An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast

Planning a wind power generation project is intricate, considering the number of variables to be careful in the acceptable zone selection for its siting. One of the difficulties of developing a wind farm is finding the most satisfactory location to build it; this can take years of feasibility studie...

Full description

Autores:
Ospino-Castro, Adalberto
Robles-Algarín, Carlos
Mangones-Cordero, Amanda
Romero-Navas,Sharys
Tipo de recurso:
Article of investigation
Fecha de publicación:
2023
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/13393
Acceso en línea:
https://hdl.handle.net/11323/13393
https://repositorio.cuc.edu.co/
Palabra clave:
Energy planning
Analytic hierarchy process
Offshore wind
Renewable energy
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
id RCUC2_9ce5cbdfd8afca0015f6e69ee0db7575
oai_identifier_str oai:repositorio.cuc.edu.co:11323/13393
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
title An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
spellingShingle An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
Energy planning
Analytic hierarchy process
Offshore wind
Renewable energy
title_short An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
title_full An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
title_fullStr An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
title_full_unstemmed An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
title_sort An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coast
dc.creator.fl_str_mv Ospino-Castro, Adalberto
Robles-Algarín, Carlos
Mangones-Cordero, Amanda
Romero-Navas,Sharys
dc.contributor.author.none.fl_str_mv Ospino-Castro, Adalberto
Robles-Algarín, Carlos
Mangones-Cordero, Amanda
Romero-Navas,Sharys
dc.subject.proposal.eng.fl_str_mv Energy planning
Analytic hierarchy process
Offshore wind
Renewable energy
topic Energy planning
Analytic hierarchy process
Offshore wind
Renewable energy
description Planning a wind power generation project is intricate, considering the number of variables to be careful in the acceptable zone selection for its siting. One of the difficulties of developing a wind farm is finding the most satisfactory location to build it; this can take years of feasibility studies. The main objective of this research is to use the Analytic Hierarchy Process (AHP) to prioritize a group of criteria and sub-criteria as decision-making support for the selection of suitable areas in which implementing wind energy projects in the Colombian Caribbean Sea. The criteria to be applied in this study were selected based on the most recurrently employed criteria in other research papers and the experience of the authors. Thus, a hierarchical structure with 4 criteria (technical, environmental, social, and economic) and 14 subcriteria was implemented. All criteria were prioritized using the methodology proposed by AHP, for which 10 experts with experience in offshore wind projects were consulted, through a form designed with a matrix structure. The results allowed prioritizing a set of criteria necessary for offshore energy planning projects, in which the criteria of Protected Area (19.62%), Wind Speed (13.84%) and Military Areas (9.79%) were the most relevant.
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-09-15
dc.date.accessioned.none.fl_str_mv 2024-09-26T21:36:59Z
dc.date.available.none.fl_str_mv 2024-09-26T21:36:59Z
dc.type.none.fl_str_mv Artículo de revista
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.content.none.fl_str_mv Text
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.none.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
format http://purl.org/coar/resource_type/c_2df8fbb1
status_str publishedVersion
dc.identifier.citation.none.fl_str_mv Ospino-Castro, A., Robles-Algarín, C., Mangones-Cordero, A., & Romero-Navas, S. (2023). An Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast. International Journal of Energy Economics and Policy, 13(6), 64–73. https://doi.org/10.32479/ijeep.14621
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/11323/13393
dc.identifier.doi.none.fl_str_mv 10.32479/ijeep.14621
dc.identifier.eissn.none.fl_str_mv 2146-4553
dc.identifier.instname.none.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.none.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.none.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv Ospino-Castro, A., Robles-Algarín, C., Mangones-Cordero, A., & Romero-Navas, S. (2023). An Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast. International Journal of Energy Economics and Policy, 13(6), 64–73. https://doi.org/10.32479/ijeep.14621
10.32479/ijeep.14621
2146-4553
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/13393
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartofjournal.none.fl_str_mv International Journal of Energy Economics and Policy
dc.relation.references.none.fl_str_mv Adachi, Y., Takagi, K. (2023), Study of Supply Chain for Floating Offshore Wind Turbine using Network Optimization. Trends in Renewable Energies Offshore. In: Proceedings of the 5th International Conference on Renewable Energies Offshore, RENEW 2022. p631-638.
Alkhalidi, A., Kaylani, H., Alawawdeh, N. (2023), Technology assessment of offshore wind turbines: Floating platforms-validated by case study. Results in Engineering, 17, 100831.
Andrea, N., Ledezma, R., Tatiana, A., González, M. (n.d.), Localización de un Parque Eólico en Colombia. Colombia: Universidad del Valle.
André, F.J., De Castro, L.M., Cerdá, E. (2012), Las energías renovables en el ámbito internacional. Cuadernos Económicos de ICE, 83, 11-36.
Arco De Mora, A., Canales, S., Galiana, L., Jado, J. (2013), Análisis y Diseño de un Parque Eólico Offshore en EE. UU. Spain: Escuela de Organizacion Industrial.
Astiaso García, D., Canavero, G., Ardenghi, F., Zambon, M. (2015), Analysis of wind farm effects on the surrounding environment: Assessing population trends of breeding Passerines. Renewable Energy, 80, 190-196.
Aydin, N.Y., Kentel, E., Duzgun, S. (2010), GIS-based environmental assessment of wind energy systems for spatial planning: Acase study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364-373.
Bahaj, A.B.S., Mahdy, M., Alghamdi, A.S., Richards, D.J. (2020), New approach to determine the importance index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies. Renewable Energy, 152, 441-457.
Breton, S.P., Moe, G. (2009), Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, 34(3), 646-654.
Cabello, J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M. (2018), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9, 15-25.
Candel, L. (2014), Diseño e Impacto Ambiental de Un Parque Eólico Offshore. Spain: Universidad Politécnica De Cartagena.
Costoya, X., de Castro, M., Santos, F., Sousa, M.C., Gómez-Gesteira, M. (2019), Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178, 356-367.
Cullinane, M., Judge, F., O’Shea, M., Thandayutham, K., Murphy, J. (2022), Subsea superconductors: The future of offshore renewable energy transmission? Renewable and Sustainable Energy Reviews, 156, 111943.
De Figueiredo Xavier, T.W., Gorayeb, A., Brannstrom, C. (2022), Participatory methodologies and the production of data on artisanal fishing in areas with offshore wind farm projects in Ceará, Brazil. Sustainability in Debate, 13(1), 181-194.
Deveci, M., Ozcan, E., John, R. (2020a), Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020.
Deveci, M., Ozcan, E., John, R. (2020b), Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020.
Energy Sector Management Assistance Program (2019). Going Global: Expanding Offshore Wind to Emerging Markets. Available from: https://elibrary.worldbank.org/doi/abs/10.1596/32801
Felipe, J., Guerrero, M. (2020), Assessment of the Development of an Offshore Wind Energy Project in the Archipelago of San Andres, Providencia and Santa Catalina from a Cost-efficiency Perspective. United States: Johns Hopkins University
Fernando Álvarez, W., Martínez, L.A., Catalina, A., Fajardo, A. (2013), Aplicación de la Ecuación de Weibull Para Determinar Potencial Eólico en Tunja-Colombia. Available from: https://www.jaon.es
Fetanat, A., Khorasaninejad, E. (2015), A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean and Coastal Management, 109, 17-28.
Gavériaux, L., Laverrière, G., Wang, T., Maslov, N., Claramunt, C. (2019), GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Annals of GIS, 25(3), 207-218.
Gil-García, I.C., Ramos-Escudero, A., García-Cascales, M.S., Dagher, H., Molina-García, A. (2022), Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case. Renewable Energy, 183, 130-147.
Global Wind Energy Council (GWEC). (2022), Global Wind Report 2022. Available from: https://gwec.net/wp-content/uploads/2022/04/ annual-wind-report-2022_screen_final_april.pdf
Global Wind Energy Council. (2017), Opening Up New Markets for Business: Mongolia 8th National Renewable Energy Forum. Available from: https://www.gwec.net
Group World Bank, ESMAP. (2020), Offshore Wind Technical Potential Offshore Wind Technical Potential within 200 km in Colombia RISE Score: 44. Available from: https://documents1.worldbank. org/curated/en/719501586846928298/pdf/technical-potential-foroffshore-wind-in-colombia-map.pdf
Guo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L.R., Liu, W., Wang, X., Gao, J., Huang, J. (2018), Assessing global ocean wind energy resources using multiple satellite data. Remote Sensing, 10(1), 100.
Hansen, H.S. (2005), GIS-based multi-criteria analysis of wind farm development. In: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Sciences, ScanGIS’2005. p.75-87.
Hidalgo Bastidas, C., Castro Rodríguez, R., Sanabria Pulido, P.P. (2020). Impacto en el precio de la energía eléctrica en Colombia debido a la incorporación de fuentes no convencionales de energía renovable. Universidad de los Andes.
Kim, C.K., Jang, S., Kim, T.Y. (2018), Site selection for offshore wind farms in the Southwest coast of South Korea. Renewable Energy, 120, 151-162.
Kim, T., Park, J.I., Maeng, J. (2016), Offshore wind farm site selection study around Jeju island, South Korea. Renewable Energy, 94, 619-628.
Latinopoulos, D., Kechagia, K. (2015), A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550-560.
Li, Z., Tian, G., El-Shafay, A.S. (2022), Statistical-analytical study on world development trend in offshore wind energy production capacity focusing on Great Britain with the aim of MCDA based offshore wind farm siting. Journal of Cleaner Production, 363, 132326.
Lin, R., Lin, J.S.J., Chang, J., Tang, D., Chao, H., Julian, P.C. (2008), Note on group consistency in analytic hierarchy process. European Journal of Operational Research, 190(3), 672-678.
Mahdy, M., Bahaj, A.S. (2018a), Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278-289.
Mahdy, M., Bahaj, A.S. (2018b), Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278-289.
Marques, A.T., Santos, C.D., Hanssen, F., Muñoz, A.R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J.M., Silva, J.P. (2020), Wind turbines cause functional habitat loss for migratory soaring birds. Journal of Animal Ecology, 89(1), 93-103.
Martinez, A., Iglesias, G. (2022), Site selection of floating offshore wind through the levelised cost of energy: Acase study in Ireland. Energy Conversion and Management, 266, 115802.
Mekonnen, A.D., Gorsevski, P.V. (2015), A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, 41, 162-177.
MINCIT-Ministerio de Comercio, Industria y Turismo. (2021), Tres Playas Colombianas Recibieron Reconocimiento Blue Flag. Available from: https://www.mincit.gov.co/prensa/noticias/turismo/ tres-playas-colombianas-reconocimiento-blue-flag
Moriguchi, S., Mukai, H., Komachi, R., Sekijima, T. (2019), Wind farm effects on migratory flight of swans and foraging distribution at their stopover site. In: Wind Energy and Wildlife Impacts. New York: Springer International Publishing. p125-133.
NASAG. (2012), Wind Turbine Guidelines: National Airports Safeguarding Framework Managing the Risk to Aviation Safety of Wind Turbine Installations (Wind Farms)/Wind Monitoring Towers. Available from: https://www.infrastructure.gov.au/sites/default/files/ documents/4.1.3_guideline_d_wind_turbines.pdf
Naus, K., Banaszak, K., Szymak, P. (2021), The methodology for assessing the impact of offshore wind farms on navigation, based on the automatic identification system historical data. Energies, 14(20), 14206559.
Nezhad, M.M., Neshat, M., Groppi, D., Marzialetti, P., Heydari, A., Sylaios, G., Garcia, D.A. (2021), A primary offshore wind farm site assessment using reanalysis data: Acase study for Samothraki island. Renewable Energy, 172, 667-679.
Nguyen, K.Q. (2007), Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy, 35(2), 1405-1413.
Ochieng, E.G., Melaine, Y., Potts, S.J., Zuofa, T., Egbu, C.O., Price, A.D.F., Ruan, X. (2014), Future for offshore wind energy in the United Kingdom: The way forward. Renewable and Sustainable Energy Reviews, 39, 655-666.
Ordóñez, G., Osma, G., Vergara, P., Rey, J. (2014), Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1), 012004.
Ortíz Royero, J.C. (2007), Huracanes y tormentas tropicales en el mar Caribe Colombiano desde 1900. Boletín Científico CIOH, 60(25), 54-60.
Osorio, J.C., Orejuela, J.P. (2008), El proceso de análisis jerárquico (AHP) y la toma de decisiones multicriterio. Ejemplo de aplicación. Analitic hierarchic process and multicriteria decisión making. Application example. Scientia et Technica Año, 14(39), 247-252.
Pahlke, T., Kraft, H.P., Adam, D. (2007), European Wind Energy Conference and Exhibition. Available from: https://www.scopus. com/inward/record.uri?eid=2-s2.0-84875346058&partnerid=40& md5=9408ae8f3a3384e7d3ce2093d30b3a3
Perez, A., García-Rendon, J.J. (2021), Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146-161.
Qu, Y., Hooper, T., Swales, J.K., Papathanasopoulou, E., Austen, M.C., Yan, X. (2021), Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland. Energy Policy, 149, 112027.
Rafaat, S.M., Hussein, R. (2018), Power maximization and control of variable-speed wind turbine system using extremum seeking. Journal of Power and Energy Engineering, 6(1), 51-69.
Restrepo-Trujillo, J., Moreno-Chuquen, R., Jiménez-García, F.N., Flores, W.C., Chamorro, H.R. (2022), Scenario analysis of an electric power system in Colombia considering the El Niño phenomenon and the inclusion of renewable energies. Energies, 15(18), 15186690.
Reyes, R., Turriago, Á., Cárdenas, M., Buitrago, J. (2022), Análisis de políticas públicas para la adopción de energías renovables no convencionales en Colombia. Cuadernos Latinoamericanos De Administración, 19, 1-9.
Realpe Jiménez, A., Diazgranados, J.A., Acevedo Morantes, M.T. (2012), Electricity generation and wind potential assessment in regions of Colombia, 79, 116-122.
Robles Algarín, C., Llanos, A.P., Castro, A.O. (2017a), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7(4), 38-47.
Robles Algarín, C., Llanos, A.P., Castro, A.O. (2017b), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7(4), 38-47.
Rodman, L.C., Meentemeyer, R.K. (2006), A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137-2149.
Rodrigues, S., Restrepo, C., Kontos, E., Pinto, R.T., Bauer, P. (2015), Trends of offshore wind projects. Renewable and Sustainable Energy Reviews, 49, 1114-1135.
Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., Silva-Casarín, R., BastidasArteaga, E., Horrillo-Caraballo, J. (2019), Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529-543.
Saaty, T.L. (1990), How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.
Santos, L.J.T., De Araújo Costa, I.P., Moreira, M.Â.L., Da Silva, R.F., Alves, C.G., Pereira, R.C.A., Dos Santos, M., Da Costa, L.M.H.A. (2022), A variation of the diet problem: Hybrid application of the AHP method and linear programming to maximize meal satisfaction in a Brazilian company. Procedia Computer Science, 214(C), 448-455.
Schallenberg-Rodríguez, J., García Montesdeoca, N. (2018), Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary islands. Energy, 143, 91-103.
Sulaiman, O.O., Magee, A., Bahrain, Z., Kader, A.S.A., Maimun, A., Pauzi, A.G., Wan Nick, W.B., Othman, K. (2013), Mooring analysis for very large offshore aquaculture ocean plantation floating structure. Ocean and Coastal Management, 80, 80-88.
Taoufik, M., Fekri, A. (2021), GIS-based multi-criteria analysis of offshore wind farm development in Morocco. Energy Conversion and Management, 11, 100103.
Tegou, L.I., Polatidis, H., Haralambopoulos, D.A. (2010), Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134-2147.
Tercan, E., Tapkın, S., Latinopoulos, D., Dereli, M.A., Tsiropoulos, A., Ak, M.F. (2020), A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean sea. Environmental Monitoring and Assessment, 192(10), 652.
The Renewables Consulting Group (RCG). (2022), Hoja de Ruta Para el Despliegue de la Energía Eólica Costa Afuera en Colombia. Reporte Para Consulta. United Kingdom: The Renewables Consulting Group.
Thomas, Y.F., Lerma, A.N., Durand, P., Posada, B., Valencia, C.G., Amaya, C.A.A. (2011), Altura significativa del oleaje en la Cuenca Colombiana del Caribe, datos de altimetría radar. Boletín Científico CIOH, 29, 27-45.
Unidad de Planeación Minero Energética-UPME. (2020), Plan Energético Nacional 2020-2050. Helsinki, Finland: Unidad de Planeación Minero Energética.
Vasileiou, M., Loukogeorgaki, E., Vagiona, D.G. (2017a), GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745-757.
Vasileiou, M., Loukogeorgaki, E., Vagiona, D.G. (2017b), GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745-757.
Vera, G.I. (2019), Estudio Para la Implementación de un Parque Eólico en la Costa Norte Colombiana. Colombia: Universidad Autónoma De Bucaramanga.
Villacreses, G., Gaona, G., Martínez-Gómez, J., Jijón, D.J. (2017), Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275-286.
Vinhoza, A., Schaeffer, R. (2021a), Brazil’s offshore wind energy potential assessment based on a spatial multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 146, 111185.
Wen Cheng, P. (2002), A Reliability Based Design Methodology for Extreme Responses of Offshore Wind Turbine. TremAc View Project Robust Active Disturbance Rejection Control for Nonlinear Uncertain Systems View Project. Available from: https://www. researchgate.net/publication/27348048
Willsteed, E.A., Jude, S., Gill, A.B., Birchenough, S.N.R. (2018), Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renewable and Sustainable Energy Reviews, 82, 2332-2345.
Wu, B., Yip, T.L., Xie, L., Wang, Y. (2018), A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Engineering, 168, 121-132.
Zahid, F., Tahir, A., Khan, H.U., Naeem, M.A. (2021), Wind farms selection using geospatial technologies and energy generation capacity in Gwadar. Energy Reports, 7, 5857-5870.
Zheng, C.W., Li, C.Y., Li, X. (2017), Recent decadal trend in the North Atlantic wind energy resources. Advances in Meteorology, 2017, 7257492.
dc.relation.citationendpage.none.fl_str_mv 73
dc.relation.citationstartpage.none.fl_str_mv 64
dc.relation.citationissue.none.fl_str_mv 6
dc.relation.citationvolume.none.fl_str_mv 13
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.none.fl_str_mv 10 páginas
dc.format.mimetype.none.fl_str_mv application/pdf
dc.coverage.region.none.fl_str_mv Colombian caribbean
dc.publisher.none.fl_str_mv Econjournals
dc.publisher.place.none.fl_str_mv Turkey
publisher.none.fl_str_mv Econjournals
dc.source.none.fl_str_mv https://econjournals.com/index.php/ijeep/article/view/14621
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/4d12d2ff-79e2-4442-91c6-d06a002d4c9d/download
https://repositorio.cuc.edu.co/bitstreams/5a4b0f2c-60c8-4ea0-9c60-35a05ae3c6b5/download
https://repositorio.cuc.edu.co/bitstreams/8afbb61b-0661-4d49-95f6-f25b7f52b417/download
https://repositorio.cuc.edu.co/bitstreams/a4cc7c0b-25f8-4f99-8ecb-1e71c86c0083/download
bitstream.checksum.fl_str_mv 5409fce8c33156b332d5f6aa0e94c88c
73a5432e0b76442b22b026844140d683
da9e58d89a30c06341c087a626c8c0dd
91612a74fbbc9766b686ab48241ea240
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760755170607104
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ospino-Castro, AdalbertoRobles-Algarín, CarlosMangones-Cordero, AmandaRomero-Navas,Sharys2024-09-26T21:36:59Z2024-09-26T21:36:59Z2023-09-15Ospino-Castro, A., Robles-Algarín, C., Mangones-Cordero, A., & Romero-Navas, S. (2023). An Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast. International Journal of Energy Economics and Policy, 13(6), 64–73. https://doi.org/10.32479/ijeep.14621https://hdl.handle.net/11323/1339310.32479/ijeep.146212146-4553Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Planning a wind power generation project is intricate, considering the number of variables to be careful in the acceptable zone selection for its siting. One of the difficulties of developing a wind farm is finding the most satisfactory location to build it; this can take years of feasibility studies. The main objective of this research is to use the Analytic Hierarchy Process (AHP) to prioritize a group of criteria and sub-criteria as decision-making support for the selection of suitable areas in which implementing wind energy projects in the Colombian Caribbean Sea. The criteria to be applied in this study were selected based on the most recurrently employed criteria in other research papers and the experience of the authors. Thus, a hierarchical structure with 4 criteria (technical, environmental, social, and economic) and 14 subcriteria was implemented. All criteria were prioritized using the methodology proposed by AHP, for which 10 experts with experience in offshore wind projects were consulted, through a form designed with a matrix structure. The results allowed prioritizing a set of criteria necessary for offshore energy planning projects, in which the criteria of Protected Area (19.62%), Wind Speed (13.84%) and Military Areas (9.79%) were the most relevant.10 páginasapplication/pdfengEconjournalsTurkeyhttps://econjournals.com/index.php/ijeep/article/view/14621An analytic hierarchy process based approach for evaluating feasibility of offshore wind farm on the colombian caribbean coastArtículo de revistahttp://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Colombian caribbeanInternational Journal of Energy Economics and PolicyAdachi, Y., Takagi, K. (2023), Study of Supply Chain for Floating Offshore Wind Turbine using Network Optimization. Trends in Renewable Energies Offshore. In: Proceedings of the 5th International Conference on Renewable Energies Offshore, RENEW 2022. p631-638.Alkhalidi, A., Kaylani, H., Alawawdeh, N. (2023), Technology assessment of offshore wind turbines: Floating platforms-validated by case study. Results in Engineering, 17, 100831.Andrea, N., Ledezma, R., Tatiana, A., González, M. (n.d.), Localización de un Parque Eólico en Colombia. Colombia: Universidad del Valle.André, F.J., De Castro, L.M., Cerdá, E. (2012), Las energías renovables en el ámbito internacional. Cuadernos Económicos de ICE, 83, 11-36.Arco De Mora, A., Canales, S., Galiana, L., Jado, J. (2013), Análisis y Diseño de un Parque Eólico Offshore en EE. UU. Spain: Escuela de Organizacion Industrial.Astiaso García, D., Canavero, G., Ardenghi, F., Zambon, M. (2015), Analysis of wind farm effects on the surrounding environment: Assessing population trends of breeding Passerines. Renewable Energy, 80, 190-196.Aydin, N.Y., Kentel, E., Duzgun, S. (2010), GIS-based environmental assessment of wind energy systems for spatial planning: Acase study from Western Turkey. Renewable and Sustainable Energy Reviews, 14(1), 364-373.Bahaj, A.B.S., Mahdy, M., Alghamdi, A.S., Richards, D.J. (2020), New approach to determine the importance index for developing offshore wind energy potential sites: Supported by UK and Arabian Peninsula case studies. Renewable Energy, 152, 441-457.Breton, S.P., Moe, G. (2009), Status, plans and technologies for offshore wind turbines in Europe and North America. Renewable Energy, 34(3), 646-654.Cabello, J., Balbis, M., Sagastume, A., Pardo, A., Cabello, M. (2018), A look to the electricity generation from non-conventional renewable energy sources in Colombia. International Journal of Energy Economics and Policy, 9, 15-25.Candel, L. (2014), Diseño e Impacto Ambiental de Un Parque Eólico Offshore. Spain: Universidad Politécnica De Cartagena.Costoya, X., de Castro, M., Santos, F., Sousa, M.C., Gómez-Gesteira, M. (2019), Projections of wind energy resources in the Caribbean for the 21st century. Energy, 178, 356-367.Cullinane, M., Judge, F., O’Shea, M., Thandayutham, K., Murphy, J. (2022), Subsea superconductors: The future of offshore renewable energy transmission? Renewable and Sustainable Energy Reviews, 156, 111943.De Figueiredo Xavier, T.W., Gorayeb, A., Brannstrom, C. (2022), Participatory methodologies and the production of data on artisanal fishing in areas with offshore wind farm projects in Ceará, Brazil. Sustainability in Debate, 13(1), 181-194.Deveci, M., Ozcan, E., John, R. (2020a), Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020.Deveci, M., Ozcan, E., John, R. (2020b), Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. 2020 IEEE Texas Power and Energy Conference, TPEC 2020.Energy Sector Management Assistance Program (2019). Going Global: Expanding Offshore Wind to Emerging Markets. Available from: https://elibrary.worldbank.org/doi/abs/10.1596/32801Felipe, J., Guerrero, M. (2020), Assessment of the Development of an Offshore Wind Energy Project in the Archipelago of San Andres, Providencia and Santa Catalina from a Cost-efficiency Perspective. United States: Johns Hopkins UniversityFernando Álvarez, W., Martínez, L.A., Catalina, A., Fajardo, A. (2013), Aplicación de la Ecuación de Weibull Para Determinar Potencial Eólico en Tunja-Colombia. Available from: https://www.jaon.esFetanat, A., Khorasaninejad, E. (2015), A novel hybrid MCDM approach for offshore wind farm site selection: A case study of Iran. Ocean and Coastal Management, 109, 17-28.Gavériaux, L., Laverrière, G., Wang, T., Maslov, N., Claramunt, C. (2019), GIS-based multi-criteria analysis for offshore wind turbine deployment in Hong Kong. Annals of GIS, 25(3), 207-218.Gil-García, I.C., Ramos-Escudero, A., García-Cascales, M.S., Dagher, H., Molina-García, A. (2022), Fuzzy GIS-based MCDM solution for the optimal offshore wind site selection: The Gulf of Maine case. Renewable Energy, 183, 130-147.Global Wind Energy Council (GWEC). (2022), Global Wind Report 2022. Available from: https://gwec.net/wp-content/uploads/2022/04/ annual-wind-report-2022_screen_final_april.pdfGlobal Wind Energy Council. (2017), Opening Up New Markets for Business: Mongolia 8th National Renewable Energy Forum. Available from: https://www.gwec.netGroup World Bank, ESMAP. (2020), Offshore Wind Technical Potential Offshore Wind Technical Potential within 200 km in Colombia RISE Score: 44. Available from: https://documents1.worldbank. org/curated/en/719501586846928298/pdf/technical-potential-foroffshore-wind-in-colombia-map.pdfGuo, Q., Xu, X., Zhang, K., Li, Z., Huang, W., Mansaray, L.R., Liu, W., Wang, X., Gao, J., Huang, J. (2018), Assessing global ocean wind energy resources using multiple satellite data. Remote Sensing, 10(1), 100.Hansen, H.S. (2005), GIS-based multi-criteria analysis of wind farm development. In: Proceedings of the 10th Scandinavian Research Conference on Geographical Information Sciences, ScanGIS’2005. p.75-87.Hidalgo Bastidas, C., Castro Rodríguez, R., Sanabria Pulido, P.P. (2020). Impacto en el precio de la energía eléctrica en Colombia debido a la incorporación de fuentes no convencionales de energía renovable. Universidad de los Andes.Kim, C.K., Jang, S., Kim, T.Y. (2018), Site selection for offshore wind farms in the Southwest coast of South Korea. Renewable Energy, 120, 151-162.Kim, T., Park, J.I., Maeng, J. (2016), Offshore wind farm site selection study around Jeju island, South Korea. Renewable Energy, 94, 619-628.Latinopoulos, D., Kechagia, K. (2015), A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renewable Energy, 78, 550-560.Li, Z., Tian, G., El-Shafay, A.S. (2022), Statistical-analytical study on world development trend in offshore wind energy production capacity focusing on Great Britain with the aim of MCDA based offshore wind farm siting. Journal of Cleaner Production, 363, 132326.Lin, R., Lin, J.S.J., Chang, J., Tang, D., Chao, H., Julian, P.C. (2008), Note on group consistency in analytic hierarchy process. European Journal of Operational Research, 190(3), 672-678.Mahdy, M., Bahaj, A.S. (2018a), Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278-289.Mahdy, M., Bahaj, A.S. (2018b), Multi criteria decision analysis for offshore wind energy potential in Egypt. Renewable Energy, 118, 278-289.Marques, A.T., Santos, C.D., Hanssen, F., Muñoz, A.R., Onrubia, A., Wikelski, M., Moreira, F., Palmeirim, J.M., Silva, J.P. (2020), Wind turbines cause functional habitat loss for migratory soaring birds. Journal of Animal Ecology, 89(1), 93-103.Martinez, A., Iglesias, G. (2022), Site selection of floating offshore wind through the levelised cost of energy: Acase study in Ireland. Energy Conversion and Management, 266, 115802.Mekonnen, A.D., Gorsevski, P.V. (2015), A web-based participatory GIS (PGIS) for offshore wind farm suitability within Lake Erie, Ohio. Renewable and Sustainable Energy Reviews, 41, 162-177.MINCIT-Ministerio de Comercio, Industria y Turismo. (2021), Tres Playas Colombianas Recibieron Reconocimiento Blue Flag. Available from: https://www.mincit.gov.co/prensa/noticias/turismo/ tres-playas-colombianas-reconocimiento-blue-flagMoriguchi, S., Mukai, H., Komachi, R., Sekijima, T. (2019), Wind farm effects on migratory flight of swans and foraging distribution at their stopover site. In: Wind Energy and Wildlife Impacts. New York: Springer International Publishing. p125-133.NASAG. (2012), Wind Turbine Guidelines: National Airports Safeguarding Framework Managing the Risk to Aviation Safety of Wind Turbine Installations (Wind Farms)/Wind Monitoring Towers. Available from: https://www.infrastructure.gov.au/sites/default/files/ documents/4.1.3_guideline_d_wind_turbines.pdfNaus, K., Banaszak, K., Szymak, P. (2021), The methodology for assessing the impact of offshore wind farms on navigation, based on the automatic identification system historical data. Energies, 14(20), 14206559.Nezhad, M.M., Neshat, M., Groppi, D., Marzialetti, P., Heydari, A., Sylaios, G., Garcia, D.A. (2021), A primary offshore wind farm site assessment using reanalysis data: Acase study for Samothraki island. Renewable Energy, 172, 667-679.Nguyen, K.Q. (2007), Wind energy in Vietnam: Resource assessment, development status and future implications. Energy Policy, 35(2), 1405-1413.Ochieng, E.G., Melaine, Y., Potts, S.J., Zuofa, T., Egbu, C.O., Price, A.D.F., Ruan, X. (2014), Future for offshore wind energy in the United Kingdom: The way forward. Renewable and Sustainable Energy Reviews, 39, 655-666.Ordóñez, G., Osma, G., Vergara, P., Rey, J. (2014), Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series: Materials Science and Engineering, 59(1), 012004.Ortíz Royero, J.C. (2007), Huracanes y tormentas tropicales en el mar Caribe Colombiano desde 1900. Boletín Científico CIOH, 60(25), 54-60.Osorio, J.C., Orejuela, J.P. (2008), El proceso de análisis jerárquico (AHP) y la toma de decisiones multicriterio. Ejemplo de aplicación. Analitic hierarchic process and multicriteria decisión making. Application example. Scientia et Technica Año, 14(39), 247-252.Pahlke, T., Kraft, H.P., Adam, D. (2007), European Wind Energy Conference and Exhibition. Available from: https://www.scopus. com/inward/record.uri?eid=2-s2.0-84875346058&partnerid=40& md5=9408ae8f3a3384e7d3ce2093d30b3a3Perez, A., García-Rendon, J.J. (2021), Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia. Renewable Energy, 167, 146-161.Qu, Y., Hooper, T., Swales, J.K., Papathanasopoulou, E., Austen, M.C., Yan, X. (2021), Energy-food nexus in the marine environment: A macroeconomic analysis on offshore wind energy and seafood production in Scotland. Energy Policy, 149, 112027.Rafaat, S.M., Hussein, R. (2018), Power maximization and control of variable-speed wind turbine system using extremum seeking. Journal of Power and Energy Engineering, 6(1), 51-69.Restrepo-Trujillo, J., Moreno-Chuquen, R., Jiménez-García, F.N., Flores, W.C., Chamorro, H.R. (2022), Scenario analysis of an electric power system in Colombia considering the El Niño phenomenon and the inclusion of renewable energies. Energies, 15(18), 15186690.Reyes, R., Turriago, Á., Cárdenas, M., Buitrago, J. (2022), Análisis de políticas públicas para la adopción de energías renovables no convencionales en Colombia. Cuadernos Latinoamericanos De Administración, 19, 1-9.Realpe Jiménez, A., Diazgranados, J.A., Acevedo Morantes, M.T. (2012), Electricity generation and wind potential assessment in regions of Colombia, 79, 116-122.Robles Algarín, C., Llanos, A.P., Castro, A.O. (2017a), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7(4), 38-47.Robles Algarín, C., Llanos, A.P., Castro, A.O. (2017b), An analytic hierarchy process based approach for evaluating renewable energy sources. International Journal of Energy Economics and Policy, 7(4), 38-47.Rodman, L.C., Meentemeyer, R.K. (2006), A geographic analysis of wind turbine placement in Northern California. Energy Policy, 34(15), 2137-2149.Rodrigues, S., Restrepo, C., Kontos, E., Pinto, R.T., Bauer, P. (2015), Trends of offshore wind projects. Renewable and Sustainable Energy Reviews, 49, 1114-1135.Rueda-Bayona, J.G., Guzmán, A., Eras, J.J.C., Silva-Casarín, R., BastidasArteaga, E., Horrillo-Caraballo, J. (2019), Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 220, 529-543.Saaty, T.L. (1990), How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.Santos, L.J.T., De Araújo Costa, I.P., Moreira, M.Â.L., Da Silva, R.F., Alves, C.G., Pereira, R.C.A., Dos Santos, M., Da Costa, L.M.H.A. (2022), A variation of the diet problem: Hybrid application of the AHP method and linear programming to maximize meal satisfaction in a Brazilian company. Procedia Computer Science, 214(C), 448-455.Schallenberg-Rodríguez, J., García Montesdeoca, N. (2018), Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary islands. Energy, 143, 91-103.Sulaiman, O.O., Magee, A., Bahrain, Z., Kader, A.S.A., Maimun, A., Pauzi, A.G., Wan Nick, W.B., Othman, K. (2013), Mooring analysis for very large offshore aquaculture ocean plantation floating structure. Ocean and Coastal Management, 80, 80-88.Taoufik, M., Fekri, A. (2021), GIS-based multi-criteria analysis of offshore wind farm development in Morocco. Energy Conversion and Management, 11, 100103.Tegou, L.I., Polatidis, H., Haralambopoulos, D.A. (2010), Environmental management framework for wind farm siting: Methodology and case study. Journal of Environmental Management, 91(11), 2134-2147.Tercan, E., Tapkın, S., Latinopoulos, D., Dereli, M.A., Tsiropoulos, A., Ak, M.F. (2020), A GIS-based multi-criteria model for offshore wind energy power plants site selection in both sides of the Aegean sea. Environmental Monitoring and Assessment, 192(10), 652.The Renewables Consulting Group (RCG). (2022), Hoja de Ruta Para el Despliegue de la Energía Eólica Costa Afuera en Colombia. Reporte Para Consulta. United Kingdom: The Renewables Consulting Group.Thomas, Y.F., Lerma, A.N., Durand, P., Posada, B., Valencia, C.G., Amaya, C.A.A. (2011), Altura significativa del oleaje en la Cuenca Colombiana del Caribe, datos de altimetría radar. Boletín Científico CIOH, 29, 27-45.Unidad de Planeación Minero Energética-UPME. (2020), Plan Energético Nacional 2020-2050. Helsinki, Finland: Unidad de Planeación Minero Energética.Vasileiou, M., Loukogeorgaki, E., Vagiona, D.G. (2017a), GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745-757.Vasileiou, M., Loukogeorgaki, E., Vagiona, D.G. (2017b), GIS-based multi-criteria decision analysis for site selection of hybrid offshore wind and wave energy systems in Greece. Renewable and Sustainable Energy Reviews, 73, 745-757.Vera, G.I. (2019), Estudio Para la Implementación de un Parque Eólico en la Costa Norte Colombiana. Colombia: Universidad Autónoma De Bucaramanga.Villacreses, G., Gaona, G., Martínez-Gómez, J., Jijón, D.J. (2017), Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275-286.Vinhoza, A., Schaeffer, R. (2021a), Brazil’s offshore wind energy potential assessment based on a spatial multi-criteria decision analysis. Renewable and Sustainable Energy Reviews, 146, 111185.Wen Cheng, P. (2002), A Reliability Based Design Methodology for Extreme Responses of Offshore Wind Turbine. TremAc View Project Robust Active Disturbance Rejection Control for Nonlinear Uncertain Systems View Project. Available from: https://www. researchgate.net/publication/27348048Willsteed, E.A., Jude, S., Gill, A.B., Birchenough, S.N.R. (2018), Obligations and aspirations: A critical evaluation of offshore wind farm cumulative impact assessments. Renewable and Sustainable Energy Reviews, 82, 2332-2345.Wu, B., Yip, T.L., Xie, L., Wang, Y. (2018), A fuzzy-MADM based approach for site selection of offshore wind farm in busy waterways in China. Ocean Engineering, 168, 121-132.Zahid, F., Tahir, A., Khan, H.U., Naeem, M.A. (2021), Wind farms selection using geospatial technologies and energy generation capacity in Gwadar. Energy Reports, 7, 5857-5870.Zheng, C.W., Li, C.Y., Li, X. (2017), Recent decadal trend in the North Atlantic wind energy resources. Advances in Meteorology, 2017, 7257492.7364613Energy planningAnalytic hierarchy processOffshore windRenewable energyPublicationORIGINALAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdfAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdfapplication/pdf1094391https://repositorio.cuc.edu.co/bitstreams/4d12d2ff-79e2-4442-91c6-d06a002d4c9d/download5409fce8c33156b332d5f6aa0e94c88cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-815543https://repositorio.cuc.edu.co/bitstreams/5a4b0f2c-60c8-4ea0-9c60-35a05ae3c6b5/download73a5432e0b76442b22b026844140d683MD52TEXTAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdf.txtAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdf.txtExtracted texttext/plain53243https://repositorio.cuc.edu.co/bitstreams/8afbb61b-0661-4d49-95f6-f25b7f52b417/downloadda9e58d89a30c06341c087a626c8c0ddMD53THUMBNAILAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdf.jpgAn Analytic Hierarchy Process Based Approach for Evaluating Feasibility of Offshore Wind Farm on the Colombian Caribbean Coast.pdf.jpgGenerated Thumbnailimage/jpeg16084https://repositorio.cuc.edu.co/bitstreams/a4cc7c0b-25f8-4f99-8ecb-1e71c86c0083/download91612a74fbbc9766b686ab48241ea240MD5411323/13393oai:repositorio.cuc.edu.co:11323/133932024-09-27 03:01:00.778https://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coPHA+TEEgT0JSQSAoVEFMIFkgQ09NTyBTRSBERUZJTkUgTcOBUyBBREVMQU5URSkgU0UgT1RPUkdBIEJBSk8gTE9TIFRFUk1JTk9TIERFIEVTVEEgTElDRU5DSUEgUMOaQkxJQ0EgREUgQ1JFQVRJVkUgQ09NTU9OUyAo4oCcTFBDQ+KAnSBPIOKAnExJQ0VOQ0lB4oCdKS4gTEEgT0JSQSBFU1TDgSBQUk9URUdJREEgUE9SIERFUkVDSE9TIERFIEFVVE9SIFkvVSBPVFJBUyBMRVlFUyBBUExJQ0FCTEVTLiBRVUVEQSBQUk9ISUJJRE8gQ1VBTFFVSUVSIFVTTyBRVUUgU0UgSEFHQSBERSBMQSBPQlJBIFFVRSBOTyBDVUVOVEUgQ09OIExBIEFVVE9SSVpBQ0nDk04gUEVSVElORU5URSBERSBDT05GT1JNSURBRCBDT04gTE9TIFTDiVJNSU5PUyBERSBFU1RBIExJQ0VOQ0lBIFkgREUgTEEgTEVZIERFIERFUkVDSE8gREUgQVVUT1IuPC9wPgo8cD5NRURJQU5URSBFTCBFSkVSQ0lDSU8gREUgQ1VBTFFVSUVSQSBERSBMT1MgREVSRUNIT1MgUVVFIFNFIE9UT1JHQU4gRU4gRVNUQSBMSUNFTkNJQSwgVVNURUQgQUNFUFRBIFkgQUNVRVJEQSBRVUVEQVIgT0JMSUdBRE8gRU4gTE9TIFRFUk1JTk9TIFFVRSBTRSBTRcORQUxBTiBFTiBFTExBLiBFTCBMSUNFTkNJQU5URSBDT05DRURFIEEgVVNURUQgTE9TIERFUkVDSE9TIENPTlRFTklET1MgRU4gRVNUQSBMSUNFTkNJQSBDT05ESUNJT05BRE9TIEEgTEEgQUNFUFRBQ0nDk04gREUgU1VTIFRFUk1JTk9TIFkgQ09ORElDSU9ORVMuPC9wPgo8b2wgdHlwZT0iMSI+CiAgPGxpPgogICAgRGVmaW5pY2lvbmVzCiAgICA8b2wgdHlwZT1hPgogICAgICA8bGk+T2JyYSBDb2xlY3RpdmEgZXMgdW5hIG9icmEsIHRhbCBjb21vIHVuYSBwdWJsaWNhY2nDs24gcGVyacOzZGljYSwgdW5hIGFudG9sb2fDrWEsIG8gdW5hIGVuY2ljbG9wZWRpYSwgZW4gbGEgcXVlIGxhIG9icmEgZW4gc3UgdG90YWxpZGFkLCBzaW4gbW9kaWZpY2FjacOzbiBhbGd1bmEsIGp1bnRvIGNvbiB1biBncnVwbyBkZSBvdHJhcyBjb250cmlidWNpb25lcyBxdWUgY29uc3RpdHV5ZW4gb2JyYXMgc2VwYXJhZGFzIGUgaW5kZXBlbmRpZW50ZXMgZW4gc8OtIG1pc21hcywgc2UgaW50ZWdyYW4gZW4gdW4gdG9kbyBjb2xlY3Rpdm8uIFVuYSBPYnJhIHF1ZSBjb25zdGl0dXllIHVuYSBvYnJhIGNvbGVjdGl2YSBubyBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgKGNvbW8gc2UgZGVmaW5lIGFiYWpvKSBwYXJhIGxvcyBwcm9ww7NzaXRvcyBkZSBlc3RhIGxpY2VuY2lhLiBhcXVlbGxhIHByb2R1Y2lkYSBwb3IgdW4gZ3J1cG8gZGUgYXV0b3JlcywgZW4gcXVlIGxhIE9icmEgc2UgZW5jdWVudHJhIHNpbiBtb2RpZmljYWNpb25lcywganVudG8gY29uIHVuYSBjaWVydGEgY2FudGlkYWQgZGUgb3RyYXMgY29udHJpYnVjaW9uZXMsIHF1ZSBjb25zdGl0dXllbiBlbiBzw60gbWlzbW9zIHRyYWJham9zIHNlcGFyYWRvcyBlIGluZGVwZW5kaWVudGVzLCBxdWUgc29uIGludGVncmFkb3MgYWwgdG9kbyBjb2xlY3Rpdm8sIHRhbGVzIGNvbW8gcHVibGljYWNpb25lcyBwZXJpw7NkaWNhcywgYW50b2xvZ8OtYXMgbyBlbmNpY2xvcGVkaWFzLjwvbGk+CiAgICAgIDxsaT5PYnJhIERlcml2YWRhIHNpZ25pZmljYSB1bmEgb2JyYSBiYXNhZGEgZW4gbGEgb2JyYSBvYmpldG8gZGUgZXN0YSBsaWNlbmNpYSBvIGVuIMOpc3RhIHkgb3RyYXMgb2JyYXMgcHJlZXhpc3RlbnRlcywgdGFsZXMgY29tbyB0cmFkdWNjaW9uZXMsIGFycmVnbG9zIG11c2ljYWxlcywgZHJhbWF0aXphY2lvbmVzLCDigJxmaWNjaW9uYWxpemFjaW9uZXPigJ0sIHZlcnNpb25lcyBwYXJhIGNpbmUsIOKAnGdyYWJhY2lvbmVzIGRlIHNvbmlkb+KAnSwgcmVwcm9kdWNjaW9uZXMgZGUgYXJ0ZSwgcmVzw7ptZW5lcywgY29uZGVuc2FjaW9uZXMsIG8gY3VhbHF1aWVyIG90cmEgZW4gbGEgcXVlIGxhIG9icmEgcHVlZGEgc2VyIHRyYW5zZm9ybWFkYSwgY2FtYmlhZGEgbyBhZGFwdGFkYSwgZXhjZXB0byBhcXVlbGxhcyBxdWUgY29uc3RpdHV5YW4gdW5hIG9icmEgY29sZWN0aXZhLCBsYXMgcXVlIG5vIHNlcsOhbiBjb25zaWRlcmFkYXMgdW5hIG9icmEgZGVyaXZhZGEgcGFyYSBlZmVjdG9zIGRlIGVzdGEgbGljZW5jaWEuIChQYXJhIGV2aXRhciBkdWRhcywgZW4gZWwgY2FzbyBkZSBxdWUgbGEgT2JyYSBzZWEgdW5hIGNvbXBvc2ljacOzbiBtdXNpY2FsIG8gdW5hIGdyYWJhY2nDs24gc29ub3JhLCBwYXJhIGxvcyBlZmVjdG9zIGRlIGVzdGEgTGljZW5jaWEgbGEgc2luY3Jvbml6YWNpw7NuIHRlbXBvcmFsIGRlIGxhIE9icmEgY29uIHVuYSBpbWFnZW4gZW4gbW92aW1pZW50byBzZSBjb25zaWRlcmFyw6EgdW5hIE9icmEgRGVyaXZhZGEgcGFyYSBsb3MgZmluZXMgZGUgZXN0YSBsaWNlbmNpYSkuPC9saT4KICAgICAgPGxpPkxpY2VuY2lhbnRlLCBlcyBlbCBpbmRpdmlkdW8gbyBsYSBlbnRpZGFkIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHF1ZSBvZnJlY2UgbGEgT2JyYSBlbiBjb25mb3JtaWRhZCBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPkF1dG9yIG9yaWdpbmFsLCBlcyBlbCBpbmRpdmlkdW8gcXVlIGNyZcOzIGxhIE9icmEuPC9saT4KICAgICAgPGxpPk9icmEsIGVzIGFxdWVsbGEgb2JyYSBzdXNjZXB0aWJsZSBkZSBwcm90ZWNjacOzbiBwb3IgZWwgcsOpZ2ltZW4gZGUgRGVyZWNobyBkZSBBdXRvciB5IHF1ZSBlcyBvZnJlY2lkYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGVzdGEgbGljZW5jaWE8L2xpPgogICAgICA8bGk+VXN0ZWQsIGVzIGVsIGluZGl2aWR1byBvIGxhIGVudGlkYWQgcXVlIGVqZXJjaXRhIGxvcyBkZXJlY2hvcyBvdG9yZ2Fkb3MgYWwgYW1wYXJvIGRlIGVzdGEgTGljZW5jaWEgeSBxdWUgY29uIGFudGVyaW9yaWRhZCBubyBoYSB2aW9sYWRvIGxhcyBjb25kaWNpb25lcyBkZSBsYSBtaXNtYSByZXNwZWN0byBhIGxhIE9icmEsIG8gcXVlIGhheWEgb2J0ZW5pZG8gYXV0b3JpemFjacOzbiBleHByZXNhIHBvciBwYXJ0ZSBkZWwgTGljZW5jaWFudGUgcGFyYSBlamVyY2VyIGxvcyBkZXJlY2hvcyBhbCBhbXBhcm8gZGUgZXN0YSBMaWNlbmNpYSBwZXNlIGEgdW5hIHZpb2xhY2nDs24gYW50ZXJpb3IuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIERlcmVjaG9zIGRlIFVzb3MgSG9ucmFkb3MgeSBleGNlcGNpb25lcyBMZWdhbGVzLgogICAgPHA+TmFkYSBlbiBlc3RhIExpY2VuY2lhIHBvZHLDoSBzZXIgaW50ZXJwcmV0YWRvIGNvbW8gdW5hIGRpc21pbnVjacOzbiwgbGltaXRhY2nDs24gbyByZXN0cmljY2nDs24gZGUgbG9zIGRlcmVjaG9zIGRlcml2YWRvcyBkZWwgdXNvIGhvbnJhZG8geSBvdHJhcyBsaW1pdGFjaW9uZXMgbyBleGNlcGNpb25lcyBhIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgYmFqbyBlbCByw6lnaW1lbiBsZWdhbCB2aWdlbnRlIG8gZGVyaXZhZG8gZGUgY3VhbHF1aWVyIG90cmEgbm9ybWEgcXVlIHNlIGxlIGFwbGlxdWUuPC9wPgogIDwvbGk+CiAgPGxpPgogICAgQ29uY2VzacOzbiBkZSBsYSBMaWNlbmNpYS4KICAgIDxwPkJham8gbG9zIHTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEsIGVsIExpY2VuY2lhbnRlIG90b3JnYSBhIFVzdGVkIHVuYSBsaWNlbmNpYSBtdW5kaWFsLCBsaWJyZSBkZSByZWdhbMOtYXMsIG5vIGV4Y2x1c2l2YSB5IHBlcnBldHVhIChkdXJhbnRlIHRvZG8gZWwgcGVyw61vZG8gZGUgdmlnZW5jaWEgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yKSBwYXJhIGVqZXJjZXIgZXN0b3MgZGVyZWNob3Mgc29icmUgbGEgT2JyYSB0YWwgeSBjb21vIHNlIGluZGljYSBhIGNvbnRpbnVhY2nDs246PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+UmVwcm9kdWNpciBsYSBPYnJhLCBpbmNvcnBvcmFyIGxhIE9icmEgZW4gdW5hIG8gbcOhcyBPYnJhcyBDb2xlY3RpdmFzLCB5IHJlcHJvZHVjaXIgbGEgT2JyYSBpbmNvcnBvcmFkYSBlbiBsYXMgT2JyYXMgQ29sZWN0aXZhcy48L2xpPgogICAgICA8bGk+RGlzdHJpYnVpciBjb3BpYXMgbyBmb25vZ3JhbWFzIGRlIGxhcyBPYnJhcywgZXhoaWJpcmxhcyBww7pibGljYW1lbnRlLCBlamVjdXRhcmxhcyBww7pibGljYW1lbnRlIHkvbyBwb25lcmxhcyBhIGRpc3Bvc2ljacOzbiBww7pibGljYSwgaW5jbHV5w6luZG9sYXMgY29tbyBpbmNvcnBvcmFkYXMgZW4gT2JyYXMgQ29sZWN0aXZhcywgc2Vnw7puIGNvcnJlc3BvbmRhLjwvbGk+CiAgICAgIDxsaT5EaXN0cmlidWlyIGNvcGlhcyBkZSBsYXMgT2JyYXMgRGVyaXZhZGFzIHF1ZSBzZSBnZW5lcmVuLCBleGhpYmlybGFzIHDDumJsaWNhbWVudGUsIGVqZWN1dGFybGFzIHDDumJsaWNhbWVudGUgeS9vIHBvbmVybGFzIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLjwvbGk+CiAgICA8L29sPgogICAgPHA+TG9zIGRlcmVjaG9zIG1lbmNpb25hZG9zIGFudGVyaW9ybWVudGUgcHVlZGVuIHNlciBlamVyY2lkb3MgZW4gdG9kb3MgbG9zIG1lZGlvcyB5IGZvcm1hdG9zLCBhY3R1YWxtZW50ZSBjb25vY2lkb3MgbyBxdWUgc2UgaW52ZW50ZW4gZW4gZWwgZnV0dXJvLiBMb3MgZGVyZWNob3MgYW50ZXMgbWVuY2lvbmFkb3MgaW5jbHV5ZW4gZWwgZGVyZWNobyBhIHJlYWxpemFyIGRpY2hhcyBtb2RpZmljYWNpb25lcyBlbiBsYSBtZWRpZGEgcXVlIHNlYW4gdMOpY25pY2FtZW50ZSBuZWNlc2FyaWFzIHBhcmEgZWplcmNlciBsb3MgZGVyZWNob3MgZW4gb3RybyBtZWRpbyBvIGZvcm1hdG9zLCBwZXJvIGRlIG90cmEgbWFuZXJhIHVzdGVkIG5vIGVzdMOhIGF1dG9yaXphZG8gcGFyYSByZWFsaXphciBvYnJhcyBkZXJpdmFkYXMuIFRvZG9zIGxvcyBkZXJlY2hvcyBubyBvdG9yZ2Fkb3MgZXhwcmVzYW1lbnRlIHBvciBlbCBMaWNlbmNpYW50ZSBxdWVkYW4gcG9yIGVzdGUgbWVkaW8gcmVzZXJ2YWRvcywgaW5jbHV5ZW5kbyBwZXJvIHNpbiBsaW1pdGFyc2UgYSBhcXVlbGxvcyBxdWUgc2UgbWVuY2lvbmFuIGVuIGxhcyBzZWNjaW9uZXMgNChkKSB5IDQoZSkuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXN0cmljY2lvbmVzLgogICAgPHA+TGEgbGljZW5jaWEgb3RvcmdhZGEgZW4gbGEgYW50ZXJpb3IgU2VjY2nDs24gMyBlc3TDoSBleHByZXNhbWVudGUgc3VqZXRhIHkgbGltaXRhZGEgcG9yIGxhcyBzaWd1aWVudGVzIHJlc3RyaWNjaW9uZXM6PC9wPgogICAgPG9sIHR5cGU9ImEiPgogICAgICA8bGk+VXN0ZWQgcHVlZGUgZGlzdHJpYnVpciwgZXhoaWJpciBww7pibGljYW1lbnRlLCBlamVjdXRhciBww7pibGljYW1lbnRlLCBvIHBvbmVyIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhIGxhIE9icmEgc8OzbG8gYmFqbyBsYXMgY29uZGljaW9uZXMgZGUgZXN0YSBMaWNlbmNpYSwgeSBVc3RlZCBkZWJlIGluY2x1aXIgdW5hIGNvcGlhIGRlIGVzdGEgbGljZW5jaWEgbyBkZWwgSWRlbnRpZmljYWRvciBVbml2ZXJzYWwgZGUgUmVjdXJzb3MgZGUgbGEgbWlzbWEgY29uIGNhZGEgY29waWEgZGUgbGEgT2JyYSBxdWUgZGlzdHJpYnV5YSwgZXhoaWJhIHDDumJsaWNhbWVudGUsIGVqZWN1dGUgcMO6YmxpY2FtZW50ZSBvIHBvbmdhIGEgZGlzcG9zaWNpw7NuIHDDumJsaWNhLiBObyBlcyBwb3NpYmxlIG9mcmVjZXIgbyBpbXBvbmVyIG5pbmd1bmEgY29uZGljacOzbiBzb2JyZSBsYSBPYnJhIHF1ZSBhbHRlcmUgbyBsaW1pdGUgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgbyBlbCBlamVyY2ljaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGxvcyBkZXN0aW5hdGFyaW9zIG90b3JnYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gTm8gZXMgcG9zaWJsZSBzdWJsaWNlbmNpYXIgbGEgT2JyYS4gVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RvcyB0b2RvcyBsb3MgYXZpc29zIHF1ZSBoYWdhbiByZWZlcmVuY2lhIGEgZXN0YSBMaWNlbmNpYSB5IGEgbGEgY2zDoXVzdWxhIGRlIGxpbWl0YWNpw7NuIGRlIGdhcmFudMOtYXMuIFVzdGVkIG5vIHB1ZWRlIGRpc3RyaWJ1aXIsIGV4aGliaXIgcMO6YmxpY2FtZW50ZSwgZWplY3V0YXIgcMO6YmxpY2FtZW50ZSwgbyBwb25lciBhIGRpc3Bvc2ljacOzbiBww7pibGljYSBsYSBPYnJhIGNvbiBhbGd1bmEgbWVkaWRhIHRlY25vbMOzZ2ljYSBxdWUgY29udHJvbGUgZWwgYWNjZXNvIG8gbGEgdXRpbGl6YWNpw7NuIGRlIGVsbGEgZGUgdW5hIGZvcm1hIHF1ZSBzZWEgaW5jb25zaXN0ZW50ZSBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIExvIGFudGVyaW9yIHNlIGFwbGljYSBhIGxhIE9icmEgaW5jb3Jwb3JhZGEgYSB1bmEgT2JyYSBDb2xlY3RpdmEsIHBlcm8gZXN0byBubyBleGlnZSBxdWUgbGEgT2JyYSBDb2xlY3RpdmEgYXBhcnRlIGRlIGxhIG9icmEgbWlzbWEgcXVlZGUgc3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEuIFNpIFVzdGVkIGNyZWEgdW5hIE9icmEgQ29sZWN0aXZhLCBwcmV2aW8gYXZpc28gZGUgY3VhbHF1aWVyIExpY2VuY2lhbnRlIGRlYmUsIGVuIGxhIG1lZGlkYSBkZSBsbyBwb3NpYmxlLCBlbGltaW5hciBkZSBsYSBPYnJhIENvbGVjdGl2YSBjdWFscXVpZXIgcmVmZXJlbmNpYSBhIGRpY2hvIExpY2VuY2lhbnRlIG8gYWwgQXV0b3IgT3JpZ2luYWwsIHNlZ8O6biBsbyBzb2xpY2l0YWRvIHBvciBlbCBMaWNlbmNpYW50ZSB5IGNvbmZvcm1lIGxvIGV4aWdlIGxhIGNsw6F1c3VsYSA0KGMpLjwvbGk+CiAgICAgIDxsaT5Vc3RlZCBubyBwdWVkZSBlamVyY2VyIG5pbmd1bm8gZGUgbG9zIGRlcmVjaG9zIHF1ZSBsZSBoYW4gc2lkbyBvdG9yZ2Fkb3MgZW4gbGEgU2VjY2nDs24gMyBwcmVjZWRlbnRlIGRlIG1vZG8gcXVlIGVzdMOpbiBwcmluY2lwYWxtZW50ZSBkZXN0aW5hZG9zIG8gZGlyZWN0YW1lbnRlIGRpcmlnaWRvcyBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS4gRWwgaW50ZXJjYW1iaW8gZGUgbGEgT2JyYSBwb3Igb3RyYXMgb2JyYXMgcHJvdGVnaWRhcyBwb3IgZGVyZWNob3MgZGUgYXV0b3IsIHlhIHNlYSBhIHRyYXbDqXMgZGUgdW4gc2lzdGVtYSBwYXJhIGNvbXBhcnRpciBhcmNoaXZvcyBkaWdpdGFsZXMgKGRpZ2l0YWwgZmlsZS1zaGFyaW5nKSBvIGRlIGN1YWxxdWllciBvdHJhIG1hbmVyYSBubyBzZXLDoSBjb25zaWRlcmFkbyBjb21vIGVzdGFyIGRlc3RpbmFkbyBwcmluY2lwYWxtZW50ZSBvIGRpcmlnaWRvIGRpcmVjdGFtZW50ZSBhIGNvbnNlZ3VpciB1biBwcm92ZWNobyBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYSwgc2llbXByZSBxdWUgbm8gc2UgcmVhbGljZSB1biBwYWdvIG1lZGlhbnRlIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBlbiByZWxhY2nDs24gY29uIGVsIGludGVyY2FtYmlvIGRlIG9icmFzIHByb3RlZ2lkYXMgcG9yIGVsIGRlcmVjaG8gZGUgYXV0b3IuPC9saT4KICAgICAgPGxpPlNpIHVzdGVkIGRpc3RyaWJ1eWUsIGV4aGliZSBww7pibGljYW1lbnRlLCBlamVjdXRhIHDDumJsaWNhbWVudGUgbyBlamVjdXRhIHDDumJsaWNhbWVudGUgZW4gZm9ybWEgZGlnaXRhbCBsYSBPYnJhIG8gY3VhbHF1aWVyIE9icmEgRGVyaXZhZGEgdSBPYnJhIENvbGVjdGl2YSwgVXN0ZWQgZGViZSBtYW50ZW5lciBpbnRhY3RhIHRvZGEgbGEgaW5mb3JtYWNpw7NuIGRlIGRlcmVjaG8gZGUgYXV0b3IgZGUgbGEgT2JyYSB5IHByb3BvcmNpb25hciwgZGUgZm9ybWEgcmF6b25hYmxlIHNlZ8O6biBlbCBtZWRpbyBvIG1hbmVyYSBxdWUgVXN0ZWQgZXN0w6kgdXRpbGl6YW5kbzogKGkpIGVsIG5vbWJyZSBkZWwgQXV0b3IgT3JpZ2luYWwgc2kgZXN0w6EgcHJvdmlzdG8gKG8gc2V1ZMOzbmltbywgc2kgZnVlcmUgYXBsaWNhYmxlKSwgeS9vIChpaSkgZWwgbm9tYnJlIGRlIGxhIHBhcnRlIG8gbGFzIHBhcnRlcyBxdWUgZWwgQXV0b3IgT3JpZ2luYWwgeS9vIGVsIExpY2VuY2lhbnRlIGh1YmllcmVuIGRlc2lnbmFkbyBwYXJhIGxhIGF0cmlidWNpw7NuICh2LmcuLCB1biBpbnN0aXR1dG8gcGF0cm9jaW5hZG9yLCBlZGl0b3JpYWwsIHB1YmxpY2FjacOzbikgZW4gbGEgaW5mb3JtYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZWwgTGljZW5jaWFudGUsIHTDqXJtaW5vcyBkZSBzZXJ2aWNpb3MgbyBkZSBvdHJhcyBmb3JtYXMgcmF6b25hYmxlczsgZWwgdMOtdHVsbyBkZSBsYSBPYnJhIHNpIGVzdMOhIHByb3Zpc3RvOyBlbiBsYSBtZWRpZGEgZGUgbG8gcmF6b25hYmxlbWVudGUgZmFjdGlibGUgeSwgc2kgZXN0w6EgcHJvdmlzdG8sIGVsIElkZW50aWZpY2Fkb3IgVW5pZm9ybWUgZGUgUmVjdXJzb3MgKFVuaWZvcm0gUmVzb3VyY2UgSWRlbnRpZmllcikgcXVlIGVsIExpY2VuY2lhbnRlIGVzcGVjaWZpY2EgcGFyYSBzZXIgYXNvY2lhZG8gY29uIGxhIE9icmEsIHNhbHZvIHF1ZSB0YWwgVVJJIG5vIHNlIHJlZmllcmEgYSBsYSBub3RhIHNvYnJlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBvIGEgbGEgaW5mb3JtYWNpw7NuIHNvYnJlIGVsIGxpY2VuY2lhbWllbnRvIGRlIGxhIE9icmE7IHkgZW4gZWwgY2FzbyBkZSB1bmEgT2JyYSBEZXJpdmFkYSwgYXRyaWJ1aXIgZWwgY3LDqWRpdG8gaWRlbnRpZmljYW5kbyBlbCB1c28gZGUgbGEgT2JyYSBlbiBsYSBPYnJhIERlcml2YWRhICh2LmcuLCAiVHJhZHVjY2nDs24gRnJhbmNlc2EgZGUgbGEgT2JyYSBkZWwgQXV0b3IgT3JpZ2luYWwsIiBvICJHdWnDs24gQ2luZW1hdG9ncsOhZmljbyBiYXNhZG8gZW4gbGEgT2JyYSBvcmlnaW5hbCBkZWwgQXV0b3IgT3JpZ2luYWwiKS4gVGFsIGNyw6lkaXRvIHB1ZWRlIHNlciBpbXBsZW1lbnRhZG8gZGUgY3VhbHF1aWVyIGZvcm1hIHJhem9uYWJsZTsgZW4gZWwgY2Fzbywgc2luIGVtYmFyZ28sIGRlIE9icmFzIERlcml2YWRhcyB1IE9icmFzIENvbGVjdGl2YXMsIHRhbCBjcsOpZGl0byBhcGFyZWNlcsOhLCBjb21vIG3DrW5pbW8sIGRvbmRlIGFwYXJlY2UgZWwgY3LDqWRpdG8gZGUgY3VhbHF1aWVyIG90cm8gYXV0b3IgY29tcGFyYWJsZSB5IGRlIHVuYSBtYW5lcmEsIGFsIG1lbm9zLCB0YW4gZGVzdGFjYWRhIGNvbW8gZWwgY3LDqWRpdG8gZGUgb3RybyBhdXRvciBjb21wYXJhYmxlLjwvbGk+CiAgICAgIDxsaT4KICAgICAgICBQYXJhIGV2aXRhciB0b2RhIGNvbmZ1c2nDs24sIGVsIExpY2VuY2lhbnRlIGFjbGFyYSBxdWUsIGN1YW5kbyBsYSBvYnJhIGVzIHVuYSBjb21wb3NpY2nDs24gbXVzaWNhbDoKICAgICAgICA8b2wgdHlwZT0iaSI+CiAgICAgICAgICA8bGk+UmVnYWzDrWFzIHBvciBpbnRlcnByZXRhY2nDs24geSBlamVjdWNpw7NuIGJham8gbGljZW5jaWFzIGdlbmVyYWxlcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBvIGxhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBkZSBsYSBvYnJhIHkgZGUgcmVjb2xlY3Rhciwgc2VhIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIFNBWUNPKSwgbGFzIHJlZ2Fsw61hcyBwb3IgbGEgZWplY3VjacOzbiBww7pibGljYSBvIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8gV2ViY2FzdCkgbGljZW5jaWFkYSBiYWpvIGxpY2VuY2lhcyBnZW5lcmFsZXMsIHNpIGxhIGludGVycHJldGFjacOzbiBvIGVqZWN1Y2nDs24gZGUgbGEgb2JyYSBlc3TDoSBwcmltb3JkaWFsbWVudGUgb3JpZW50YWRhIHBvciBvIGRpcmlnaWRhIGEgbGEgb2J0ZW5jacOzbiBkZSB1bmEgdmVudGFqYSBjb21lcmNpYWwgbyB1bmEgY29tcGVuc2FjacOzbiBtb25ldGFyaWEgcHJpdmFkYS48L2xpPgogICAgICAgICAgPGxpPlJlZ2Fsw61hcyBwb3IgRm9ub2dyYW1hcy4gRWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSByZWNvbGVjdGFyLCBpbmRpdmlkdWFsbWVudGUgbyBhIHRyYXbDqXMgZGUgdW5hIHNvY2llZGFkIGRlIGdlc3Rpw7NuIGNvbGVjdGl2YSBkZSBkZXJlY2hvcyBkZSBhdXRvciB5IGRlcmVjaG9zIGNvbmV4b3MgKHBvciBlamVtcGxvLCBsb3MgY29uc2FncmFkb3MgcG9yIGxhIFNBWUNPKSwgdW5hIGFnZW5jaWEgZGUgZGVyZWNob3MgbXVzaWNhbGVzIG8gYWxnw7puIGFnZW50ZSBkZXNpZ25hZG8sIGxhcyByZWdhbMOtYXMgcG9yIGN1YWxxdWllciBmb25vZ3JhbWEgcXVlIFVzdGVkIGNyZWUgYSBwYXJ0aXIgZGUgbGEgb2JyYSAo4oCcdmVyc2nDs24gY292ZXLigJ0pIHkgZGlzdHJpYnV5YSwgZW4gbG9zIHTDqXJtaW5vcyBkZWwgcsOpZ2ltZW4gZGUgZGVyZWNob3MgZGUgYXV0b3IsIHNpIGxhIGNyZWFjacOzbiBvIGRpc3RyaWJ1Y2nDs24gZGUgZXNhIHZlcnNpw7NuIGNvdmVyIGVzdMOhIHByaW1vcmRpYWxtZW50ZSBkZXN0aW5hZGEgbyBkaXJpZ2lkYSBhIG9idGVuZXIgdW5hIHZlbnRhamEgY29tZXJjaWFsIG8gdW5hIGNvbXBlbnNhY2nDs24gbW9uZXRhcmlhIHByaXZhZGEuPC9saT4KICAgICAgICA8L29sPgogICAgICA8L2xpPgogICAgICA8bGk+R2VzdGnDs24gZGUgRGVyZWNob3MgZGUgQXV0b3Igc29icmUgSW50ZXJwcmV0YWNpb25lcyB5IEVqZWN1Y2lvbmVzIERpZ2l0YWxlcyAoV2ViQ2FzdGluZykuIFBhcmEgZXZpdGFyIHRvZGEgY29uZnVzacOzbiwgZWwgTGljZW5jaWFudGUgYWNsYXJhIHF1ZSwgY3VhbmRvIGxhIG9icmEgc2VhIHVuIGZvbm9ncmFtYSwgZWwgTGljZW5jaWFudGUgc2UgcmVzZXJ2YSBlbCBkZXJlY2hvIGV4Y2x1c2l2byBkZSBhdXRvcml6YXIgbGEgZWplY3VjacOzbiBww7pibGljYSBkaWdpdGFsIGRlIGxhIG9icmEgKHBvciBlamVtcGxvLCB3ZWJjYXN0KSB5IGRlIHJlY29sZWN0YXIsIGluZGl2aWR1YWxtZW50ZSBvIGEgdHJhdsOpcyBkZSB1bmEgc29jaWVkYWQgZGUgZ2VzdGnDs24gY29sZWN0aXZhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIHkgZGVyZWNob3MgY29uZXhvcyAocG9yIGVqZW1wbG8sIEFDSU5QUk8pLCBsYXMgcmVnYWzDrWFzIHBvciBsYSBlamVjdWNpw7NuIHDDumJsaWNhIGRpZ2l0YWwgZGUgbGEgb2JyYSAocG9yIGVqZW1wbG8sIHdlYmNhc3QpLCBzdWpldGEgYSBsYXMgZGlzcG9zaWNpb25lcyBhcGxpY2FibGVzIGRlbCByw6lnaW1lbiBkZSBEZXJlY2hvIGRlIEF1dG9yLCBzaSBlc3RhIGVqZWN1Y2nDs24gcMO6YmxpY2EgZGlnaXRhbCBlc3TDoSBwcmltb3JkaWFsbWVudGUgZGlyaWdpZGEgYSBvYnRlbmVyIHVuYSB2ZW50YWphIGNvbWVyY2lhbCBvIHVuYSBjb21wZW5zYWNpw7NuIG1vbmV0YXJpYSBwcml2YWRhLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBSZXByZXNlbnRhY2lvbmVzLCBHYXJhbnTDrWFzIHkgTGltaXRhY2lvbmVzIGRlIFJlc3BvbnNhYmlsaWRhZC4KICAgIDxwPkEgTUVOT1MgUVVFIExBUyBQQVJURVMgTE8gQUNPUkRBUkFOIERFIE9UUkEgRk9STUEgUE9SIEVTQ1JJVE8sIEVMIExJQ0VOQ0lBTlRFIE9GUkVDRSBMQSBPQlJBIChFTiBFTCBFU1RBRE8gRU4gRUwgUVVFIFNFIEVOQ1VFTlRSQSkg4oCcVEFMIENVQUzigJ0sIFNJTiBCUklOREFSIEdBUkFOVMONQVMgREUgQ0xBU0UgQUxHVU5BIFJFU1BFQ1RPIERFIExBIE9CUkEsIFlBIFNFQSBFWFBSRVNBLCBJTVBMw41DSVRBLCBMRUdBTCBPIENVQUxRVUlFUkEgT1RSQSwgSU5DTFVZRU5ETywgU0lOIExJTUlUQVJTRSBBIEVMTEFTLCBHQVJBTlTDjUFTIERFIFRJVFVMQVJJREFELCBDT01FUkNJQUJJTElEQUQsIEFEQVBUQUJJTElEQUQgTyBBREVDVUFDScOTTiBBIFBST1DDk1NJVE8gREVURVJNSU5BRE8sIEFVU0VOQ0lBIERFIElORlJBQ0NJw5NOLCBERSBBVVNFTkNJQSBERSBERUZFQ1RPUyBMQVRFTlRFUyBPIERFIE9UUk8gVElQTywgTyBMQSBQUkVTRU5DSUEgTyBBVVNFTkNJQSBERSBFUlJPUkVTLCBTRUFOIE8gTk8gREVTQ1VCUklCTEVTIChQVUVEQU4gTyBOTyBTRVIgRVNUT1MgREVTQ1VCSUVSVE9TKS4gQUxHVU5BUyBKVVJJU0RJQ0NJT05FUyBOTyBQRVJNSVRFTiBMQSBFWENMVVNJw5NOIERFIEdBUkFOVMONQVMgSU1QTMONQ0lUQVMsIEVOIENVWU8gQ0FTTyBFU1RBIEVYQ0xVU0nDk04gUFVFREUgTk8gQVBMSUNBUlNFIEEgVVNURUQuPC9wPgogIDwvbGk+CiAgPGJyLz4KICA8bGk+CiAgICBMaW1pdGFjacOzbiBkZSByZXNwb25zYWJpbGlkYWQuCiAgICA8cD5BIE1FTk9TIFFVRSBMTyBFWElKQSBFWFBSRVNBTUVOVEUgTEEgTEVZIEFQTElDQUJMRSwgRUwgTElDRU5DSUFOVEUgTk8gU0VSw4EgUkVTUE9OU0FCTEUgQU5URSBVU1RFRCBQT1IgREHDkU8gQUxHVU5PLCBTRUEgUE9SIFJFU1BPTlNBQklMSURBRCBFWFRSQUNPTlRSQUNUVUFMLCBQUkVDT05UUkFDVFVBTCBPIENPTlRSQUNUVUFMLCBPQkpFVElWQSBPIFNVQkpFVElWQSwgU0UgVFJBVEUgREUgREHDkU9TIE1PUkFMRVMgTyBQQVRSSU1PTklBTEVTLCBESVJFQ1RPUyBPIElORElSRUNUT1MsIFBSRVZJU1RPUyBPIElNUFJFVklTVE9TIFBST0RVQ0lET1MgUE9SIEVMIFVTTyBERSBFU1RBIExJQ0VOQ0lBIE8gREUgTEEgT0JSQSwgQVVOIENVQU5ETyBFTCBMSUNFTkNJQU5URSBIQVlBIFNJRE8gQURWRVJUSURPIERFIExBIFBPU0lCSUxJREFEIERFIERJQ0hPUyBEQcORT1MuIEFMR1VOQVMgTEVZRVMgTk8gUEVSTUlURU4gTEEgRVhDTFVTScOTTiBERSBDSUVSVEEgUkVTUE9OU0FCSUxJREFELCBFTiBDVVlPIENBU08gRVNUQSBFWENMVVNJw5NOIFBVRURFIE5PIEFQTElDQVJTRSBBIFVTVEVELjwvcD4KICA8L2xpPgogIDxici8+CiAgPGxpPgogICAgVMOpcm1pbm8uCiAgICA8b2wgdHlwZT0iYSI+CiAgICAgIDxsaT5Fc3RhIExpY2VuY2lhIHkgbG9zIGRlcmVjaG9zIG90b3JnYWRvcyBlbiB2aXJ0dWQgZGUgZWxsYSB0ZXJtaW5hcsOhbiBhdXRvbcOhdGljYW1lbnRlIHNpIFVzdGVkIGluZnJpbmdlIGFsZ3VuYSBjb25kaWNpw7NuIGVzdGFibGVjaWRhIGVuIGVsbGEuIFNpbiBlbWJhcmdvLCBsb3MgaW5kaXZpZHVvcyBvIGVudGlkYWRlcyBxdWUgaGFuIHJlY2liaWRvIE9icmFzIERlcml2YWRhcyBvIENvbGVjdGl2YXMgZGUgVXN0ZWQgZGUgY29uZm9ybWlkYWQgY29uIGVzdGEgTGljZW5jaWEsIG5vIHZlcsOhbiB0ZXJtaW5hZGFzIHN1cyBsaWNlbmNpYXMsIHNpZW1wcmUgcXVlIGVzdG9zIGluZGl2aWR1b3MgbyBlbnRpZGFkZXMgc2lnYW4gY3VtcGxpZW5kbyDDrW50ZWdyYW1lbnRlIGxhcyBjb25kaWNpb25lcyBkZSBlc3RhcyBsaWNlbmNpYXMuIExhcyBTZWNjaW9uZXMgMSwgMiwgNSwgNiwgNywgeSA4IHN1YnNpc3RpcsOhbiBhIGN1YWxxdWllciB0ZXJtaW5hY2nDs24gZGUgZXN0YSBMaWNlbmNpYS48L2xpPgogICAgICA8bGk+U3VqZXRhIGEgbGFzIGNvbmRpY2lvbmVzIHkgdMOpcm1pbm9zIGFudGVyaW9yZXMsIGxhIGxpY2VuY2lhIG90b3JnYWRhIGFxdcOtIGVzIHBlcnBldHVhIChkdXJhbnRlIGVsIHBlcsOtb2RvIGRlIHZpZ2VuY2lhIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSBsYSBvYnJhKS4gTm8gb2JzdGFudGUgbG8gYW50ZXJpb3IsIGVsIExpY2VuY2lhbnRlIHNlIHJlc2VydmEgZWwgZGVyZWNobyBhIHB1YmxpY2FyIHkvbyBlc3RyZW5hciBsYSBPYnJhIGJham8gY29uZGljaW9uZXMgZGUgbGljZW5jaWEgZGlmZXJlbnRlcyBvIGEgZGVqYXIgZGUgZGlzdHJpYnVpcmxhIGVuIGxvcyB0w6lybWlub3MgZGUgZXN0YSBMaWNlbmNpYSBlbiBjdWFscXVpZXIgbW9tZW50bzsgZW4gZWwgZW50ZW5kaWRvLCBzaW4gZW1iYXJnbywgcXVlIGVzYSBlbGVjY2nDs24gbm8gc2Vydmlyw6EgcGFyYSByZXZvY2FyIGVzdGEgbGljZW5jaWEgbyBxdWUgZGViYSBzZXIgb3RvcmdhZGEgLCBiYWpvIGxvcyB0w6lybWlub3MgZGUgZXN0YSBsaWNlbmNpYSksIHkgZXN0YSBsaWNlbmNpYSBjb250aW51YXLDoSBlbiBwbGVubyB2aWdvciB5IGVmZWN0byBhIG1lbm9zIHF1ZSBzZWEgdGVybWluYWRhIGNvbW8gc2UgZXhwcmVzYSBhdHLDoXMuIExhIExpY2VuY2lhIHJldm9jYWRhIGNvbnRpbnVhcsOhIHNpZW5kbyBwbGVuYW1lbnRlIHZpZ2VudGUgeSBlZmVjdGl2YSBzaSBubyBzZSBsZSBkYSB0w6lybWlubyBlbiBsYXMgY29uZGljaW9uZXMgaW5kaWNhZGFzIGFudGVyaW9ybWVudGUuPC9saT4KICAgIDwvb2w+CiAgPC9saT4KICA8YnIvPgogIDxsaT4KICAgIFZhcmlvcy4KICAgIDxvbCB0eXBlPSJhIj4KICAgICAgPGxpPkNhZGEgdmV6IHF1ZSBVc3RlZCBkaXN0cmlidXlhIG8gcG9uZ2EgYSBkaXNwb3NpY2nDs24gcMO6YmxpY2EgbGEgT2JyYSBvIHVuYSBPYnJhIENvbGVjdGl2YSwgZWwgTGljZW5jaWFudGUgb2ZyZWNlcsOhIGFsIGRlc3RpbmF0YXJpbyB1bmEgbGljZW5jaWEgZW4gbG9zIG1pc21vcyB0w6lybWlub3MgeSBjb25kaWNpb25lcyBxdWUgbGEgbGljZW5jaWEgb3RvcmdhZGEgYSBVc3RlZCBiYWpvIGVzdGEgTGljZW5jaWEuPC9saT4KICAgICAgPGxpPlNpIGFsZ3VuYSBkaXNwb3NpY2nDs24gZGUgZXN0YSBMaWNlbmNpYSByZXN1bHRhIGludmFsaWRhZGEgbyBubyBleGlnaWJsZSwgc2Vnw7puIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlLCBlc3RvIG5vIGFmZWN0YXLDoSBuaSBsYSB2YWxpZGV6IG5pIGxhIGFwbGljYWJpbGlkYWQgZGVsIHJlc3RvIGRlIGNvbmRpY2lvbmVzIGRlIGVzdGEgTGljZW5jaWEgeSwgc2luIGFjY2nDs24gYWRpY2lvbmFsIHBvciBwYXJ0ZSBkZSBsb3Mgc3VqZXRvcyBkZSBlc3RlIGFjdWVyZG8sIGFxdcOpbGxhIHNlIGVudGVuZGVyw6EgcmVmb3JtYWRhIGxvIG3DrW5pbW8gbmVjZXNhcmlvIHBhcmEgaGFjZXIgcXVlIGRpY2hhIGRpc3Bvc2ljacOzbiBzZWEgdsOhbGlkYSB5IGV4aWdpYmxlLjwvbGk+CiAgICAgIDxsaT5OaW5nw7puIHTDqXJtaW5vIG8gZGlzcG9zaWNpw7NuIGRlIGVzdGEgTGljZW5jaWEgc2UgZXN0aW1hcsOhIHJlbnVuY2lhZGEgeSBuaW5ndW5hIHZpb2xhY2nDs24gZGUgZWxsYSBzZXLDoSBjb25zZW50aWRhIGEgbWVub3MgcXVlIGVzYSByZW51bmNpYSBvIGNvbnNlbnRpbWllbnRvIHNlYSBvdG9yZ2FkbyBwb3IgZXNjcml0byB5IGZpcm1hZG8gcG9yIGxhIHBhcnRlIHF1ZSByZW51bmNpZSBvIGNvbnNpZW50YS48L2xpPgogICAgICA8bGk+RXN0YSBMaWNlbmNpYSByZWZsZWphIGVsIGFjdWVyZG8gcGxlbm8gZW50cmUgbGFzIHBhcnRlcyByZXNwZWN0byBhIGxhIE9icmEgYXF1w60gbGljZW5jaWFkYS4gTm8gaGF5IGFycmVnbG9zLCBhY3VlcmRvcyBvIGRlY2xhcmFjaW9uZXMgcmVzcGVjdG8gYSBsYSBPYnJhIHF1ZSBubyBlc3TDqW4gZXNwZWNpZmljYWRvcyBlbiBlc3RlIGRvY3VtZW50by4gRWwgTGljZW5jaWFudGUgbm8gc2UgdmVyw6EgbGltaXRhZG8gcG9yIG5pbmd1bmEgZGlzcG9zaWNpw7NuIGFkaWNpb25hbCBxdWUgcHVlZGEgc3VyZ2lyIGVuIGFsZ3VuYSBjb211bmljYWNpw7NuIGVtYW5hZGEgZGUgVXN0ZWQuIEVzdGEgTGljZW5jaWEgbm8gcHVlZGUgc2VyIG1vZGlmaWNhZGEgc2luIGVsIGNvbnNlbnRpbWllbnRvIG11dHVvIHBvciBlc2NyaXRvIGRlbCBMaWNlbmNpYW50ZSB5IFVzdGVkLjwvbGk+CiAgICA8L29sPgogIDwvbGk+CiAgPGJyLz4KPC9vbD4K