Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community
This paper presents a mathematical model for estimating the optimal sizing and assessing a standalone hybrid power system's performance entirely based on variable renewable energy sources and coupled with a hybrid energy storage system. This study evaluates how different levels of the main comp...
- Autores:
-
Canales, Fausto A.
Jurasz, Jakub K.
Guezgouz, Mohammed
Beluco, Alexandre
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2021
- Institución:
- Corporación Universidad de la Costa
- Repositorio:
- REDICUC - Repositorio CUC
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.cuc.edu.co:11323/8311
- Acceso en línea:
- https://hdl.handle.net/11323/8311
https://doi.org/10.1016/j.seta.2021.101062
https://repositorio.cuc.edu.co/
- Palabra clave:
- Hybrid power systems
Multi-objective optimization
Hybrid energy storage
Reliability
Energy management strategy
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 International
id |
RCUC2_9b609f3fcdaa92d873e9084e627ddece |
---|---|
oai_identifier_str |
oai:repositorio.cuc.edu.co:11323/8311 |
network_acronym_str |
RCUC2 |
network_name_str |
REDICUC - Repositorio CUC |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
title |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
spellingShingle |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community Hybrid power systems Multi-objective optimization Hybrid energy storage Reliability Energy management strategy |
title_short |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
title_full |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
title_fullStr |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
title_full_unstemmed |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
title_sort |
Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community |
dc.creator.fl_str_mv |
Canales, Fausto A. Jurasz, Jakub K. Guezgouz, Mohammed Beluco, Alexandre |
dc.contributor.author.spa.fl_str_mv |
Canales, Fausto A. Jurasz, Jakub K. Guezgouz, Mohammed Beluco, Alexandre |
dc.subject.eng.fl_str_mv |
Hybrid power systems Multi-objective optimization Hybrid energy storage Reliability Energy management strategy |
topic |
Hybrid power systems Multi-objective optimization Hybrid energy storage Reliability Energy management strategy |
description |
This paper presents a mathematical model for estimating the optimal sizing and assessing a standalone hybrid power system's performance entirely based on variable renewable energy sources and coupled with a hybrid energy storage system. This study evaluates how different levels of the main components' capital cost and the loss of power supply probability would affect the cost of energy and the power system's optimal sizing. The case study selected for this study was Ometepe Island in Nicaragua, where the crater lake of an extinct volcano was considered a feasible upper reservoir of a pumped storage hydropower plant, reducing the investments associated with this component. The mathematical formulation considers energy storage losses and gains, and the Pareto efficient solutions of the multi-objective optimization model simultaneously increase reliability, reduce the cost of energy, and minimize curtailment energy. By employing time-series with an hourly resolution, the model allows assessing the impact of the interannual variability of renewable energy sources on the system's performance. As for the case study, the cost of energy obtained from the model results ranges between €0.047/kWh and €0.095/kWh, based on international reference values, and these values match the information available in the literature and other databases. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-01T00:31:20Z |
dc.date.available.none.fl_str_mv |
2021-06-01T00:31:20Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
acceptedVersion |
dc.identifier.issn.spa.fl_str_mv |
2213-1388 |
dc.identifier.uri.spa.fl_str_mv |
https://hdl.handle.net/11323/8311 |
dc.identifier.doi.spa.fl_str_mv |
https://doi.org/10.1016/j.seta.2021.101062 |
dc.identifier.instname.spa.fl_str_mv |
Corporación Universidad de la Costa |
dc.identifier.reponame.spa.fl_str_mv |
REDICUC - Repositorio CUC |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.cuc.edu.co/ |
identifier_str_mv |
2213-1388 Corporación Universidad de la Costa REDICUC - Repositorio CUC |
url |
https://hdl.handle.net/11323/8311 https://doi.org/10.1016/j.seta.2021.101062 https://repositorio.cuc.edu.co/ |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
International Renewable Energy Agency Global renewables outlook: energy transformation 2050 IRENA, Abu Dhabi (2020) M.Z. Jacobson, M.A. Delucchi, G. Bazouin, M.J. Dvorak, R. Arghandeh, Z.A.F. Bauer, T.W. Yeskoo, et al. A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State Renewable Energy, 86 (2016), pp. 75-88, 10.1016/j.renene.2015.08.003 M. Diesendorf, B. Elliston The feasibility of 100% renewable electricity systems: a response to critics Renew Sustain Energy Rev, 93 (2018), pp. 318-330, 10.1016/j.rser.2018.05.042 M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169, 10.1016/j.enpol.2010.11.040 I.G. Mason, S.C. Page, A.G. Williamson A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources Energy Policy, 38 (8) (2010), pp. 3973-3984, 10.1016/j.enpol.2010.03.022 Z. Bačelić Medić, B. Ćosić, N. Duić Sustainability of remote communities: 100% renewable island of Hvar J Renewable Sustainable Energy, 5 (4) (2013), p. 041806, 10.1063/1.4813000 Elliston B, Diesendorf M, MacGill I. Reliability of 100 % Renewable Electricity Supply in the Australian National Electricity Market. In: Uyar TS, editor. Towar. 100% Renew. Energy. Springer Proc. Energy, Cham: Springer; 2017, p. 297–303. https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-45659-1_32. C.G. Meza, N.B. Amado, I.L. Sauer Transforming the Nicaraguan energy mix towards 100% renewable Energy Procedia, 138 (2017), pp. 494-499, 10.1016/j.egypro.2017.10.234 M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes Renewable Energy, 123 (2018), pp. 236-248, 10.1016/j.renene.2018.02.009 A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046 R. Hinrichs-Rahlwes, H.-J. Fell, S. Furuya, L. Gorroño, L. Holm, T. Kåberger, et al. Towards 100% Renewable Energy: Status Trends and Lessons Learned IRENA, Abu Dhabi (2019) M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Cleaner Prod, 243 (2020), p. 118466, 10.1016/j.jclepro.2019.118466 T. Weir Renewable energy in the Pacific Islands: Its role and status Renew Sustain Energy Rev, 94 (2018), pp. 762-771, 10.1016/j.rser.2018.05.069 Muehlenhaus I, editor. Geography Today: An Encyclopedia of Concepts, Issues, and Technology. Santa Barbara: ABC-CLIO; 2019. K. Sperling How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island Renew Sustain Energy Rev, 71 (2017), pp. 884-897, 10.1016/j.rser.2016.12.116 A.S. Oyewo, J. Farfan, P. Peltoniemi, C. Breyer Repercussion of large scale hydro dam deployment: the case of Congo grand Inga hydro Project Energies, 11 (2018), p. 972, 10.3390/en11040972 T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’ Renew Sustain Energy Rev, 92 (2018), pp. 834-847, 10.1016/j.rser.2018.04.113 B.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: technical barrier or rhetorical excuse? Util Policy, 17 (3-4) (2009), pp. 288-296, 10.1016/j.jup.2008.07.001 B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114 M.W. Murage, C.L. Anderson Contribution of pumped hydro storage to integration of wind power in Kenya: an optimal control approach Renewable Energy, 63 (2014), pp. 698-707, 10.1016/j.renene.2013.10.026 J. Jurasz, P.B. Dąbek, B. Kaźmierczak, A. Kies, M. Wdowikowski Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland) Energy, 161 (2018), pp. 183-192, 10.1016/j.energy.2018.07.085 Lacal Arantegui R, Jaeger-Waldau A, Vellei M, Sigfusson B, Magagna D, Jakubcionis M, et al. ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050. Petten: Publications Office of the European Union; 2014. https://ezproxy.cuc.edu.co:2067/10.2790/057687. T. Hino, A. Lejeune Pumped storage hydropower developments Compr. Renew. Energy, Elsevier (2012), pp. 405-434, 10.1016/B978-0-08-087872-0.00616-8 E. Pujades, T. Willems, S. Bodeux, P. Orban, A. Dassargues Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow Hydrogeol J, 24 (6) (2016), pp. 1531-1546, 10.1007/s10040-016-1413-z J. Menéndez, J. Loredo, J.M. Fernandez, M. Galdo Underground pumped-storage hydro power plants with mine water in abandoned coal mines Mine Water Circ Econ (2017), pp. 6-13 B. Lu, M. Stocks, A. Blakers, K. Anderson Geographic information system algorithms to locate prospective sites for pumped hydro energy storage Appl Energy, 222 (2018), pp. 300-312, 10.1016/j.apenergy.2018.03.177 N. Ghorbani, H. Makian, C. Breyer A GIS-based method to identify potential sites for pumped hydro energy storage - case of Iran Energy, 169 (2019), pp. 854-867, 10.1016/j.energy.2018.12.073 K. Bunker, S. Doig, K. Hawley, J. Morris Renewable microgrids: profiles from islands and remote communities across the globe Rocky Mountain Institute, Boulder (2015) N. Duić, M. da Graça Carvalho Increasing renewable energy sources in island energy supply: case study Porto Santo Renew Sustain Energy Rev, 8 (4) (2004), pp. 383-399, 10.1016/j.rser.2003.11.004 C. Bueno, J.A. Carta Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro Sol Energy, 78 (3) (2005), pp. 396-405, 10.1016/j.solener.2004.08.007 C. Bueno, J.A. Carta Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands Renew Sustain Energy Rev, 10 (4) (2006), pp. 312-340, 10.1016/j.rser.2004.09.005 G. Caralis, A. Zervos Analysis of the combined use of wind and pumped storage systems in autonomous Greek islands IET Renew Power Gener, 1 (1) (2007), p. 49, 10.1049/iet-rpg:20060010 G. Caralis, K. Rados, A. Zervos On the market of wind with hydro-pumped storage systems in autonomous Greek islands Renew Sustain Energy Rev, 14 (8) (2010), pp. 2221-2226, 10.1016/j.rser.2010.02.008 S. Papaefthimiou, E. Karamanou, S. Papathanassiou, M. Papadopoulos Operating policies for wind-pumped storage hybrid power stations in island grids IET Renew Power Gener, 3 (3) (2009), p. 293, 10.1049/iet-rpg.2008.0071 D.A. Katsaprakakis, D.G. Christakis, K. Pavlopoylos, S. Stamataki, I. Dimitrelou, I. Stefanakis, P. Spanos Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos Appl Energy, 97 (2012), pp. 38-48, 10.1016/j.apenergy.2011.11.069 M. Kapsali, J.S. Anagnostopoulos, J.K. Kaldellis Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives Appl Energy, 99 (2012), pp. 430-444, 10.1016/j.apenergy.2012.05.054 T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renewable Energy, 69 (2014), pp. 7-15, 10.1016/j.renene.2014.03.028 S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew Energy, 64 (2014), pp. 187-196, 10.1016/j.renene.2013.10.047 T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl Energy, 160 (2015), pp. 728-736, 10.1016/j.apenergy.2014.11.026 I. Barreira, C. Gueifão, J. Ferreira de Jesus Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde J Phys Conf Ser, 813 (2017), 10.1088/1742-6596/813/1/012011 012011 P. Tsamaslis, A. Katsanevakis, G. Karagiorgis Hybridization of photovoltaics with pumped storage hydroelectricity. an approach to increase RES penetration and achieve grid benefits. Application in the island of Cyprus J Power Technol, 97 (2017), pp. 336-341 M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar and wind power generation systems with pumped hydro storage: Review and future perspectives Renewable Energy, 148 (2020), pp. 176-192, 10.1016/j.renene.2019.11.157 M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems 112046 Energy Convers Manage, 199 (2019), 10.1016/j.enconman.2019.112046 C.G. Meza, C. Zuluaga Rodríguez, C.A. D'Aquino, N.B. Amado, A. Rodrigues, I.L. Sauer Toward a 100% renewable island: a case study of Ometepe's energy mix Renewable Energy, 132 (2019), pp. 628-648, 10.1016/j.renene.2018.07.124 Ministerio de Energía y Minas. Plan de expansión de la generación eléctrica de 2019-2033. Managua; 2017. L. Kapelanczyk, W.I. Rose, B. Jicha An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses Bull Volcanol, 74 (9) (2012), pp. 2007-2021, 10.1007/s00445-012-0644-7 M. Ranaboldo, B. Domenech, G.A. Reyes, L. Ferrer-Martí, R. Pastor Moreno, A. García-Villoria Off-grid community electrification projects based on wind and solar energies: a case study in Nicaragua Sol Energy, 117 (2015), pp. 268-281, 10.1016/j.solener.2015.05.005 Empresa Nacional de Transmisión Eléctrica. Ometepe recibe energía eléctrica confiable 2017. <http://www.enatrel.gob.ni/ometepe-recibira-energia-electrica-confiable-2/> [accessed January 5, 2020]. Ometepe – Google Maps 2020. <https://goo.gl/maps/XEVVrMfKK632> [accessed July 7, 2020]. J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724 S.H. Karaki, R.B. Chedid, R. Ramadan Probabilistic performance assessment of autonomous solar-wind energy conversion systems IEEE Trans Energy Convers, 14 (1999), pp. 766-772, 10.1109/60.790949 I. Abouzahr, R. Ramakumar Loss of power supply probability of stand-alone photovoltaic systems: a closed form solution approach IEEE Trans Energy Convers, 6 (1991), pp. 1-11, 10.1109/60.73783 W.R. Powell An analytical expression for the average output power of a wind machine Sol Energy, 26 (1) (1981), pp. 77-80, 10.1016/0038-092X(81)90114-6 Bauer L, Matysik S. Enercon E-33/300-300 kW Wind Turbine. Wind Big Portal Wind Energy 2020. <https://en.wind-turbine-models.com/turbines/368-enercon-e-33-300> [accessed May 8, 2020]. ENERCON. Wind reduces fuel consumption on Falklands. Windblatt; 2007p. 10–1. F.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energ, 36 (7) (2017), pp. 654-667 H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog Nat Sci, 19 (3) (2009), pp. 291-312, 10.1016/j.pnsc.2008.07.014 Copernicus Atmosphere Monitoring Service Products. CAMS radiation service n.d. <http://www.soda-pro.com/web-services/radiation/cams-radiation-service> [accessed November 15, 2018]. B.Y.H. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Sol Energy, 4 (3) (1960), pp. 1-19 Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 2015. https://ezproxy.cuc.edu.co:2067/10.5067/VJAFPLI1CSIV. J.A. Gómez Navarrete, V. Maderas Identificación de áreas con potenciales riesgos de inundación y deslizamiento a través de geoprocesamiento con SIG Universidad Nacional del Litoral (2009) Stocks C, editor. The world's pumped storage plants. Int. Water Power Dam Constr. Yearb., London: Global Trade Media - Progressive Media Group Limited; 2012, p. 282–92. E. Nkiaka, N.R. Nawaz, J.C. Lovett Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudano-Sahel region: case study of the Logone catchment, Lake Chad Basin: evaluating reanalysis precipitation estimates in the Sudano-Sahel Met. Apps, 24 (1) (2017), pp. 9-18 K. Gudulas, K. Voudouris, G. Soulios, G. Dimopoulos Comparison of different methods to estimate actual evapotranspiration and hydrologic balance Desalin Water Treat, 51 (13-15) (2013), pp. 2945-2954 A.R. Ghumman, Y.M. Ghazaw, A. Alodah, A. Raufur, M. Shafiquzzaman, H. Haider Identification of parameters of evaporation equations using an optimization technique based on pan evaporation Water (Switzerland) (2020), p. 12, 10.3390/w12010228 Ministerio de Energía y Minas. Anuario estadístico del sector eléctrico 2015. Managua; 2016. Fundación Nicaragüense para el Desarrollo Económico y Social. El sector de energía eléctrica de Nicaragua. Managua; 2016. The World Bank. Electric power consumption (kWh per capita) 2019. https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC [accessed December 12, 2019]. Electricity Map: Live CO2 emissions of electricity consumption 2020. <https://www.electricitymap.org/map> [accessed May 5, 2020]. M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies (2019), p. 12, 10.3390/en12030514 S. Mirjalili, S. Saremi, S.M. Mirjalili, L. dos S. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst Appl, 47 (2016), pp. 106-119, 10.1016/j.eswa.2015.10.039 N.H. Reich, B. Mueller, A. Armbruster, W.G.J.H.M. Van Sark, K. Kiefer, C. Reise Performance ratio revisited: Is PR > 90% realistic? Prog Photovoltaics Res Appl, 20 (2012), pp. 717-726, 10.1002/pip.1219 S. Baek, E. Park, M.-G. Kim, S.J. Kwon, K.J. Kim, J.Y. Ohm, et al. Optimal renewable power generation systems for Busan metropolitan city in South Korea Renewable Energy, 88 (2016), pp. 517-525, 10.1016/j.renene.2015.11.058 Nicaragua prepara trabajo de exploración geotérmica. Bus News Am; 2020. Sánchez Molina P. Comienza el funcionamiento de la planta Solaris de 12 MW en Nicaragua. PV Mag; 2017. Ong S, Campbell C, Denholm P, Margolis R, Heath G. Land-Use Requirements for Solar Power Plants in the United States. Golden; 2013. Asturias Ozaeta J. Desarrollo y situación actual del sector eólico en América Central. Quito; 2012. M.M.V. Cantarero Decarbonizing the transport sector: The Promethean responsibility of Nicaragua J Environ Manage, 245 (2019), pp. 311-321, 10.1016/j.jenvman.2019.05.109 B. Ceran Multi-criteria comparative analysis of clean hydrogen production scenarios Energies, 13 (2020), 10.3390/en13164180 Hydrogenics. Renewable Hydrogen Solutions 2018:18. <http://www.hydrogenics.com/wp-content/uploads/Renewable-Hydrogen-Brochure.pdf> [accessed September 9, 2020]. J. Proost State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings Int J Hydrogen Energy, 44 (9) (2019), pp. 4406-4413, 10.1016/j.ijhydene.2018.07.164 A.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069 |
dc.rights.spa.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.coar.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.source.spa.fl_str_mv |
Sustainable Energy Technologies and Assessments |
institution |
Corporación Universidad de la Costa |
dc.source.url.spa.fl_str_mv |
https://www.sciencedirect.com/science/article/abs/pii/S2213138821000722 |
bitstream.url.fl_str_mv |
https://repositorio.cuc.edu.co/bitstreams/4bf35767-0efc-4ed0-8be9-abd161bc003c/download https://repositorio.cuc.edu.co/bitstreams/e2a5bc24-418e-401f-b314-4f0649694520/download https://repositorio.cuc.edu.co/bitstreams/7b8b8e9c-2c27-49dd-b5db-b252763ca99d/download https://repositorio.cuc.edu.co/bitstreams/5a304b05-50bd-445d-ad38-ac43ef993758/download https://repositorio.cuc.edu.co/bitstreams/35676de1-6767-4397-ace2-7669363a6172/download |
bitstream.checksum.fl_str_mv |
ff75c4f9e47a3b51a034b9186fbb04af 4460e5956bc1d1639be9ae6146a50347 e30e9215131d99561d40d6b0abbe9bad 9fd18ba70ca19febc658a707b5fcef3c b49972e0591733dbdfc176b7487f7137 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio de la Universidad de la Costa CUC |
repository.mail.fl_str_mv |
repdigital@cuc.edu.co |
_version_ |
1811760733640196096 |
spelling |
Canales, Fausto A.Jurasz, Jakub K.Guezgouz, MohammedBeluco, Alexandre2021-06-01T00:31:20Z2021-06-01T00:31:20Z20212213-1388https://hdl.handle.net/11323/8311https://doi.org/10.1016/j.seta.2021.101062Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/This paper presents a mathematical model for estimating the optimal sizing and assessing a standalone hybrid power system's performance entirely based on variable renewable energy sources and coupled with a hybrid energy storage system. This study evaluates how different levels of the main components' capital cost and the loss of power supply probability would affect the cost of energy and the power system's optimal sizing. The case study selected for this study was Ometepe Island in Nicaragua, where the crater lake of an extinct volcano was considered a feasible upper reservoir of a pumped storage hydropower plant, reducing the investments associated with this component. The mathematical formulation considers energy storage losses and gains, and the Pareto efficient solutions of the multi-objective optimization model simultaneously increase reliability, reduce the cost of energy, and minimize curtailment energy. By employing time-series with an hourly resolution, the model allows assessing the impact of the interannual variability of renewable energy sources on the system's performance. As for the case study, the cost of energy obtained from the model results ranges between €0.047/kWh and €0.095/kWh, based on international reference values, and these values match the information available in the literature and other databases.Canales, Fausto A.Jurasz, Jakub K.Guezgouz, MohammedBeluco, Alexandreapplication/pdfengAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sustainable Energy Technologies and Assessmentshttps://www.sciencedirect.com/science/article/abs/pii/S2213138821000722Hybrid power systemsMulti-objective optimizationHybrid energy storageReliabilityEnergy management strategyCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island communityArtículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionInternational Renewable Energy Agency Global renewables outlook: energy transformation 2050 IRENA, Abu Dhabi (2020)M.Z. Jacobson, M.A. Delucchi, G. Bazouin, M.J. Dvorak, R. Arghandeh, Z.A.F. Bauer, T.W. Yeskoo, et al. A 100% wind, water, sunlight (WWS) all-sector energy plan for Washington State Renewable Energy, 86 (2016), pp. 75-88, 10.1016/j.renene.2015.08.003M. Diesendorf, B. Elliston The feasibility of 100% renewable electricity systems: a response to critics Renew Sustain Energy Rev, 93 (2018), pp. 318-330, 10.1016/j.rser.2018.05.042M.Z. Jacobson, M.A. Delucchi Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials Energy Policy, 39 (3) (2011), pp. 1154-1169, 10.1016/j.enpol.2010.11.040I.G. Mason, S.C. Page, A.G. Williamson A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources Energy Policy, 38 (8) (2010), pp. 3973-3984, 10.1016/j.enpol.2010.03.022Z. Bačelić Medić, B. Ćosić, N. Duić Sustainability of remote communities: 100% renewable island of Hvar J Renewable Sustainable Energy, 5 (4) (2013), p. 041806, 10.1063/1.4813000Elliston B, Diesendorf M, MacGill I. Reliability of 100 % Renewable Electricity Supply in the Australian National Electricity Market. In: Uyar TS, editor. Towar. 100% Renew. Energy. Springer Proc. Energy, Cham: Springer; 2017, p. 297–303. https://ezproxy.cuc.edu.co:2067/10.1007/978-3-319-45659-1_32.C.G. Meza, N.B. Amado, I.L. Sauer Transforming the Nicaraguan energy mix towards 100% renewable Energy Procedia, 138 (2017), pp. 494-499, 10.1016/j.egypro.2017.10.234M.Z. Jacobson, M.A. Delucchi, M.A. Cameron, B.V. Mathiesen Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes Renewable Energy, 123 (2018), pp. 236-248, 10.1016/j.renene.2018.02.009A. Aghahosseini, D. Bogdanov, L.S.N.S. Barbosa, C. Breyer Analysing the feasibility of powering the Americas with renewable energy and inter-regional grid interconnections by 2030 Renew Sustain Energy Rev, 105 (2019), pp. 187-205, 10.1016/j.rser.2019.01.046R. Hinrichs-Rahlwes, H.-J. Fell, S. Furuya, L. Gorroño, L. Holm, T. Kåberger, et al. Towards 100% Renewable Energy: Status Trends and Lessons Learned IRENA, Abu Dhabi (2019)M. Fasihi, C. Breyer Baseload electricity and hydrogen supply based on hybrid PV-wind power plants J Cleaner Prod, 243 (2020), p. 118466, 10.1016/j.jclepro.2019.118466T. Weir Renewable energy in the Pacific Islands: Its role and status Renew Sustain Energy Rev, 94 (2018), pp. 762-771, 10.1016/j.rser.2018.05.069Muehlenhaus I, editor. Geography Today: An Encyclopedia of Concepts, Issues, and Technology. Santa Barbara: ABC-CLIO; 2019.K. Sperling How does a pioneer community energy project succeed in practice? The case of the Samsø Renewable Energy Island Renew Sustain Energy Rev, 71 (2017), pp. 884-897, 10.1016/j.rser.2016.12.116A.S. Oyewo, J. Farfan, P. Peltoniemi, C. Breyer Repercussion of large scale hydro dam deployment: the case of Congo grand Inga hydro Project Energies, 11 (2018), p. 972, 10.3390/en11040972T.W. Brown, T. Bischof-Niemz, K. Blok, C. Breyer, H. Lund, B.V. Mathiesen Response to ‘Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems’ Renew Sustain Energy Rev, 92 (2018), pp. 834-847, 10.1016/j.rser.2018.04.113B.K. Sovacool The intermittency of wind, solar, and renewable electricity generators: technical barrier or rhetorical excuse? Util Policy, 17 (3-4) (2009), pp. 288-296, 10.1016/j.jup.2008.07.001B.P. Heard, B.W. Brook, T.M.L. Wigley, C.J.A. Bradshaw Burden of proof: a comprehensive review of the feasibility of 100% renewable-electricity systems Renew Sustain Energy Rev, 76 (2017), pp. 1122-1133, 10.1016/j.rser.2017.03.114M.W. Murage, C.L. Anderson Contribution of pumped hydro storage to integration of wind power in Kenya: an optimal control approach Renewable Energy, 63 (2014), pp. 698-707, 10.1016/j.renene.2013.10.026J. Jurasz, P.B. Dąbek, B. Kaźmierczak, A. Kies, M. Wdowikowski Large scale complementary solar and wind energy sources coupled with pumped-storage hydroelectricity for Lower Silesia (Poland) Energy, 161 (2018), pp. 183-192, 10.1016/j.energy.2018.07.085Lacal Arantegui R, Jaeger-Waldau A, Vellei M, Sigfusson B, Magagna D, Jakubcionis M, et al. ETRI 2014 - Energy Technology Reference Indicator projections for 2010-2050. Petten: Publications Office of the European Union; 2014. https://ezproxy.cuc.edu.co:2067/10.2790/057687.T. Hino, A. Lejeune Pumped storage hydropower developments Compr. Renew. Energy, Elsevier (2012), pp. 405-434, 10.1016/B978-0-08-087872-0.00616-8E. Pujades, T. Willems, S. Bodeux, P. Orban, A. Dassargues Underground pumped storage hydroelectricity using abandoned works (deep mines or open pits) and the impact on groundwater flow Hydrogeol J, 24 (6) (2016), pp. 1531-1546, 10.1007/s10040-016-1413-zJ. Menéndez, J. Loredo, J.M. Fernandez, M. Galdo Underground pumped-storage hydro power plants with mine water in abandoned coal mines Mine Water Circ Econ (2017), pp. 6-13B. Lu, M. Stocks, A. Blakers, K. Anderson Geographic information system algorithms to locate prospective sites for pumped hydro energy storage Appl Energy, 222 (2018), pp. 300-312, 10.1016/j.apenergy.2018.03.177N. Ghorbani, H. Makian, C. Breyer A GIS-based method to identify potential sites for pumped hydro energy storage - case of Iran Energy, 169 (2019), pp. 854-867, 10.1016/j.energy.2018.12.073K. Bunker, S. Doig, K. Hawley, J. Morris Renewable microgrids: profiles from islands and remote communities across the globe Rocky Mountain Institute, Boulder (2015)N. Duić, M. da Graça Carvalho Increasing renewable energy sources in island energy supply: case study Porto Santo Renew Sustain Energy Rev, 8 (4) (2004), pp. 383-399, 10.1016/j.rser.2003.11.004C. Bueno, J.A. Carta Technical–economic analysis of wind-powered pumped hydrostorage systems. Part II: model application to the island of El Hierro Sol Energy, 78 (3) (2005), pp. 396-405, 10.1016/j.solener.2004.08.007C. Bueno, J.A. Carta Wind powered pumped hydro storage systems, a means of increasing the penetration of renewable energy in the Canary Islands Renew Sustain Energy Rev, 10 (4) (2006), pp. 312-340, 10.1016/j.rser.2004.09.005G. Caralis, A. Zervos Analysis of the combined use of wind and pumped storage systems in autonomous Greek islands IET Renew Power Gener, 1 (1) (2007), p. 49, 10.1049/iet-rpg:20060010G. Caralis, K. Rados, A. Zervos On the market of wind with hydro-pumped storage systems in autonomous Greek islands Renew Sustain Energy Rev, 14 (8) (2010), pp. 2221-2226, 10.1016/j.rser.2010.02.008S. Papaefthimiou, E. Karamanou, S. Papathanassiou, M. Papadopoulos Operating policies for wind-pumped storage hybrid power stations in island grids IET Renew Power Gener, 3 (3) (2009), p. 293, 10.1049/iet-rpg.2008.0071D.A. Katsaprakakis, D.G. Christakis, K. Pavlopoylos, S. Stamataki, I. Dimitrelou, I. Stefanakis, P. Spanos Introduction of a wind powered pumped storage system in the isolated insular power system of Karpathos–Kasos Appl Energy, 97 (2012), pp. 38-48, 10.1016/j.apenergy.2011.11.069M. Kapsali, J.S. Anagnostopoulos, J.K. Kaldellis Wind powered pumped-hydro storage systems for remote islands: a complete sensitivity analysis based on economic perspectives Appl Energy, 99 (2012), pp. 430-444, 10.1016/j.apenergy.2012.05.054T. Ma, H. Yang, L. Lu, J. Peng Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong Renewable Energy, 69 (2014), pp. 7-15, 10.1016/j.renene.2014.03.028S.V. Papaefthymiou, S.A. Papathanassiou Optimum sizing of wind-pumped-storage hybrid power stations in island systems Renew Energy, 64 (2014), pp. 187-196, 10.1016/j.renene.2013.10.047T. Ma, H. Yang, L. Lu, J. Peng Optimal design of an autonomous solar–wind-pumped storage power supply system Appl Energy, 160 (2015), pp. 728-736, 10.1016/j.apenergy.2014.11.026I. Barreira, C. Gueifão, J. Ferreira de Jesus Off-stream Pumped Storage Hydropower plant to increase renewable energy penetration in Santiago Island, Cape Verde J Phys Conf Ser, 813 (2017), 10.1088/1742-6596/813/1/012011 012011P. Tsamaslis, A. Katsanevakis, G. Karagiorgis Hybridization of photovoltaics with pumped storage hydroelectricity. an approach to increase RES penetration and achieve grid benefits. Application in the island of Cyprus J Power Technol, 97 (2017), pp. 336-341M.S. Javed, T. Ma, J. Jurasz, M.Y. Amin Solar and wind power generation systems with pumped hydro storage: Review and future perspectives Renewable Energy, 148 (2020), pp. 176-192, 10.1016/j.renene.2019.11.157M. Guezgouz, J. Jurasz, B. Bekkouche, T. Ma, M.S. Javed, A. Kies Optimal hybrid pumped hydro-battery storage scheme for off-grid renewable energy systems 112046 Energy Convers Manage, 199 (2019), 10.1016/j.enconman.2019.112046C.G. Meza, C. Zuluaga Rodríguez, C.A. D'Aquino, N.B. Amado, A. Rodrigues, I.L. Sauer Toward a 100% renewable island: a case study of Ometepe's energy mix Renewable Energy, 132 (2019), pp. 628-648, 10.1016/j.renene.2018.07.124Ministerio de Energía y Minas. Plan de expansión de la generación eléctrica de 2019-2033. Managua; 2017.L. Kapelanczyk, W.I. Rose, B. Jicha An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses Bull Volcanol, 74 (9) (2012), pp. 2007-2021, 10.1007/s00445-012-0644-7M. Ranaboldo, B. Domenech, G.A. Reyes, L. Ferrer-Martí, R. Pastor Moreno, A. García-Villoria Off-grid community electrification projects based on wind and solar energies: a case study in Nicaragua Sol Energy, 117 (2015), pp. 268-281, 10.1016/j.solener.2015.05.005Empresa Nacional de Transmisión Eléctrica. Ometepe recibe energía eléctrica confiable 2017. <http://www.enatrel.gob.ni/ometepe-recibira-energia-electrica-confiable-2/> [accessed January 5, 2020].Ometepe – Google Maps 2020. <https://goo.gl/maps/XEVVrMfKK632> [accessed July 7, 2020].J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (2020), pp. 703-724S.H. Karaki, R.B. Chedid, R. Ramadan Probabilistic performance assessment of autonomous solar-wind energy conversion systems IEEE Trans Energy Convers, 14 (1999), pp. 766-772, 10.1109/60.790949I. Abouzahr, R. Ramakumar Loss of power supply probability of stand-alone photovoltaic systems: a closed form solution approach IEEE Trans Energy Convers, 6 (1991), pp. 1-11, 10.1109/60.73783W.R. Powell An analytical expression for the average output power of a wind machine Sol Energy, 26 (1) (1981), pp. 77-80, 10.1016/0038-092X(81)90114-6Bauer L, Matysik S. Enercon E-33/300-300 kW Wind Turbine. Wind Big Portal Wind Energy 2020. <https://en.wind-turbine-models.com/turbines/368-enercon-e-33-300> [accessed May 8, 2020].ENERCON. Wind reduces fuel consumption on Falklands. Windblatt; 2007p. 10–1.F.A. Canales, A. Beluco, C.A.B. Mendes Modelling a hydropower plant with reservoir with the micropower optimisation model (HOMER) Int J Sustain Energ, 36 (7) (2017), pp. 654-667H. Chen, T.N. Cong, W. Yang, C. Tan, Y. Li, Y. Ding Progress in electrical energy storage system: a critical review Prog Nat Sci, 19 (3) (2009), pp. 291-312, 10.1016/j.pnsc.2008.07.014Copernicus Atmosphere Monitoring Service Products. CAMS radiation service n.d. <http://www.soda-pro.com/web-services/radiation/cams-radiation-service> [accessed November 15, 2018].B.Y.H. Liu, R.C. Jordan The interrelationship and characteristic distribution of direct, diffuse and total solar radiation Sol Energy, 4 (3) (1960), pp. 1-19Global Modeling and Assimilation Office (GMAO). MERRA-2 tavg1_2d_slv_Nx: 2d,1-Hourly,Time-Averaged,Single-Level,Assimilation,Single-Level Diagnostics V5.12.4 2015. https://ezproxy.cuc.edu.co:2067/10.5067/VJAFPLI1CSIV.J.A. Gómez Navarrete, V. Maderas Identificación de áreas con potenciales riesgos de inundación y deslizamiento a través de geoprocesamiento con SIG Universidad Nacional del Litoral (2009)Stocks C, editor. The world's pumped storage plants. Int. Water Power Dam Constr. Yearb., London: Global Trade Media - Progressive Media Group Limited; 2012, p. 282–92.E. Nkiaka, N.R. Nawaz, J.C. Lovett Evaluating global reanalysis precipitation datasets with rain gauge measurements in the Sudano-Sahel region: case study of the Logone catchment, Lake Chad Basin: evaluating reanalysis precipitation estimates in the Sudano-Sahel Met. Apps, 24 (1) (2017), pp. 9-18K. Gudulas, K. Voudouris, G. Soulios, G. Dimopoulos Comparison of different methods to estimate actual evapotranspiration and hydrologic balance Desalin Water Treat, 51 (13-15) (2013), pp. 2945-2954A.R. Ghumman, Y.M. Ghazaw, A. Alodah, A. Raufur, M. Shafiquzzaman, H. Haider Identification of parameters of evaporation equations using an optimization technique based on pan evaporation Water (Switzerland) (2020), p. 12, 10.3390/w12010228Ministerio de Energía y Minas. Anuario estadístico del sector eléctrico 2015. Managua; 2016.Fundación Nicaragüense para el Desarrollo Económico y Social. El sector de energía eléctrica de Nicaragua. Managua; 2016.The World Bank. Electric power consumption (kWh per capita) 2019. https://data.worldbank.org/indicator/EG.USE.ELEC.KH.PC [accessed December 12, 2019].Electricity Map: Live CO2 emissions of electricity consumption 2020. <https://www.electricitymap.org/map> [accessed May 5, 2020].M. Guezgouz, J. Jurasz, B. Bekkouche Techno-economic and environmental analysis of a hybrid PV-WT-PSH/BB standalone system supplying various loads Energies (2019), p. 12, 10.3390/en12030514S. Mirjalili, S. Saremi, S.M. Mirjalili, L. dos S. Coelho Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization Expert Syst Appl, 47 (2016), pp. 106-119, 10.1016/j.eswa.2015.10.039N.H. Reich, B. Mueller, A. Armbruster, W.G.J.H.M. Van Sark, K. Kiefer, C. Reise Performance ratio revisited: Is PR > 90% realistic? Prog Photovoltaics Res Appl, 20 (2012), pp. 717-726, 10.1002/pip.1219S. Baek, E. Park, M.-G. Kim, S.J. Kwon, K.J. Kim, J.Y. Ohm, et al. Optimal renewable power generation systems for Busan metropolitan city in South Korea Renewable Energy, 88 (2016), pp. 517-525, 10.1016/j.renene.2015.11.058Nicaragua prepara trabajo de exploración geotérmica. Bus News Am; 2020.Sánchez Molina P. Comienza el funcionamiento de la planta Solaris de 12 MW en Nicaragua. PV Mag; 2017.Ong S, Campbell C, Denholm P, Margolis R, Heath G. Land-Use Requirements for Solar Power Plants in the United States. Golden; 2013.Asturias Ozaeta J. Desarrollo y situación actual del sector eólico en América Central. Quito; 2012.M.M.V. Cantarero Decarbonizing the transport sector: The Promethean responsibility of Nicaragua J Environ Manage, 245 (2019), pp. 311-321, 10.1016/j.jenvman.2019.05.109B. Ceran Multi-criteria comparative analysis of clean hydrogen production scenarios Energies, 13 (2020), 10.3390/en13164180Hydrogenics. Renewable Hydrogen Solutions 2018:18. <http://www.hydrogenics.com/wp-content/uploads/Renewable-Hydrogen-Brochure.pdf> [accessed September 9, 2020].J. Proost State-of-the art CAPEX data for water electrolysers, and their impact on renewable hydrogen price settings Int J Hydrogen Energy, 44 (9) (2019), pp. 4406-4413, 10.1016/j.ijhydene.2018.07.164A.A. Solomon, D. Bogdanov, C. Breyer Curtailment-storage-penetration nexus in the energy transition Appl Energy, 235 (2019), pp. 1351-1368, 10.1016/j.apenergy.2018.11.069PublicationORIGINALCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdfCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdfapplication/pdf102382https://repositorio.cuc.edu.co/bitstreams/4bf35767-0efc-4ed0-8be9-abd161bc003c/downloadff75c4f9e47a3b51a034b9186fbb04afMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.cuc.edu.co/bitstreams/e2a5bc24-418e-401f-b314-4f0649694520/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83196https://repositorio.cuc.edu.co/bitstreams/7b8b8e9c-2c27-49dd-b5db-b252763ca99d/downloade30e9215131d99561d40d6b0abbe9badMD53THUMBNAILCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdf.jpgCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdf.jpgimage/jpeg48661https://repositorio.cuc.edu.co/bitstreams/5a304b05-50bd-445d-ad38-ac43ef993758/download9fd18ba70ca19febc658a707b5fcef3cMD54TEXTCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdf.txtCost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community.pdf.txttext/plain1769https://repositorio.cuc.edu.co/bitstreams/35676de1-6767-4397-ace2-7669363a6172/downloadb49972e0591733dbdfc176b7487f7137MD5511323/8311oai:repositorio.cuc.edu.co:11323/83112024-09-17 10:52:44.526http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coQXV0b3Jpem8gKGF1dG9yaXphbW9zKSBhIGxhIEJpYmxpb3RlY2EgZGUgbGEgSW5zdGl0dWNpw7NuIHBhcmEgcXVlIGluY2x1eWEgdW5hIGNvcGlhLCBpbmRleGUgeSBkaXZ1bGd1ZSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBsYSBvYnJhIG1lbmNpb25hZGEgY29uIGVsIGZpbiBkZSBmYWNpbGl0YXIgbG9zIHByb2Nlc29zIGRlIHZpc2liaWxpZGFkIGUgaW1wYWN0byBkZSBsYSBtaXNtYSwgY29uZm9ybWUgYSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBxdWUgbWUobm9zKSBjb3JyZXNwb25kZShuKSB5IHF1ZSBpbmNsdXllbjogbGEgcmVwcm9kdWNjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSwgZGlzdHJpYnVjacOzbiBhbCBww7pibGljbywgdHJhbnNmb3JtYWNpw7NuLCBkZSBjb25mb3JtaWRhZCBjb24gbGEgbm9ybWF0aXZpZGFkIHZpZ2VudGUgc29icmUgZGVyZWNob3MgZGUgYXV0b3IgeSBkZXJlY2hvcyBjb25leG9zIHJlZmVyaWRvcyBlbiBhcnQuIDIsIDEyLCAzMCAobW9kaWZpY2FkbyBwb3IgZWwgYXJ0IDUgZGUgbGEgbGV5IDE1MjAvMjAxMiksIHkgNzIgZGUgbGEgbGV5IDIzIGRlIGRlIDE5ODIsIExleSA0NCBkZSAxOTkzLCBhcnQuIDQgeSAxMSBEZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzIGFydC4gMTEsIERlY3JldG8gNDYwIGRlIDE5OTUsIENpcmN1bGFyIE5vIDA2LzIwMDIgZGUgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBEZXJlY2hvcyBkZSBhdXRvciwgYXJ0LiAxNSBMZXkgMTUyMCBkZSAyMDEyLCBsYSBMZXkgMTkxNSBkZSAyMDE4IHkgZGVtw6FzIG5vcm1hcyBzb2JyZSBsYSBtYXRlcmlhLg0KDQpBbCByZXNwZWN0byBjb21vIEF1dG9yKGVzKSBtYW5pZmVzdGFtb3MgY29ub2NlciBxdWU6DQoNCi0gTGEgYXV0b3JpemFjacOzbiBlcyBkZSBjYXLDoWN0ZXIgbm8gZXhjbHVzaXZhIHkgbGltaXRhZGEsIGVzdG8gaW1wbGljYSBxdWUgbGEgbGljZW5jaWEgdGllbmUgdW5hIHZpZ2VuY2lhLCBxdWUgbm8gZXMgcGVycGV0dWEgeSBxdWUgZWwgYXV0b3IgcHVlZGUgcHVibGljYXIgbyBkaWZ1bmRpciBzdSBvYnJhIGVuIGN1YWxxdWllciBvdHJvIG1lZGlvLCBhc8OtIGNvbW8gbGxldmFyIGEgY2FibyBjdWFscXVpZXIgdGlwbyBkZSBhY2Npw7NuIHNvYnJlIGVsIGRvY3VtZW50by4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIHRlbmRyw6EgdW5hIHZpZ2VuY2lhIGRlIGNpbmNvIGHDsW9zIGEgcGFydGlyIGRlbCBtb21lbnRvIGRlIGxhIGluY2x1c2nDs24gZGUgbGEgb2JyYSBlbiBlbCByZXBvc2l0b3JpbywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gZGUgZHVyYWNpw7NuIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlbCBhdXRvciB5IHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHVuYSB2ZXogZWwgYXV0b3IgbG8gbWFuaWZpZXN0ZSBwb3IgZXNjcml0byBhIGxhIGluc3RpdHVjacOzbiwgY29uIGxhIHNhbHZlZGFkIGRlIHF1ZSBsYSBvYnJhIGVzIGRpZnVuZGlkYSBnbG9iYWxtZW50ZSB5IGNvc2VjaGFkYSBwb3IgZGlmZXJlbnRlcyBidXNjYWRvcmVzIHkvbyByZXBvc2l0b3Jpb3MgZW4gSW50ZXJuZXQgbG8gcXVlIG5vIGdhcmFudGl6YSBxdWUgbGEgb2JyYSBwdWVkYSBzZXIgcmV0aXJhZGEgZGUgbWFuZXJhIGlubWVkaWF0YSBkZSBvdHJvcyBzaXN0ZW1hcyBkZSBpbmZvcm1hY2nDs24gZW4gbG9zIHF1ZSBzZSBoYXlhIGluZGV4YWRvLCBkaWZlcmVudGVzIGFsIHJlcG9zaXRvcmlvIGluc3RpdHVjaW9uYWwgZGUgbGEgSW5zdGl0dWNpw7NuLCBkZSBtYW5lcmEgcXVlIGVsIGF1dG9yKHJlcykgdGVuZHLDoW4gcXVlIHNvbGljaXRhciBsYSByZXRpcmFkYSBkZSBzdSBvYnJhIGRpcmVjdGFtZW50ZSBhIG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBkaXN0aW50b3MgYWwgZGUgbGEgSW5zdGl0dWNpw7NuIHNpIGRlc2VhIHF1ZSBzdSBvYnJhIHNlYSByZXRpcmFkYSBkZSBpbm1lZGlhdG8uDQoNCi0gTGEgYXV0b3JpemFjacOzbiBkZSBwdWJsaWNhY2nDs24gY29tcHJlbmRlIGVsIGZvcm1hdG8gb3JpZ2luYWwgZGUgbGEgb2JyYSB5IHRvZG9zIGxvcyBkZW3DoXMgcXVlIHNlIHJlcXVpZXJhIHBhcmEgc3UgcHVibGljYWNpw7NuIGVuIGVsIHJlcG9zaXRvcmlvLiBJZ3VhbG1lbnRlLCBsYSBhdXRvcml6YWNpw7NuIHBlcm1pdGUgYSBsYSBpbnN0aXR1Y2nDs24gZWwgY2FtYmlvIGRlIHNvcG9ydGUgZGUgbGEgb2JyYSBjb24gZmluZXMgZGUgcHJlc2VydmFjacOzbiAoaW1wcmVzbywgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCBJbnRlcm5ldCwgaW50cmFuZXQsIG8gY3VhbHF1aWVyIG90cm8gZm9ybWF0byBjb25vY2lkbyBvIHBvciBjb25vY2VyKS4NCg0KLSBMYSBhdXRvcml6YWNpw7NuIGVzIGdyYXR1aXRhIHkgc2UgcmVudW5jaWEgYSByZWNpYmlyIGN1YWxxdWllciByZW11bmVyYWNpw7NuIHBvciBsb3MgdXNvcyBkZSBsYSBvYnJhLCBkZSBhY3VlcmRvIGNvbiBsYSBsaWNlbmNpYSBlc3RhYmxlY2lkYSBlbiBlc3RhIGF1dG9yaXphY2nDs24uDQoNCi0gQWwgZmlybWFyIGVzdGEgYXV0b3JpemFjacOzbiwgc2UgbWFuaWZpZXN0YSBxdWUgbGEgb2JyYSBlcyBvcmlnaW5hbCB5IG5vIGV4aXN0ZSBlbiBlbGxhIG5pbmd1bmEgdmlvbGFjacOzbiBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvcy4gRW4gY2FzbyBkZSBxdWUgZWwgdHJhYmFqbyBoYXlhIHNpZG8gZmluYW5jaWFkbyBwb3IgdGVyY2Vyb3MgZWwgbyBsb3MgYXV0b3JlcyBhc3VtZW4gbGEgcmVzcG9uc2FiaWxpZGFkIGRlbCBjdW1wbGltaWVudG8gZGUgbG9zIGFjdWVyZG9zIGVzdGFibGVjaWRvcyBzb2JyZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBsYSBvYnJhIGNvbiBkaWNobyB0ZXJjZXJvLg0KDQotIEZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1hY2nDs24gcG9yIHRlcmNlcm9zLCBlbCBvIGxvcyBhdXRvcmVzIHNlcsOhbiByZXNwb25zYWJsZXMsIGVuIG5pbmfDum4gY2FzbyBsYSByZXNwb25zYWJpbGlkYWQgc2Vyw6EgYXN1bWlkYSBwb3IgbGEgaW5zdGl0dWNpw7NuLg0KDQotIENvbiBsYSBhdXRvcml6YWNpw7NuLCBsYSBpbnN0aXR1Y2nDs24gcHVlZGUgZGlmdW5kaXIgbGEgb2JyYSBlbiDDrW5kaWNlcywgYnVzY2Fkb3JlcyB5IG90cm9zIHNpc3RlbWFzIGRlIGluZm9ybWFjacOzbiBxdWUgZmF2b3JlemNhbiBzdSB2aXNpYmlsaWRhZA== |