Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for th...
- Autores:
-
Sousa Santos, Vladimir
Viego, Percy Rafael
Gómez, Julio Rafael
Quispe, Enrique Ciro
Balbis Morejón, Milen
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/984
- Acceso en línea:
- https://hdl.handle.net/11323/984
https://repositorio.cuc.edu.co/
- Palabra clave:
- Energy management
Equivalent circuits
Harmonic analysis
Induction motors
Industrial power systems
Parameter estimation
Power quality
Unbalanced voltage
- Rights
- openAccess
- License
- Atribución – No comercial – Compartir igual
id |
RCUC2_9ca7ac8da8d4a958b874861f5b4bf143 |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/984 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
title |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
spellingShingle |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages Energy management Equivalent circuits Harmonic analysis Induction motors Industrial power systems Parameter estimation Power quality Unbalanced voltage |
title_short |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
title_full |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
title_fullStr |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
title_full_unstemmed |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
title_sort |
Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages |
dc.creator.fl_str_mv |
Sousa Santos, Vladimir Viego, Percy Rafael Gómez, Julio Rafael Quispe, Enrique Ciro Balbis Morejón, Milen |
dc.contributor.author.spa.fl_str_mv |
Sousa Santos, Vladimir Viego, Percy Rafael Gómez, Julio Rafael Quispe, Enrique Ciro Balbis Morejón, Milen |
dc.subject.eng.fl_str_mv |
Energy management Equivalent circuits Harmonic analysis Induction motors Industrial power systems Parameter estimation Power quality Unbalanced voltage |
topic |
Energy management Equivalent circuits Harmonic analysis Induction motors Industrial power systems Parameter estimation Power quality Unbalanced voltage |
description |
This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for the analysis of motor performance, fed with unbalanced and harmonic voltages. The parameters of circuits are determined with low invasiveness, by applying a Bacterial Foraging Algorithm as technique of evolutionary search. With this, the efficiency and other operational parameters can be estimated at any operating point. The method was tested in a 12.6 kW motor working in an industrial network, with harmonics and voltage unbalanced. |
publishDate |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2018-11-14T19:22:22Z |
dc.date.available.none.fl_str_mv |
2018-11-14T19:22:22Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.isbn.spa.fl_str_mv |
978-146738756-9 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/984 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
978-146738756-9 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/984 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1]. E.C. Quispe, X.M. Lopez-Fernandez, A.M.S. Mendes, A.J.M. Cardoso, J.A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 100-105. [2]. IEEE Standard test procedure for polyphase induction motors and generators, IEEE Standard 112, 2004. [3]. IEC Standard methods for determining losses and efficiency from tests, IEC Standard 60034-2-1, 2014. [4]. A. Gharakhani and P. Pillay, “An in-situ efficiency estimation technique for induction machines working with unbalanced supplies”, IEEE Trans. Energy Convers., vol. 27, no. 1, pp, 85-95, 2012. [5]. B. Lu, T. G. Habetler and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring”, IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. [6]. M. Çunkaú and T. Sa÷, “Efficiency determination of induction motors using multi-objective evolutionary algorithms”, Adv. Eng. Softw., vol. 41, no. 2, pp. 255-261, 2010. [7]. P. Phumiphak and C. Chat-Uthai, “Nonintrusive method for estimating field efficiency of inverter-fed induction motor using measured values”, in Proc. IEEE Int. Conf. Sustainable Energy Technol, 2008, pp. 580– 583. [8]. C. P. Salomon, W. C. Santana, L. E. Borges, E.L. Bonaldi, L. E. L. de Oliveira, J. G. Borges, G. Lambert-Torres and A. R. Donadon, “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1452-1458. [9]. D. Bae, D. Kim, H.-K. Jung, S.-Y. Hahn and C. Koh, “Determination of induction motor parameters by using neural network based on FEM results”, IEEE Trans. Magn., vol. 33, no. 2, pp. 1924-1927, 1997. [10]. Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors”, J. Optim. Theory Appl., vol. 115, no. 3, pp. 603-628, 2002. [11]. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, “An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm”, Measurement, vol. 44, no. 4. pp. 674-684, 2011. [12]. V. Sousa, P. R. Viego and J. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement. vol. 46, pp. 2232-2237, 2013. [13]. V. Sousa, P. R. Viego, J. Gómez, N. Lemozy, A. Jurado and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Trans. Energy Convers., vol. PP, no. 99, pp. 1-9. 2014. [14]. V. Sousa, E. C. Quispe, J. Gómez, P. R. Viego, N. Lemozy, A. Jurado and M. Brugnoni, “Bacterial foraging algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1174-1178. [15]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1993. [16]. J. Pedra, L. Sainz and F. Córcoles, “Harmonic modeling of induction motors”, Electr. Power Syst. Res., vol. 76, no 11, pp. 936-944, 2006. [17]. J. C. A. Escobar and F. de la Rosa “Shaft torsional vibration due to nonlinear loads in low capacity turbine units”, in Proc. IEEE Power Engineering Society, 2001, pp. 1403–1408. [18]. P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors”, IEEE Trans. Ind. Appl., vol. IA-22, no. 6, pp. 1121-1126, 1986. [19]. V. Ivanov-Smolenski, Electrical Machines, vol. 2, Moscú: Mir, 1984. [20]. A. Enmanuel, J. Orr, D. Cyganski, E. Gulachenski, “Survey of harmonic voltages and currents at distribution substation,” IEEE Trans. Pow. Deliv., vol.6. no.4. pp. 2204-2212. 1991. [21]. Y. Baghzouz, R.F. Burch, A. Capasso, A. Cavallini, A.E. Emanuel, M. Halpin, A. Imece, A. Ludbrook, G. Montanari, K.J. Olejniczak, P. Ribeiro, S. Rios-Marcuello, L. Tang, R. Thaliam and P. Verde, “Timevarying harmonics. I. Characterizing measured data”, IEEE Trans. Pow. Deliv., vol. 13, no. 3, pp. 938-944, 1998. [22]. WEKA MOTORENPRÜFSTÄNDE manufacturer. [Online]. Available: http://www.weka-motorenpruefstaende.de/. [23]. IEC Standard rotating electrical machines-Part26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, IEC Standard 60034-26, 2006. [24]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519. 1993. |
dc.rights.spa.fl_str_mv |
Atribución – No comercial – Compartir igual |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Atribución – No comercial – Compartir igual http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.publisher.spa.fl_str_mv |
IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies |
institution |
Corporación Universidad de la Costa |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/6ef9080a-e79e-49b1-8881-a16d1d041d44/download https://repositorio.cuc.edu.co/bitstreams/865b36e7-58d3-41e7-849c-6064d445d020/download https://repositorio.cuc.edu.co/bitstreams/9769afcf-3c95-466b-b9e9-ac62a5a195fb/download https://repositorio.cuc.edu.co/bitstreams/a14e28d3-a67e-4cf4-9079-878ad452a648/download |
bitstream.checksum.fl_str_mv |
109675af2114f011ec1adc8566345611 8a4605be74aa9ea9d79846c1fba20a33 2996cd12179a89bd10062f687c3c1f1f 61907895ae4b6b9674e12bd1e9ff07bf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760741637685248 |
spelling |
Sousa Santos, VladimirViego, Percy RafaelGómez, Julio RafaelQuispe, Enrique CiroBalbis Morejón, Milen2018-11-14T19:22:22Z2018-11-14T19:22:22Z2016978-146738756-9https://hdl.handle.net/11323/984Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for the analysis of motor performance, fed with unbalanced and harmonic voltages. The parameters of circuits are determined with low invasiveness, by applying a Bacterial Foraging Algorithm as technique of evolutionary search. With this, the efficiency and other operational parameters can be estimated at any operating point. The method was tested in a 12.6 kW motor working in an industrial network, with harmonics and voltage unbalanced.Sousa Santos, Vladimir-0000-0001-8808-1914-600Viego, Percy Rafael-73186627-023b-4e63-af11-5eef74f4f434-0Gómez, Julio Rafael-36158e7a-d9e6-4448-8a78-a3ce97be46cf-0Quispe, Enrique Ciro-82fa64db-e560-4049-85e9-ee34bf04f8f7-0Balbis Morejón, Milen-ceb197c5-21b6-48fa-be13-a72280a5cd23-0engIEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication TechnologiesAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy managementEquivalent circuitsHarmonic analysisInduction motorsIndustrial power systemsParameter estimationPower qualityUnbalanced voltageEstimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltagesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1]. E.C. Quispe, X.M. Lopez-Fernandez, A.M.S. Mendes, A.J.M. Cardoso, J.A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 100-105. [2]. IEEE Standard test procedure for polyphase induction motors and generators, IEEE Standard 112, 2004. [3]. IEC Standard methods for determining losses and efficiency from tests, IEC Standard 60034-2-1, 2014. [4]. A. Gharakhani and P. Pillay, “An in-situ efficiency estimation technique for induction machines working with unbalanced supplies”, IEEE Trans. Energy Convers., vol. 27, no. 1, pp, 85-95, 2012. [5]. B. Lu, T. G. Habetler and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring”, IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. [6]. M. Çunkaú and T. Sa÷, “Efficiency determination of induction motors using multi-objective evolutionary algorithms”, Adv. Eng. Softw., vol. 41, no. 2, pp. 255-261, 2010. [7]. P. Phumiphak and C. Chat-Uthai, “Nonintrusive method for estimating field efficiency of inverter-fed induction motor using measured values”, in Proc. IEEE Int. Conf. Sustainable Energy Technol, 2008, pp. 580– 583. [8]. C. P. Salomon, W. C. Santana, L. E. Borges, E.L. Bonaldi, L. E. L. de Oliveira, J. G. Borges, G. Lambert-Torres and A. R. Donadon, “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1452-1458. [9]. D. Bae, D. Kim, H.-K. Jung, S.-Y. Hahn and C. Koh, “Determination of induction motor parameters by using neural network based on FEM results”, IEEE Trans. Magn., vol. 33, no. 2, pp. 1924-1927, 1997. [10]. Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors”, J. Optim. Theory Appl., vol. 115, no. 3, pp. 603-628, 2002. [11]. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, “An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm”, Measurement, vol. 44, no. 4. pp. 674-684, 2011. [12]. V. Sousa, P. R. Viego and J. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement. vol. 46, pp. 2232-2237, 2013. [13]. V. Sousa, P. R. Viego, J. Gómez, N. Lemozy, A. Jurado and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Trans. Energy Convers., vol. PP, no. 99, pp. 1-9. 2014. [14]. V. Sousa, E. C. Quispe, J. Gómez, P. R. Viego, N. Lemozy, A. Jurado and M. Brugnoni, “Bacterial foraging algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1174-1178. [15]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1993. [16]. J. Pedra, L. Sainz and F. Córcoles, “Harmonic modeling of induction motors”, Electr. Power Syst. Res., vol. 76, no 11, pp. 936-944, 2006. [17]. J. C. A. Escobar and F. de la Rosa “Shaft torsional vibration due to nonlinear loads in low capacity turbine units”, in Proc. IEEE Power Engineering Society, 2001, pp. 1403–1408. [18]. P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors”, IEEE Trans. Ind. Appl., vol. IA-22, no. 6, pp. 1121-1126, 1986. [19]. V. Ivanov-Smolenski, Electrical Machines, vol. 2, Moscú: Mir, 1984. [20]. A. Enmanuel, J. Orr, D. Cyganski, E. Gulachenski, “Survey of harmonic voltages and currents at distribution substation,” IEEE Trans. Pow. Deliv., vol.6. no.4. pp. 2204-2212. 1991. [21]. Y. Baghzouz, R.F. Burch, A. Capasso, A. Cavallini, A.E. Emanuel, M. Halpin, A. Imece, A. Ludbrook, G. Montanari, K.J. Olejniczak, P. Ribeiro, S. Rios-Marcuello, L. Tang, R. Thaliam and P. Verde, “Timevarying harmonics. I. Characterizing measured data”, IEEE Trans. Pow. Deliv., vol. 13, no. 3, pp. 938-944, 1998. [22]. WEKA MOTORENPRÜFSTÄNDE manufacturer. [Online]. Available: http://www.weka-motorenpruefstaende.de/. [23]. IEC Standard rotating electrical machines-Part26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, IEC Standard 60034-26, 2006. [24]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519. 1993.PublicationORIGINALEstimating induction motor efficiency under.pdfEstimating induction motor efficiency under.pdfapplication/pdf320905https://repositorio.cuc.edu.co/bitstreams/6ef9080a-e79e-49b1-8881-a16d1d041d44/download109675af2114f011ec1adc8566345611MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/865b36e7-58d3-41e7-849c-6064d445d020/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEstimating induction motor efficiency under.pdf.jpgEstimating induction motor efficiency under.pdf.jpgimage/jpeg78447https://repositorio.cuc.edu.co/bitstreams/9769afcf-3c95-466b-b9e9-ac62a5a195fb/download2996cd12179a89bd10062f687c3c1f1fMD54TEXTEstimating induction motor efficiency under.pdf.txtEstimating induction motor efficiency under.pdf.txttext/plain28674https://repositorio.cuc.edu.co/bitstreams/a14e28d3-a67e-4cf4-9079-878ad452a648/download61907895ae4b6b9674e12bd1e9ff07bfMD5511323/984oai:repositorio.cuc.edu.co:11323/9842024-09-17 10:55:06.437open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |