ3VpZW50ZXMgcmVzdHJpY2Npb25lczoKCmEuCVVzdGVkIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIHPDs2xvIGJham8gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIHkgVXN0ZWQgZGViZSBpbmNsdWlyIHVuYSBjb3BpYSBkZSBlc3RhIGxpY2VuY2lhIG8gZGVsIElkZW50aWZpY2Fkb3IgVW5pdmVyc2FsIGRlIFJlY3Vyc29zIGRlIGxhIG1pc21hIGNvbiBjYWRhIGNvcGlhIGRlIGxhIE9icmEgcXVlIGRpc3RyaWJ1eWEsIGV4aGliYSBww7pibGljYW1lbnRlLCBlamVjdXRlIHDDumJsaWNhbWVudGUgbyBwb25nYSBhIGRpc3Bvc2ljacOzbiBww7pibGljYS4gTm8gZXMgcG9zaWJsZSBvZnJlY2VyIG8gaW1wb25lciBuaW5ndW5hIGNvbmRpY2nDs24gc29icmUgbGEgT2JyYSBxdWUgYWx0ZXJlIG8gbGltaXRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIG8gZWwgZWplcmNpY2lvIGRlIGxvcyBkZXJlY2hvcyBkZSBsb3MgZGVzdGluYXRhcmlvcyBvdG9yZ2Fkb3MgZW4gZXN0ZSBkb2N1bWVudG8uIE5vIGVzIHBvc2libGUgc3VibGljZW5jaWFyIGxhIE9icmEuIFVzdGVkIGRlYmUgbWFudGVuZXIgaW50YWN0b3MgdG9kb3MgbG9zIGF2aXNvcyBxdWUgaGFnYW4gcmVmZXJlbmNpYSBhIGVzdGEgTGljZW5jaWEgeSBhIGxhIGNsw6F1c3VsYSBkZSBsaW1pdGFjacOzbiBkZSBnYXJhbnTDrWFzLiBVc3RlZCBubyBwdWVkZSBkaXN0cmlidWlyLCBleGhpYmlyIHDDumJsaWNhbWVudGUsIGVqZWN1dGFyIHDDumJsaWNhbWVudGUsIG8gcG9uZXIgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBjb24gYWxndW5hIG1lZGlkYSB0ZWNub2zDs2dpY2EgcXVlIGNvbnRyb2xlIGVsIGFjY2VzbyBvIGxhIHV0aWxpemFjacOzbiBkZSBlbGxhIGRlIHVuYSBmb3JtYSBxdWUgc2VhIGluY29uc2lzdGVudGUgY29uIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBMbyBhbnRlcmlvciBzZSBhcGxpY2EgYSBsYSBPYnJhIGluY29ycG9yYWRhIGEgdW5hIE9icmEgQ29sZWN0aXZhLCBwZXJvIGVzdG8gbm8gZXhpZ2UgcXVlIGxhIE9icmEgQ29sZWN0aXZhIGFwYXJ0ZSBkZSBsYSBvYnJhIG1pc21hIHF1ZWRlIHN1amV0YSBhIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhLiBTaSBVc3RlZCBjcmVhIHVuYSBPYnJhIENvbGVjdGl2YSwgcHJldmlvIGF2aXNvIGRlIGN1YWxxdWllciBMaWNlbmNpYW50ZSBkZWJlLCBlbiBsYSBtZWRpZGEgZGUgbG8gcG9zaWJsZSwgZWxpbWluYXIgZGUgbGEgT2JyYSBDb2xlY3RpdmEgY3VhbHF1aWVyIHJlZmVyZW5jaWEgYSBkaWNobyBMaWNlbmNpYW50ZSBvIGFsIEF1dG9yIE9yaWdpbmFsLCBzZWfDum4gbG8gc29saWNpdGFkbyBwb3IgZWwgTGljZW5jaWFudGUgeSBjb25mb3JtZSBsbyBleGlnZSBsYSBjbMOhdXN1bGEgNChjKS4KCmIuCVVzdGVkIG5vIHB1ZWRlIGVqZXJjZXIgbmluZ3VubyBkZSBsb3MgZGVyZWNob3MgcXVlIGxlIGhhbiBzaWRvIG90b3JnYWRvcyBlbiBsYSBTZWNjacOzbiAzIHByZWNlZGVudGUgZGUgbW9kbyBxdWUgZXN0w6luIHByaW5jaXBhbG1lbnRlIGRlc3RpbmFkb3MgbyBkaXJlY3RhbWVudGUgZGlyaWdpZG9zIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLiBFbCBpbnRlcmNhbWJpbyBkZSBsYSBPYnJhIHBvciBvdHJhcyBvYnJhcyBwcm90ZWdpZGFzIHBvciBkZXJlY2hvcyBkZSBhdXRvciwgeWEgc2VhIGEgdHJhdsOpcyBkZSB1biBzaXN0ZW1hIHBhcmEgY29tcGFydGlyIGFyY2hpdm9zIGRpZ2l0YWxlcyAoZGlnaXRhbCBmaWxlLXNoYXJpbmcpIG8gZGUgY3VhbHF1aWVyIG90cmEgbWFuZXJhIG5vIHNlcsOhIGNvbnNpZGVyYWRvIGNvbW8gZXN0YXIgZGVzdGluYWRvIHByaW5jaXBhbG1lbnRlIG8gZGlyaWdpZG8gZGlyZWN0YW1lbnRlIGEgY29uc2VndWlyIHVuIHByb3ZlY2hvIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLCBzaWVtcHJlIHF1ZSBubyBzZSByZWFsaWNlIHVuIHBhZ28gbWVkaWFudGUgdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIGVuIHJlbGFjacOzbiBjb24gZWwgaW50ZXJjYW1iaW8gZGUgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZWwgZGVyZWNobyBkZSBhdXRvci4KCmMuCVNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLgoKZC4JUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBlcyB1bmEgY29tcG9zaWNpw7NuIG11c2ljYWw6CgppLglSZWdhbMOtYXMgcG9yIGludGVycHJldGFjacOzbiB5IGVqZWN1Y2nDs24gYmFqbyBsaWNlbmNpYXMgZ2VuZXJhbGVzLiBFbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgeSBkZSByZWNvbGVjdGFyLCBzZWEgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgU0FZQ08pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIG8gcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbyBXZWJjYXN0KSBsaWNlbmNpYWRhIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcywgc2kgbGEgaW50ZXJwcmV0YWNpw7NuIG8gZWplY3VjacOzbiBkZSBsYSBvYnJhIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBvcmllbnRhZGEgcG9yIG8gZGlyaWdpZGEgYSBsYSBvYnRlbmNpw7NuIGRlIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLgoKaWkuCVJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgplLglHZXN0acOzbiBkZSBEZXJlY2hvcyBkZSBBdXRvciBzb2JyZSBJbnRlcnByZXRhY2lvbmVzIHkgRWplY3VjaW9uZXMgRGlnaXRhbGVzIChXZWJDYXN0aW5nKS4gUGFyYSBldml0YXIgdG9kYSBjb25mdXNpw7NuLCBlbCBMaWNlbmNpYW50ZSBhY2xhcmEgcXVlLCBjdWFuZG8gbGEgb2JyYSBzZWEgdW4gZm9ub2dyYW1hLCBlbCBMaWNlbmNpYW50ZSBzZSByZXNlcnZhIGVsIGRlcmVjaG8gZXhjbHVzaXZvIGRlIGF1dG9yaXphciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpIHkgZGUgcmVjb2xlY3RhciwgaW5kaXZpZHVhbG1lbnRlIG8gYSB0cmF2w6lzIGRlIHVuYSBzb2NpZWRhZCBkZSBnZXN0acOzbiBjb2xlY3RpdmEgZGUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIChwb3IgZWplbXBsbywgQUNJTlBSTyksIGxhcyByZWdhbMOtYXMgcG9yIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIChwb3IgZWplbXBsbywgd2ViY2FzdCksIHN1amV0YSBhIGxhcyBkaXNwb3NpY2lvbmVzIGFwbGljYWJsZXMgZGVsIHLDqWdpbWVuIGRlIERlcmVjaG8gZGUgQXV0b3IsIHNpIGVzdGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuCgo1LiBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTEFTIFBBUlRFUyBMTyBBQ09SREFSQU4gREUgT1RSQSBGT1JNQSBQT1IgRVNDUklUTywgRUwgTElDRU5DSUFOVEUgT0ZSRUNFIExBIE9CUkEgKEVOIEVMIEVTVEFETyBFTiBFTCBRVUUgU0UgRU5DVUVOVFJBKSDigJxUQUwgQ1VBTOKAnSwgU0lOIEJSSU5EQVIgR0FSQU5Uw41BUyBERSBDTEFTRSBBTEdVTkEgUkVTUEVDVE8gREUgTEEgT0JSQSwgWUEgU0VBIEVYUFJFU0EsIElNUEzDjUNJVEEsIExFR0FMIE8gQ1VBTFFVSUVSQSBPVFJBLCBJTkNMVVlFTkRPLCBTSU4gTElNSVRBUlNFIEEgRUxMQVMsIEdBUkFOVMONQVMgREUgVElUVUxBUklEQUQsIENPTUVSQ0lBQklMSURBRCwgQURBUFRBQklMSURBRCBPIEFERUNVQUNJw5NOIEEgUFJPUMOTU0lUTyBERVRFUk1JTkFETywgQVVTRU5DSUEgREUgSU5GUkFDQ0nDk04sIERFIEFVU0VOQ0lBIERFIERFRkVDVE9TIExBVEVOVEVTIE8gREUgT1RSTyBUSVBPLCBPIExBIFBSRVNFTkNJQSBPIEFVU0VOQ0lBIERFIEVSUk9SRVMsIFNFQU4gTyBOTyBERVNDVUJSSUJMRVMgKFBVRURBTiBPIE5PIFNFUiBFU1RPUyBERVNDVUJJRVJUT1MpLiBBTEdVTkFTIEpVUklTRElDQ0lPTkVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgR0FSQU5Uw41BUyBJTVBMw41DSVRBUywgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjYuIExpbWl0YWNpw7NuIGRlIHJlc3BvbnNhYmlsaWRhZC4KQSBNRU5PUyBRVUUgTE8gRVhJSkEgRVhQUkVTQU1FTlRFIExBIExFWSBBUExJQ0FCTEUsIEVMIExJQ0VOQ0lBTlRFIE5PIFNFUsOBIFJFU1BPTlNBQkxFIEFOVEUgVVNURUQgUE9SIERBw5FPIEFMR1VOTywgU0VBIFBPUiBSRVNQT05TQUJJTElEQUQgRVhUUkFDT05UUkFDVFVBTCwgUFJFQ09OVFJBQ1RVQUwgTyBDT05UUkFDVFVBTCwgT0JKRVRJVkEgTyBTVUJKRVRJVkEsIFNFIFRSQVRFIERFIERBw5FPUyBNT1JBTEVTIE8gUEFUUklNT05JQUxFUywgRElSRUNUT1MgTyBJTkRJUkVDVE9TLCBQUkVWSVNUT1MgTyBJTVBSRVZJU1RPUyBQUk9EVUNJRE9TIFBPUiBFTCBVU08gREUgRVNUQSBMSUNFTkNJQSBPIERFIExBIE9CUkEsIEFVTiBDVUFORE8gRUwgTElDRU5DSUFOVEUgSEFZQSBTSURPIEFEVkVSVElETyBERSBMQSBQT1NJQklMSURBRCBERSBESUNIT1MgREHDkU9TLiBBTEdVTkFTIExFWUVTIE5PIFBFUk1JVEVOIExBIEVYQ0xVU0nDk04gREUgQ0lFUlRBIFJFU1BPTlNBQklMSURBRCwgRU4gQ1VZTyBDQVNPIEVTVEEgRVhDTFVTScOTTiBQVUVERSBOTyBBUExJQ0FSU0UgQSBVU1RFRC4KCjcuIFTDqXJtaW5vLgoKYS4JRXN0YSBMaWNlbmNpYSB5IGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgZW4gdmlydHVkIGRlIGVsbGEgdGVybWluYXLDoW4gYXV0b23DoXRpY2FtZW50ZSBzaSBVc3RlZCBpbmZyaW5nZSBhbGd1bmEgY29uZGljacOzbiBlc3RhYmxlY2lkYSBlbiBlbGxhLiBTaW4gZW1iYXJnbywgbG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgcXVlIGhhbiByZWNpYmlkbyBPYnJhcyBEZXJpdmFkYXMgbyBDb2xlY3RpdmFzIGRlIFVzdGVkIGRlIGNvbmZvcm1pZGFkIGNvbiBlc3RhIExpY2VuY2lhLCBubyB2ZXLDoW4gdGVybWluYWRhcyBzdXMgbGljZW5jaWFzLCBzaWVtcHJlIHF1ZSBlc3RvcyBpbmRpdmlkdW9zIG8gZW50aWRhZGVzIHNpZ2FuIGN1bXBsaWVuZG8gw61udGVncmFtZW50ZSBsYXMgY29uZGljaW9uZXMgZGUgZXN0YXMgbGljZW5jaWFzLiBMYXMgU2VjY2lvbmVzIDEsIDIsIDUsIDYsIDcsIHkgOCBzdWJzaXN0aXLDoW4gYSBjdWFscXVpZXIgdGVybWluYWNpw7NuIGRlIGVzdGEgTGljZW5jaWEuCgpiLglTdWpldGEgYSBsYXMgY29uZGljaW9uZXMgeSB0w6lybWlub3MgYW50ZXJpb3JlcywgbGEgbGljZW5jaWEgb3RvcmdhZGEgYXF1w60gZXMgcGVycGV0dWEgKGR1cmFudGUgZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGRlIGxhIG9icmEpLiBObyBvYnN0YW50ZSBsbyBhbnRlcmlvciwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGEgcHVibGljYXIgeS9vIGVzdHJlbmFyIGxhIE9icmEgYmFqbyBjb25kaWNpb25lcyBkZSBsaWNlbmNpYSBkaWZlcmVudGVzIG8gYSBkZWphciBkZSBkaXN0cmlidWlybGEgZW4gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIExpY2VuY2lhIGVuIGN1YWxxdWllciBtb21lbnRvOyBlbiBlbCBlbnRlbmRpZG8sIHNpbiBlbWJhcmdvLCBxdWUgZXNhIGVsZWNjacOzbiBubyBzZXJ2aXLDoSBwYXJhIHJldm9jYXIgZXN0YSBsaWNlbmNpYSBvIHF1ZSBkZWJhIHNlciBvdG9yZ2FkYSAsIGJham8gbG9zIHTDqXJtaW5vcyBkZSBlc3RhIGxpY2VuY2lhKSwgeSBlc3RhIGxpY2VuY2lhIGNvbnRpbnVhcsOhIGVuIHBsZW5vIHZpZ29yIHkgZWZlY3RvIGEgbWVub3MgcXVlIHNlYSB0ZXJtaW5hZGEgY29tbyBzZSBleHByZXNhIGF0csOhcy4gTGEgTGljZW5jaWEgcmV2b2NhZGEgY29udGludWFyw6Egc2llbmRvIHBsZW5hbWVudGUgdmlnZW50ZSB5IGVmZWN0aXZhIHNpIG5vIHNlIGxlIGRhIHTDqXJtaW5vIGVuIGxhcyBjb25kaWNpb25lcyBpbmRpY2FkYXMgYW50ZXJpb3JtZW50ZS4KCjguIFZhcmlvcy4KCmEuCUNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuCgpiLglTaSBhbGd1bmEgZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgcmVzdWx0YSBpbnZhbGlkYWRhIG8gbm8gZXhpZ2libGUsIHNlZ8O6biBsYSBsZWdpc2xhY2nDs24gdmlnZW50ZSwgZXN0byBubyBhZmVjdGFyw6EgbmkgbGEgdmFsaWRleiBuaSBsYSBhcGxpY2FiaWxpZGFkIGRlbCByZXN0byBkZSBjb25kaWNpb25lcyBkZSBlc3RhIExpY2VuY2lhIHksIHNpbiBhY2Npw7NuIGFkaWNpb25hbCBwb3IgcGFydGUgZGUgbG9zIHN1amV0b3MgZGUgZXN0ZSBhY3VlcmRvLCBhcXXDqWxsYSBzZSBlbnRlbmRlcsOhIHJlZm9ybWFkYSBsbyBtw61uaW1vIG5lY2VzYXJpbyBwYXJhIGhhY2VyIHF1ZSBkaWNoYSBkaXNwb3NpY2nDs24gc2VhIHbDoWxpZGEgeSBleGlnaWJsZS4KCmMuCU5pbmfDum4gdMOpcm1pbm8gbyBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSBzZSBlc3RpbWFyw6EgcmVudW5jaWFkYSB5IG5pbmd1bmEgdmlvbGFjacOzbiBkZSBlbGxhIHNlcsOhIGNvbnNlbnRpZGEgYSBtZW5vcyBxdWUgZXNhIHJlbnVuY2lhIG8gY29uc2VudGltaWVudG8gc2VhIG90b3JnYWRvIHBvciBlc2NyaXRvIHkgZmlybWFkbyBwb3IgbGEgcGFydGUgcXVlIHJlbnVuY2llIG8gY29uc2llbnRhLgoKZC4JRXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLgo=