Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages

This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for th...

Full description

Autores:
Sousa Santos, Vladimir
Viego, Percy Rafael
Gómez, Julio Rafael
Quispe, Enrique Ciro
Balbis Morejón, Milen
Tipo de recurso:
Article of journal
Fecha de publicación:
2016
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/984
Acceso en línea:
https://hdl.handle.net/11323/984
https://repositorio.cuc.edu.co/
Palabra clave:
Energy management
Equivalent circuits
Harmonic analysis
Induction motors
Industrial power systems
Parameter estimation
Power quality
Unbalanced voltage
Rights
openAccess
License
Atribución – No comercial – Compartir igual
id RCUC2_9ca7ac8da8d4a958b874861f5b4bf143
oai_identifier_str oai:repositorio.cuc.edu.co:11323/984
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.eng.fl_str_mv Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
title Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
spellingShingle Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
Energy management
Equivalent circuits
Harmonic analysis
Induction motors
Industrial power systems
Parameter estimation
Power quality
Unbalanced voltage
title_short Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
title_full Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
title_fullStr Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
title_full_unstemmed Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
title_sort Estimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltages
dc.creator.fl_str_mv Sousa Santos, Vladimir
Viego, Percy Rafael
Gómez, Julio Rafael
Quispe, Enrique Ciro
Balbis Morejón, Milen
dc.contributor.author.spa.fl_str_mv Sousa Santos, Vladimir
Viego, Percy Rafael
Gómez, Julio Rafael
Quispe, Enrique Ciro
Balbis Morejón, Milen
dc.subject.eng.fl_str_mv Energy management
Equivalent circuits
Harmonic analysis
Induction motors
Industrial power systems
Parameter estimation
Power quality
Unbalanced voltage
topic Energy management
Equivalent circuits
Harmonic analysis
Induction motors
Industrial power systems
Parameter estimation
Power quality
Unbalanced voltage
description This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for the analysis of motor performance, fed with unbalanced and harmonic voltages. The parameters of circuits are determined with low invasiveness, by applying a Bacterial Foraging Algorithm as technique of evolutionary search. With this, the efficiency and other operational parameters can be estimated at any operating point. The method was tested in a 12.6 kW motor working in an industrial network, with harmonics and voltage unbalanced.
publishDate 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2018-11-14T19:22:22Z
dc.date.available.none.fl_str_mv 2018-11-14T19:22:22Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.isbn.spa.fl_str_mv 978-146738756-9
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/984
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 978-146738756-9
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/984
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1]. E.C. Quispe, X.M. Lopez-Fernandez, A.M.S. Mendes, A.J.M. Cardoso, J.A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 100-105. [2]. IEEE Standard test procedure for polyphase induction motors and generators, IEEE Standard 112, 2004. [3]. IEC Standard methods for determining losses and efficiency from tests, IEC Standard 60034-2-1, 2014. [4]. A. Gharakhani and P. Pillay, “An in-situ efficiency estimation technique for induction machines working with unbalanced supplies”, IEEE Trans. Energy Convers., vol. 27, no. 1, pp, 85-95, 2012. [5]. B. Lu, T. G. Habetler and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring”, IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. [6]. M. Çunkaú and T. Sa÷, “Efficiency determination of induction motors using multi-objective evolutionary algorithms”, Adv. Eng. Softw., vol. 41, no. 2, pp. 255-261, 2010. [7]. P. Phumiphak and C. Chat-Uthai, “Nonintrusive method for estimating field efficiency of inverter-fed induction motor using measured values”, in Proc. IEEE Int. Conf. Sustainable Energy Technol, 2008, pp. 580– 583. [8]. C. P. Salomon, W. C. Santana, L. E. Borges, E.L. Bonaldi, L. E. L. de Oliveira, J. G. Borges, G. Lambert-Torres and A. R. Donadon, “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1452-1458. [9]. D. Bae, D. Kim, H.-K. Jung, S.-Y. Hahn and C. Koh, “Determination of induction motor parameters by using neural network based on FEM results”, IEEE Trans. Magn., vol. 33, no. 2, pp. 1924-1927, 1997. [10]. Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors”, J. Optim. Theory Appl., vol. 115, no. 3, pp. 603-628, 2002. [11]. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, “An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm”, Measurement, vol. 44, no. 4. pp. 674-684, 2011. [12]. V. Sousa, P. R. Viego and J. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement. vol. 46, pp. 2232-2237, 2013. [13]. V. Sousa, P. R. Viego, J. Gómez, N. Lemozy, A. Jurado and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Trans. Energy Convers., vol. PP, no. 99, pp. 1-9. 2014. [14]. V. Sousa, E. C. Quispe, J. Gómez, P. R. Viego, N. Lemozy, A. Jurado and M. Brugnoni, “Bacterial foraging algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1174-1178. [15]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1993. [16]. J. Pedra, L. Sainz and F. Córcoles, “Harmonic modeling of induction motors”, Electr. Power Syst. Res., vol. 76, no 11, pp. 936-944, 2006. [17]. J. C. A. Escobar and F. de la Rosa “Shaft torsional vibration due to nonlinear loads in low capacity turbine units”, in Proc. IEEE Power Engineering Society, 2001, pp. 1403–1408. [18]. P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors”, IEEE Trans. Ind. Appl., vol. IA-22, no. 6, pp. 1121-1126, 1986. [19]. V. Ivanov-Smolenski, Electrical Machines, vol. 2, Moscú: Mir, 1984. [20]. A. Enmanuel, J. Orr, D. Cyganski, E. Gulachenski, “Survey of harmonic voltages and currents at distribution substation,” IEEE Trans. Pow. Deliv., vol.6. no.4. pp. 2204-2212. 1991. [21]. Y. Baghzouz, R.F. Burch, A. Capasso, A. Cavallini, A.E. Emanuel, M. Halpin, A. Imece, A. Ludbrook, G. Montanari, K.J. Olejniczak, P. Ribeiro, S. Rios-Marcuello, L. Tang, R. Thaliam and P. Verde, “Timevarying harmonics. I. Characterizing measured data”, IEEE Trans. Pow. Deliv., vol. 13, no. 3, pp. 938-944, 1998. [22]. WEKA MOTORENPRÜFSTÄNDE manufacturer. [Online]. Available: http://www.weka-motorenpruefstaende.de/. [23]. IEC Standard rotating electrical machines-Part26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, IEC Standard 60034-26, 2006. [24]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519. 1993.
dc.rights.spa.fl_str_mv Atribución – No comercial – Compartir igual
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Atribución – No comercial – Compartir igual
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv IEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication Technologies
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/6ef9080a-e79e-49b1-8881-a16d1d041d44/download
https://repositorio.cuc.edu.co/bitstreams/865b36e7-58d3-41e7-849c-6064d445d020/download
https://repositorio.cuc.edu.co/bitstreams/9769afcf-3c95-466b-b9e9-ac62a5a195fb/download
https://repositorio.cuc.edu.co/bitstreams/a14e28d3-a67e-4cf4-9079-878ad452a648/download
bitstream.checksum.fl_str_mv 109675af2114f011ec1adc8566345611
8a4605be74aa9ea9d79846c1fba20a33
2996cd12179a89bd10062f687c3c1f1f
61907895ae4b6b9674e12bd1e9ff07bf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760741637685248
spelling Sousa Santos, VladimirViego, Percy RafaelGómez, Julio RafaelQuispe, Enrique CiroBalbis Morejón, Milen2018-11-14T19:22:22Z2018-11-14T19:22:22Z2016978-146738756-9https://hdl.handle.net/11323/984Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents the application of a method to determine the output power, losses, and efficiency of induction motors, working in no-controlled conditions, in the presences of unbalanced and harmonics voltages. The method uses the steady state equivalent circuits, with some considerations for the analysis of motor performance, fed with unbalanced and harmonic voltages. The parameters of circuits are determined with low invasiveness, by applying a Bacterial Foraging Algorithm as technique of evolutionary search. With this, the efficiency and other operational parameters can be estimated at any operating point. The method was tested in a 12.6 kW motor working in an industrial network, with harmonics and voltage unbalanced.Sousa Santos, Vladimir-0000-0001-8808-1914-600Viego, Percy Rafael-73186627-023b-4e63-af11-5eef74f4f434-0Gómez, Julio Rafael-36158e7a-d9e6-4448-8a78-a3ce97be46cf-0Quispe, Enrique Ciro-82fa64db-e560-4049-85e9-ee34bf04f8f7-0Balbis Morejón, Milen-ceb197c5-21b6-48fa-be13-a72280a5cd23-0engIEEE Chilean Conference on Electrical, Electronics Engineering, Information and Communication TechnologiesAtribución – No comercial – Compartir igualinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Energy managementEquivalent circuitsHarmonic analysisInduction motorsIndustrial power systemsParameter estimationPower qualityUnbalanced voltageEstimating induction motor efficiency under no-controlled conditions in the presences of unbalanced and harmonics voltagesArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersion[1]. E.C. Quispe, X.M. Lopez-Fernandez, A.M.S. Mendes, A.J.M. Cardoso, J.A. Palacios, “Influence of the positive sequence voltage on the derating of three-phase induction motors under voltage unbalance”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 100-105. [2]. IEEE Standard test procedure for polyphase induction motors and generators, IEEE Standard 112, 2004. [3]. IEC Standard methods for determining losses and efficiency from tests, IEC Standard 60034-2-1, 2014. [4]. A. Gharakhani and P. Pillay, “An in-situ efficiency estimation technique for induction machines working with unbalanced supplies”, IEEE Trans. Energy Convers., vol. 27, no. 1, pp, 85-95, 2012. [5]. B. Lu, T. G. Habetler and R. G. Harley, “A nonintrusive and in-service motor-efficiency estimation method using air-gap torque with considerations of condition monitoring”, IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 1666–1674, 2008. [6]. M. Çunkaú and T. Sa÷, “Efficiency determination of induction motors using multi-objective evolutionary algorithms”, Adv. Eng. Softw., vol. 41, no. 2, pp. 255-261, 2010. [7]. P. Phumiphak and C. Chat-Uthai, “Nonintrusive method for estimating field efficiency of inverter-fed induction motor using measured values”, in Proc. IEEE Int. Conf. Sustainable Energy Technol, 2008, pp. 580– 583. [8]. C. P. Salomon, W. C. Santana, L. E. Borges, E.L. Bonaldi, L. E. L. de Oliveira, J. G. Borges, G. Lambert-Torres and A. R. Donadon, “A stator flux synthesis approach for torque estimation of induction motors using a modified stator resistance considering the losses effect”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1452-1458. [9]. D. Bae, D. Kim, H.-K. Jung, S.-Y. Hahn and C. Koh, “Determination of induction motor parameters by using neural network based on FEM results”, IEEE Trans. Magn., vol. 33, no. 2, pp. 1924-1927, 1997. [10]. Y. Liu and K. M. Passino, “Biomimicry of social foraging bacteria for distributed optimization: models, principles, and emergent behaviors”, J. Optim. Theory Appl., vol. 115, no. 3, pp. 603-628, 2002. [11]. V. P. Sakthivel, R. Bhuvaneswari and S. Subramanian, “An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm”, Measurement, vol. 44, no. 4. pp. 674-684, 2011. [12]. V. Sousa, P. R. Viego and J. Gómez, “Bacterial foraging algorithm application for induction motor field efficiency estimation under unbalanced voltages”, Measurement. vol. 46, pp. 2232-2237, 2013. [13]. V. Sousa, P. R. Viego, J. Gómez, N. Lemozy, A. Jurado and E. C. Quispe, “Procedure for determining induction motor efficiency working under distorted grid voltages”, IEEE Trans. Energy Convers., vol. PP, no. 99, pp. 1-9. 2014. [14]. V. Sousa, E. C. Quispe, J. Gómez, P. R. Viego, N. Lemozy, A. Jurado and M. Brugnoni, “Bacterial foraging algorithm application for induction motor field efficiency estimation under harmonics and unbalanced voltages”, in Proc. IEEE Int. Electr. Mach. and Driv. Conf. (IEMDC), 2013, pp. 1174-1178. [15]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519, 1993. [16]. J. Pedra, L. Sainz and F. Córcoles, “Harmonic modeling of induction motors”, Electr. Power Syst. Res., vol. 76, no 11, pp. 936-944, 2006. [17]. J. C. A. Escobar and F. de la Rosa “Shaft torsional vibration due to nonlinear loads in low capacity turbine units”, in Proc. IEEE Power Engineering Society, 2001, pp. 1403–1408. [18]. P. G. Cummings, “Estimating effect of system harmonics on losses and temperature rise of squirrel-cage motors”, IEEE Trans. Ind. Appl., vol. IA-22, no. 6, pp. 1121-1126, 1986. [19]. V. Ivanov-Smolenski, Electrical Machines, vol. 2, Moscú: Mir, 1984. [20]. A. Enmanuel, J. Orr, D. Cyganski, E. Gulachenski, “Survey of harmonic voltages and currents at distribution substation,” IEEE Trans. Pow. Deliv., vol.6. no.4. pp. 2204-2212. 1991. [21]. Y. Baghzouz, R.F. Burch, A. Capasso, A. Cavallini, A.E. Emanuel, M. Halpin, A. Imece, A. Ludbrook, G. Montanari, K.J. Olejniczak, P. Ribeiro, S. Rios-Marcuello, L. Tang, R. Thaliam and P. Verde, “Timevarying harmonics. I. Characterizing measured data”, IEEE Trans. Pow. Deliv., vol. 13, no. 3, pp. 938-944, 1998. [22]. WEKA MOTORENPRÜFSTÄNDE manufacturer. [Online]. Available: http://www.weka-motorenpruefstaende.de/. [23]. IEC Standard rotating electrical machines-Part26: Effects of unbalanced voltages on the performance of three-phase cage induction motors, IEC Standard 60034-26, 2006. [24]. IEEE Recommended practices and requirements for harmonic control in electrical power systems, IEEE Standard 519. 1993.PublicationORIGINALEstimating induction motor efficiency under.pdfEstimating induction motor efficiency under.pdfapplication/pdf320905https://repositorio.cuc.edu.co/bitstreams/6ef9080a-e79e-49b1-8881-a16d1d041d44/download109675af2114f011ec1adc8566345611MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/865b36e7-58d3-41e7-849c-6064d445d020/download8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILEstimating induction motor efficiency under.pdf.jpgEstimating induction motor efficiency under.pdf.jpgimage/jpeg78447https://repositorio.cuc.edu.co/bitstreams/9769afcf-3c95-466b-b9e9-ac62a5a195fb/download2996cd12179a89bd10062f687c3c1f1fMD54TEXTEstimating induction motor efficiency under.pdf.txtEstimating induction motor efficiency under.pdf.txttext/plain28674https://repositorio.cuc.edu.co/bitstreams/a14e28d3-a67e-4cf4-9079-878ad452a648/download61907895ae4b6b9674e12bd1e9ff07bfMD5511323/984oai:repositorio.cuc.edu.co:11323/9842024-09-17 10:55:06.437open.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=