Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia

Variation of Nitrogen mineralization (Nm) and its relationship to physicochemical factors in soils of an irrigation district in the North of Colombia was evaluated. Physicochemical parameters were measured in topsoil (0–30 cm) samples taken from 22 points in agricultural lands (10 in the dry season,...

Full description

Autores:
Martínez Mera, Eliana
García Paredes, Diego
Corrales, Amaira
Torregroza Espinosa, Ana Carolina
Tipo de recurso:
Article of journal
Fecha de publicación:
2021
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/8833
Acceso en línea:
https://hdl.handle.net/11323/8833
https://repositorio.cuc.edu.co/
Palabra clave:
N transformation
physicochemical properties
physicochemical interactions
Rights
openAccess
License
CC0 1.0 Universal
id RCUC2_9bf2a7a6466829f2c8225864b30dfb66
oai_identifier_str oai:repositorio.cuc.edu.co:11323/8833
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
title Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
spellingShingle Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
N transformation
physicochemical properties
physicochemical interactions
title_short Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
title_full Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
title_fullStr Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
title_full_unstemmed Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
title_sort Variability of nitrogen mineralization from organic matter in agricultural soils in the north of Colombia
dc.creator.fl_str_mv Martínez Mera, Eliana
García Paredes, Diego
Corrales, Amaira
Torregroza Espinosa, Ana Carolina
dc.contributor.author.spa.fl_str_mv Martínez Mera, Eliana
García Paredes, Diego
Corrales, Amaira
Torregroza Espinosa, Ana Carolina
dc.subject.spa.fl_str_mv N transformation
physicochemical properties
physicochemical interactions
topic N transformation
physicochemical properties
physicochemical interactions
description Variation of Nitrogen mineralization (Nm) and its relationship to physicochemical factors in soils of an irrigation district in the North of Colombia was evaluated. Physicochemical parameters were measured in topsoil (0–30 cm) samples taken from 22 points in agricultural lands (10 in the dry season, 12 in the wet season). Nm was estimated from organic matter (OM) content. Soil parameters in the study area are suitable for crop development, although they present variations between the dry and wet season, where the soil pH varies of slightly acidic to neutral and the OM content decreases. Additionally, in the dry season there was a positive correlation with pH, OM and C/N ratio and, during wet season between OM, sand, clay and bulk density. In both seasons, a negative correlation between silt and Nm was common. Environmental and soil conditions in the study area are favourable for Nm because during the dry season the accumulation of OM is favoured. Understanding how physicochemical factors influence Nm is essential for agricultural activities and the development of sustainable ecosystem services.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-11-03T16:58:21Z
dc.date.available.none.fl_str_mv 2021-11-03T16:58:21Z
dc.date.issued.none.fl_str_mv 2021-10
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 16851994
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/8833
dc.identifier.doi.spa.fl_str_mv 10.12982/CMUJNS.2021.073
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 16851994
10.12982/CMUJNS.2021.073
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/8833
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal. 54: 464-465.
Bünemann, E.K., Mäder, P., Wohlfahrt, J., Brussaard, L., Bongiorno, G., Goede, R., Geissen, V., Fleskens, L., Sukkel, W., Bai, Z., et al. 2016. Concepts and indicators of soil quality – A review. Report number 04. ISQAPER.
Cabrera, M.L., Kissel, D.E., and Vigil, M.F. 2005. Nitrogen Mineralization from Organic Residues: Research Opportunities. Journal of Environmental Quality. 34:75–79.
Castellanos-Ramos, J.Z., Cueto, J.A., Macías, J., Salinas, J.R., Tapia, L.M., Cortes, J.M., González, I.J., Mata, H., Mora, M., Vásquez, A., Valenzuela, C., and Enríquez, S.A. 2005. La fertilización de los cultivos de maíz, sorgo y trigo en México. INIFAP-SAGARPA. México.
Castro-Rincón, E., Mojica-Rodríguez, J.E., Carulla-Fornaguera, J.E., and Lascano-Aguilar, C.E. 2018. Abonos verdes de leguminosas: integración en sistemas agrícolas y ganaderas del trópico. Agronomía Mesoamericana. 29: 711-729.
Celaya-Michel, H., and Castellanos-Villegas, A.E. 2011. Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana. 29: 343-356.
Cerón, L.E., and Aristizabal, F.A. 2012. Nitrogen and phosphorus cycles dynamics in soils. Revista Colombiana de Biotecnología. XIV: 285-295.
Chaudhari, P.R., Ahire, D.V., Ahire, V.D., Chkravarty, M., and Maity, S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. International Journal of Scientific and Research Publications. 3: 1-8.
Chimdi, A., Gebrekidan, H., Kibret, K., and Tadesse, A. 2012. Status of selected physicochemical properties of soils under different land use systems of Western Oromia, Ethiopia. Journal of Biodiversity and Environmental Sciences. 2: 57-71.
Cregger, M., McDowell, N., Pangle, R., Pockman, W., and Classen, A. 2014. The impact of precipitation changes on nitrogen cycling in a semi-arid ecosystem. Functional Ecological. 26: 1534-1544.
Crouse, K., and Denny, G. 2015. Soil pH and fertilizers. Mississippi State University. Extension. Information Sheet 372 (POD-09-15).
Di Rienzo, J.A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., and Robledo, C.W. 2019. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.
Dridi, I., and Gueddari, M. 2019. Field and laboratory study of nitrogen mineralization dynamics in four Tunisian soils. Journal of African Earth Sciences. 154: 101-110.
Fageria, N.K., and Moreira, A. 2011. The role of mineral nutrition on root growth of crop plants. Advances in Agronomy. 110: 251-331.
Figueroa-Barrera, A., Álvarez-Herrera, J.G., Forero, A.F., Salamanca, C., and Pinzón, L.P. 2012. Determinación del nitrógeno potencialmente mineralizable y la tasa de mineralización de nitrógeno en materiales orgánicos. Temas Agrarios. 17: 32-43.
Gamarra-Lezcano, C.C., Díaz-Lezcano, M.I., Vera de Ortíz, M., Galeano, M.P., and Cabrera-Cardús, A.J. 2017. Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales. 9: 1-23.
Goulding, K.W. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 32: 390-399.
Gonzalez-Briceño, F.H. 2016. Caracterización físico-química y microbiológica de suelos paramunos del P.N.N. Sumapaz sometidos al cultivo convencional y orgánico de papa post-descanso de actividad agrícola. Tesis de pregrado. Universidad Distrital Francisco Jose de Caldas. Bogotá, Colombia.
Habai-Masunga, R., Nwakaego-Uzokwe, V., Deusdedit-Mlay, P., Odeh, I., Singh, A., Buchan, D., and De Nevee, S. 2016. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology. 101: 185-193.
IGAC. 2006. Métodos Analíticos del Laboratorio de Suelos. Bogotá, Colombia.
IGAC. 2008. Estudio general de suelos y zonificación de tierras Departamento del Atlántico. Bogotá, Colombia.
Kader, M.A., Sleutel, S., Begum, S.A., D’Haene, K., Jegajeevagan, K., and De Neve, S. 2010. Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use Manage. 26: 494-507.
Kruse J., Kissel, D., and Cabrera, M. 2004. Effects of drying and rewetting on C and N mineralization in soils and incorporated residues. Nutrient Cycling in Agroecosystems. 69: 247-256.
Li, M., Zhu, L.C., Zhang, Q.F., and Cheng, X. 2012. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou reservoir area, China. Chinese Journal Plant Ecology. 36: 530-538.
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H., Xu, X., Wang, C., He, N., and Niu, S. 2018. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology. 25: 1078-1088.
Ma, F., Jia, X., Zhou, W., Li, W., Yu, D., Meng, Y., and Dai, L. 2017. Soil nitrogen mineralization in a wind-disturbed area on Changbai Mountain after 30 years of vegetation restoration. Acta Ecologica Sinica. 37: 265-271.
Martínez, J.M., Galantini, J.Á., and Duval, M.E. 2018. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. Journal of Soil Science and Plant Nutrition. 18: 73-89.
Martínez-Mera, E., Valencia, E., and Cuevas, H. 2016. Evaluación del rendimiento de maíz dulce (Zea mays "Suresweet") con las leguminosas cobertoras mucuna enana (Mucuna pruriens) y crotalaria (Crotalaria juncea "Tropic sun") en un oxisol de Puerto Rico. Journal of Agriculture of the University of Puerto Rico. 100: 57-70.
Martinez-Mera, E.A., Torregroza-Espinosa, A.C., Castañeda-Valbuena, D., Crissien-Borrero, T.J., and Torres-Bejarano, F.M. 2017a. Los suelos agrícolas del Distrito de Riego de Repelón, Atlántico, Barranquilla. Educosta. Barranquilla, Colombia.
Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Valencia-García, A., and Rojas-Gerónimo, L. 2017b. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil Environment. 36: 174-181.
Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Crissien-Borrero, T.J., Marrugo-Negrete J.L., and González-Márquez L.C. 2019. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 5: e02217.
Meriño-Cabrera, Y., García-Correa, L., Martinez-Hernandez, N., and Valle-Molinares, R. 2014. Biomasa y actividad microbiana de suelos de nidos de Acromyrmex rugosus (Formicidae: Hymenoptera) en la reserva campesina La Montaña, Atlántico, Colombia. Entomotropica. 29: 159-171.
Monsalve, O.I., Gutiérrez, J.S., and Cardona, W.A. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Horticolas. 11: 200-209.
Najmadeen, H. 2011. Effects of soil organic matter, total nitrogen and texture on nitrogen mineralization process. Journal of Al-Nahrain University. 14: 144-151.
NTC, 5264. 2008. Calidad del suelo. Determinación del pH. Bogotá, Colombia.
Paolini, J. 2018. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana. 36: 13-21.
Ramírez-Carvajal, R. 1997. Propiedades físicas químicas y biológicas de los suelos. Primera edición. Produmedios. Bogotá, Colombia.
Rawls, J.W. 1983. Estimating soil bulk density from particle size analysis and organic matter content. Soil Science. 135: 123-125.
Risch, A.C., Zimmermann, S., Ochoa-Hueso, R., Schütz, M., Frey, B., Firn, J.L., Fay, P.A., Hagedorn, F., Borer, E.T., Seabloom, E.W., et al. 2019. Soil net nitrogen mineralization across global grasslands. Nature Communications. 10: 4981.
Rivera-González, M., Cerano, J., Trucios-Caecianos, R., Rios, J.C., and Estrada-Avalos, J. 2012. Actualización de la frontera agrícola en los distritos de riego a nivel nacional. AGROFAZ. 12: 67-72.
Rivera-González, M., Trucios-Caecianos, R., Estrada-Avalos, J., Delgado-Ramírez, G., and Macías-Rodríguez, H. 2013. La materia orgánica y el nitrógeno mineralizado, para los suelos del territorio mexicano y áreas agrícolas de los distritos de riego. AGROFAZ. 13: 107-110.
Rockström, J., and Falkenmark, M. 2015. Increase water harvesting in Africa. Nature. 519: 283-285.
Ros, G.H., Temminghoff, E.J.M., and Hoffland, E. 2011. Nitrogen mineralization - a review and meta-analysis of the predictive value of soil tests. European Journal of Soil Science. 62: 162-173.
Sanclemente-Reyes, O.E., Prager-Mosquera, M., and Beltrán-Acevedo, L.R. 2013. Aporte de nitrógeno al suelo por Mucuna pruriens y su efecto sobre el rendimiento de maíz dulce (Zea mays L.). Revista de Investigación Agraria y Ambiental. 4: 149-155.
Santiago‐Arenas, R., Hadi, S.N., Fanshuri, B.A., Ullah, H., and Datta, A. 2019. Effect of nitrogen fertiliser and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Annals of Applied Biology. 175: 388-399.
Santiago-Arenas, R., Fanshuri, B.A., Hadi, S.N., Ullah, H., and Datta, A. 2020. Nitrogen fertilizer and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation. Annals of Applied Biology. 176: 314-327.
Sistani, K.R., Adeli, A., McGowen, S.L., Tewolde, H., and Brink, G.E. 2008. Laboratory and field evaluation of broiler litter nitrogen mineralization. Bioresource Technology. 99: 2603-2611.
SSSA. 2018. Inceptisols. Available via: https://www.soils.org/discover-soils/soil-basics/soil-types/inceptisols Accessed 05 Feb 2019.
Torregroza‑Espinosa, A.C., Martínez‑Mera, E.A., Castañeda‑Valbuena, D., González‑Márquez, L.C., and Torres‑Bejarano, F. 2018. Contamination level and spatial distribution of heavy metals in water and Sediments of El Guájaro Reservoir, Colombia. Bulletin of Environmental Contamination and Toxicology. 101: 61-67.
Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., and Datta, A. 2019. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy. 156: 109-157.
Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.
Wang, X., Wang, B., Xu, X., Liu, T., Duan, Y., and Zhao, Y. 2018. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecological Indicators. 95: 320-330.
Weather Spark, 2021. El clima de Repelón, Atlántico. Available via: https://es.weatherspark.com/m/22615/5/Tiempo-promedio-en-mayo-enRepel% C3%B3n-Colombia#Sections-Rain. Accessed 15 March 2021.
Zenteno-Rojas, A., Martínez-Romero, E., Castañeda-Valbuena, D., Rincón‑Molina, C.I., Ruíz‑Valdiviezo, V.M., Meza‑Gordillo, R., Villalobos‑Maldonado, J.J., Vences‑Guzmán, M.A., and Rincón‑Rosales, R. 2020. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Expr. 10: 1-16.
Zhang, Q., Chen, Z., Chang, Y., and Qu, H. 2010. Progress on mineralization of soil nitrogen. North Horticulture Journal. 15: 33-36.
Zhao, X., H,e L., Zhang, Z., Wang, H., and Zhao, L. 2016. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under straw return ways after corns harvesting. Soil and Tillage Research. 156: 148-154.
dc.rights.spa.fl_str_mv CC0 1.0 Universal
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/publicdomain/zero/1.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv CC0 1.0 Universal
http://creativecommons.org/publicdomain/zero/1.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Chiang Mai University Journal of Natural Sciences
institution Corporación Universidad de la Costa
dc.source.url.spa.fl_str_mv https://cmuj.cmu.ac.th/cmu_journal/journal_de.php?id=796
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/428ec5fb-c010-41ae-984c-16a181ec9aa9/download
https://repositorio.cuc.edu.co/bitstreams/59cd7787-ff26-4940-9159-a52bfda46dd4/download
https://repositorio.cuc.edu.co/bitstreams/939f2b5b-d6d1-4349-9b69-870d763bcece/download
https://repositorio.cuc.edu.co/bitstreams/5e26eeea-2915-46ae-b906-7c331a3e5f0a/download
https://repositorio.cuc.edu.co/bitstreams/d94ab7e4-2c7d-49c3-baef-44260724166a/download
bitstream.checksum.fl_str_mv 8998cfa216a6fdcbd99483f50e555151
42fd4ad1e89814f5e4a476b409eb708c
e30e9215131d99561d40d6b0abbe9bad
609b0932f6af35d305cf8e771658c103
67293c062108a29fa5ce5bdd9a35b9dc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760764152709120
spelling Martínez Mera, ElianaGarcía Paredes, DiegoCorrales, AmairaTorregroza Espinosa, Ana Carolina2021-11-03T16:58:21Z2021-11-03T16:58:21Z2021-1016851994https://hdl.handle.net/11323/883310.12982/CMUJNS.2021.073Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Variation of Nitrogen mineralization (Nm) and its relationship to physicochemical factors in soils of an irrigation district in the North of Colombia was evaluated. Physicochemical parameters were measured in topsoil (0–30 cm) samples taken from 22 points in agricultural lands (10 in the dry season, 12 in the wet season). Nm was estimated from organic matter (OM) content. Soil parameters in the study area are suitable for crop development, although they present variations between the dry and wet season, where the soil pH varies of slightly acidic to neutral and the OM content decreases. Additionally, in the dry season there was a positive correlation with pH, OM and C/N ratio and, during wet season between OM, sand, clay and bulk density. In both seasons, a negative correlation between silt and Nm was common. Environmental and soil conditions in the study area are favourable for Nm because during the dry season the accumulation of OM is favoured. Understanding how physicochemical factors influence Nm is essential for agricultural activities and the development of sustainable ecosystem services.Martínez Mera, ElianaGarcía Paredes, DiegoCorrales, AmairaTorregroza Espinosa, Ana Carolina-will be generated-orcid-0000-0001-8077-8880-600application/pdfengChiang Mai University Journal of Natural SciencesCC0 1.0 Universalhttp://creativecommons.org/publicdomain/zero/1.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2N transformationphysicochemical propertiesphysicochemical interactionsVariability of nitrogen mineralization from organic matter in agricultural soils in the north of ColombiaArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionhttps://cmuj.cmu.ac.th/cmu_journal/journal_de.php?id=796Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analyses of soils. Agronomy Journal. 54: 464-465.Bünemann, E.K., Mäder, P., Wohlfahrt, J., Brussaard, L., Bongiorno, G., Goede, R., Geissen, V., Fleskens, L., Sukkel, W., Bai, Z., et al. 2016. Concepts and indicators of soil quality – A review. Report number 04. ISQAPER.Cabrera, M.L., Kissel, D.E., and Vigil, M.F. 2005. Nitrogen Mineralization from Organic Residues: Research Opportunities. Journal of Environmental Quality. 34:75–79.Castellanos-Ramos, J.Z., Cueto, J.A., Macías, J., Salinas, J.R., Tapia, L.M., Cortes, J.M., González, I.J., Mata, H., Mora, M., Vásquez, A., Valenzuela, C., and Enríquez, S.A. 2005. La fertilización de los cultivos de maíz, sorgo y trigo en México. INIFAP-SAGARPA. México.Castro-Rincón, E., Mojica-Rodríguez, J.E., Carulla-Fornaguera, J.E., and Lascano-Aguilar, C.E. 2018. Abonos verdes de leguminosas: integración en sistemas agrícolas y ganaderas del trópico. Agronomía Mesoamericana. 29: 711-729.Celaya-Michel, H., and Castellanos-Villegas, A.E. 2011. Mineralización de nitrógeno en el suelo de zonas áridas y semiáridas. Terra Latinoamericana. 29: 343-356.Cerón, L.E., and Aristizabal, F.A. 2012. Nitrogen and phosphorus cycles dynamics in soils. Revista Colombiana de Biotecnología. XIV: 285-295.Chaudhari, P.R., Ahire, D.V., Ahire, V.D., Chkravarty, M., and Maity, S. 2013. Soil bulk density as related to soil texture, organic matter content and available total nutrients of coimbatore soil. International Journal of Scientific and Research Publications. 3: 1-8.Chimdi, A., Gebrekidan, H., Kibret, K., and Tadesse, A. 2012. Status of selected physicochemical properties of soils under different land use systems of Western Oromia, Ethiopia. Journal of Biodiversity and Environmental Sciences. 2: 57-71.Cregger, M., McDowell, N., Pangle, R., Pockman, W., and Classen, A. 2014. The impact of precipitation changes on nitrogen cycling in a semi-arid ecosystem. Functional Ecological. 26: 1534-1544.Crouse, K., and Denny, G. 2015. Soil pH and fertilizers. Mississippi State University. Extension. Information Sheet 372 (POD-09-15).Di Rienzo, J.A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., and Robledo, C.W. 2019. InfoStat. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.Dridi, I., and Gueddari, M. 2019. Field and laboratory study of nitrogen mineralization dynamics in four Tunisian soils. Journal of African Earth Sciences. 154: 101-110.Fageria, N.K., and Moreira, A. 2011. The role of mineral nutrition on root growth of crop plants. Advances in Agronomy. 110: 251-331.Figueroa-Barrera, A., Álvarez-Herrera, J.G., Forero, A.F., Salamanca, C., and Pinzón, L.P. 2012. Determinación del nitrógeno potencialmente mineralizable y la tasa de mineralización de nitrógeno en materiales orgánicos. Temas Agrarios. 17: 32-43.Gamarra-Lezcano, C.C., Díaz-Lezcano, M.I., Vera de Ortíz, M., Galeano, M.P., and Cabrera-Cardús, A.J. 2017. Relación carbono-nitrógeno en suelos de sistemas silvopastoriles del Chaco paraguayo. Revista Mexicana de Ciencias Forestales. 9: 1-23.Goulding, K.W. 2016. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manage. 32: 390-399.Gonzalez-Briceño, F.H. 2016. Caracterización físico-química y microbiológica de suelos paramunos del P.N.N. Sumapaz sometidos al cultivo convencional y orgánico de papa post-descanso de actividad agrícola. Tesis de pregrado. Universidad Distrital Francisco Jose de Caldas. Bogotá, Colombia.Habai-Masunga, R., Nwakaego-Uzokwe, V., Deusdedit-Mlay, P., Odeh, I., Singh, A., Buchan, D., and De Nevee, S. 2016. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Applied Soil Ecology. 101: 185-193.IGAC. 2006. Métodos Analíticos del Laboratorio de Suelos. Bogotá, Colombia.IGAC. 2008. Estudio general de suelos y zonificación de tierras Departamento del Atlántico. Bogotá, Colombia.Kader, M.A., Sleutel, S., Begum, S.A., D’Haene, K., Jegajeevagan, K., and De Neve, S. 2010. Soil organic matter fractionation as a tool for predicting nitrogen mineralization in silty arable soils. Soil Use Manage. 26: 494-507.Kruse J., Kissel, D., and Cabrera, M. 2004. Effects of drying and rewetting on C and N mineralization in soils and incorporated residues. Nutrient Cycling in Agroecosystems. 69: 247-256.Li, M., Zhu, L.C., Zhang, Q.F., and Cheng, X. 2012. Impacts of different land use types on soil nitrogen mineralization in Danjiangkou reservoir area, China. Chinese Journal Plant Ecology. 36: 530-538.Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H., Xu, X., Wang, C., He, N., and Niu, S. 2018. Microbes drive global soil nitrogen mineralization and availability. Global Change Biology. 25: 1078-1088.Ma, F., Jia, X., Zhou, W., Li, W., Yu, D., Meng, Y., and Dai, L. 2017. Soil nitrogen mineralization in a wind-disturbed area on Changbai Mountain after 30 years of vegetation restoration. Acta Ecologica Sinica. 37: 265-271.Martínez, J.M., Galantini, J.Á., and Duval, M.E. 2018. Contribution of nitrogen mineralization indices, labile organic matter and soil properties in predicting nitrogen mineralization. Journal of Soil Science and Plant Nutrition. 18: 73-89.Martínez-Mera, E., Valencia, E., and Cuevas, H. 2016. Evaluación del rendimiento de maíz dulce (Zea mays "Suresweet") con las leguminosas cobertoras mucuna enana (Mucuna pruriens) y crotalaria (Crotalaria juncea "Tropic sun") en un oxisol de Puerto Rico. Journal of Agriculture of the University of Puerto Rico. 100: 57-70.Martinez-Mera, E.A., Torregroza-Espinosa, A.C., Castañeda-Valbuena, D., Crissien-Borrero, T.J., and Torres-Bejarano, F.M. 2017a. Los suelos agrícolas del Distrito de Riego de Repelón, Atlántico, Barranquilla. Educosta. Barranquilla, Colombia.Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Valencia-García, A., and Rojas-Gerónimo, L. 2017b. Relationship between soil physicochemical characteristics and nitrogen-fixing bacteria in agricultural soils of the Atlántico department, Colombia. Soil Environment. 36: 174-181.Martínez-Mera, E.A., Torregroza-Espinosa, A.C., Crissien-Borrero, T.J., Marrugo-Negrete J.L., and González-Márquez L.C. 2019. Evaluation of contaminants in agricultural soils in an irrigation district in Colombia. Heliyon. 5: e02217.Meriño-Cabrera, Y., García-Correa, L., Martinez-Hernandez, N., and Valle-Molinares, R. 2014. Biomasa y actividad microbiana de suelos de nidos de Acromyrmex rugosus (Formicidae: Hymenoptera) en la reserva campesina La Montaña, Atlántico, Colombia. Entomotropica. 29: 159-171.Monsalve, O.I., Gutiérrez, J.S., and Cardona, W.A. 2017. Factores que intervienen en el proceso de mineralización de nitrógeno cuando son aplicadas enmiendas orgánicas al suelo. Una revisión. Revista Colombiana de Ciencias Horticolas. 11: 200-209.Najmadeen, H. 2011. Effects of soil organic matter, total nitrogen and texture on nitrogen mineralization process. Journal of Al-Nahrain University. 14: 144-151.NTC, 5264. 2008. Calidad del suelo. Determinación del pH. Bogotá, Colombia.Paolini, J. 2018. Actividad microbiológica y biomasa microbiana en suelos cafetaleros de los Andes venezolanos. Terra Latinoamericana. 36: 13-21.Ramírez-Carvajal, R. 1997. Propiedades físicas químicas y biológicas de los suelos. Primera edición. Produmedios. Bogotá, Colombia.Rawls, J.W. 1983. Estimating soil bulk density from particle size analysis and organic matter content. Soil Science. 135: 123-125.Risch, A.C., Zimmermann, S., Ochoa-Hueso, R., Schütz, M., Frey, B., Firn, J.L., Fay, P.A., Hagedorn, F., Borer, E.T., Seabloom, E.W., et al. 2019. Soil net nitrogen mineralization across global grasslands. Nature Communications. 10: 4981.Rivera-González, M., Cerano, J., Trucios-Caecianos, R., Rios, J.C., and Estrada-Avalos, J. 2012. Actualización de la frontera agrícola en los distritos de riego a nivel nacional. AGROFAZ. 12: 67-72.Rivera-González, M., Trucios-Caecianos, R., Estrada-Avalos, J., Delgado-Ramírez, G., and Macías-Rodríguez, H. 2013. La materia orgánica y el nitrógeno mineralizado, para los suelos del territorio mexicano y áreas agrícolas de los distritos de riego. AGROFAZ. 13: 107-110.Rockström, J., and Falkenmark, M. 2015. Increase water harvesting in Africa. Nature. 519: 283-285.Ros, G.H., Temminghoff, E.J.M., and Hoffland, E. 2011. Nitrogen mineralization - a review and meta-analysis of the predictive value of soil tests. European Journal of Soil Science. 62: 162-173.Sanclemente-Reyes, O.E., Prager-Mosquera, M., and Beltrán-Acevedo, L.R. 2013. Aporte de nitrógeno al suelo por Mucuna pruriens y su efecto sobre el rendimiento de maíz dulce (Zea mays L.). Revista de Investigación Agraria y Ambiental. 4: 149-155.Santiago‐Arenas, R., Hadi, S.N., Fanshuri, B.A., Ullah, H., and Datta, A. 2019. Effect of nitrogen fertiliser and cultivation method on root systems of rice subjected to alternate wetting and drying irrigation. Annals of Applied Biology. 175: 388-399.Santiago-Arenas, R., Fanshuri, B.A., Hadi, S.N., Ullah, H., and Datta, A. 2020. Nitrogen fertilizer and establishment method affect growth, yield and nitrogen use efficiency of rice under alternate wetting and drying irrigation. Annals of Applied Biology. 176: 314-327.Sistani, K.R., Adeli, A., McGowen, S.L., Tewolde, H., and Brink, G.E. 2008. Laboratory and field evaluation of broiler litter nitrogen mineralization. Bioresource Technology. 99: 2603-2611.SSSA. 2018. Inceptisols. Available via: https://www.soils.org/discover-soils/soil-basics/soil-types/inceptisols Accessed 05 Feb 2019.Torregroza‑Espinosa, A.C., Martínez‑Mera, E.A., Castañeda‑Valbuena, D., González‑Márquez, L.C., and Torres‑Bejarano, F. 2018. Contamination level and spatial distribution of heavy metals in water and Sediments of El Guájaro Reservoir, Colombia. Bulletin of Environmental Contamination and Toxicology. 101: 61-67.Ullah, H., Santiago-Arenas, R., Ferdous, Z., Attia, A., and Datta, A. 2019. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Advances in Agronomy. 156: 109-157.Walkley, A., and Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science. 37: 29-38.Wang, X., Wang, B., Xu, X., Liu, T., Duan, Y., and Zhao, Y. 2018. Spatial and temporal variations in surface soil moisture and vegetation cover in the Loess Plateau from 2000 to 2015. Ecological Indicators. 95: 320-330.Weather Spark, 2021. El clima de Repelón, Atlántico. Available via: https://es.weatherspark.com/m/22615/5/Tiempo-promedio-en-mayo-enRepel% C3%B3n-Colombia#Sections-Rain. Accessed 15 March 2021.Zenteno-Rojas, A., Martínez-Romero, E., Castañeda-Valbuena, D., Rincón‑Molina, C.I., Ruíz‑Valdiviezo, V.M., Meza‑Gordillo, R., Villalobos‑Maldonado, J.J., Vences‑Guzmán, M.A., and Rincón‑Rosales, R. 2020. Structure and diversity of native bacterial communities in soils contaminated with polychlorinated biphenyls. AMB Expr. 10: 1-16.Zhang, Q., Chen, Z., Chang, Y., and Qu, H. 2010. Progress on mineralization of soil nitrogen. North Horticulture Journal. 15: 33-36.Zhao, X., H,e L., Zhang, Z., Wang, H., and Zhao, L. 2016. Simulation of accumulation and mineralization (CO2 release) of organic carbon in chernozem under straw return ways after corns harvesting. Soil and Tillage Research. 156: 148-154.PublicationORIGINALVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdfVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdfapplication/pdf411255https://repositorio.cuc.edu.co/bitstreams/428ec5fb-c010-41ae-984c-16a181ec9aa9/download8998cfa216a6fdcbd99483f50e555151MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.cuc.edu.co/bitstreams/59cd7787-ff26-4940-9159-a52bfda46dd4/download42fd4ad1e89814f5e4a476b409eb708cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/939f2b5b-d6d1-4349-9b69-870d763bcece/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdf.jpgVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdf.jpgimage/jpeg50532https://repositorio.cuc.edu.co/bitstreams/5e26eeea-2915-46ae-b906-7c331a3e5f0a/download609b0932f6af35d305cf8e771658c103MD54TEXTVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdf.txtVariability of Nitrogen Mineralization from Organic Matter in Agricultural Soils in the North of Colombia.pdf.txttext/plain1442https://repositorio.cuc.edu.co/bitstreams/d94ab7e4-2c7d-49c3-baef-44260724166a/download67293c062108a29fa5ce5bdd9a35b9dcMD5511323/8833oai:repositorio.cuc.edu.co:11323/88332024-09-17 11:02:34.059http://creativecommons.org/publicdomain/zero/1.0/CC0 1.0 Universalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA==