Obesity level estimation software based on decision trees

Obesity has become a global epidemic that has doubled since 1980, with serious consequences for health in children, teenagers and adults. Obesity is a problem has been growing steadily and that is why every day appear new studies involving children obesity, especially those looking for influence fac...

Full description

Autores:
De-La-Hoz-Correa, Eduardo
Mendoza Palechor, Fabio
De-La-Hoz-Manotas, Alexis
Morales Ortega, Roberto
Sánchez Hernández, Adriana Beatriz
Tipo de recurso:
Article of journal
Fecha de publicación:
2019
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/4176
Acceso en línea:
https://hdl.handle.net/11323/4176
https://repositorio.cuc.edu.co/
Palabra clave:
Data mining
Decision trees
Java
Logistic regression
Naive bayes
Obesity
Semma
Weka
Minería de datos
Árboles de decisión
Java
Regresión logística
Bayas ingenuas
Obesidad
Semma
Rights
openAccess
License
Attribution-NonCommercial-ShareAlike 4.0 International
id RCUC2_9a09c3fcd8f06225900804be61d7148f
oai_identifier_str oai:repositorio.cuc.edu.co:11323/4176
network_acronym_str RCUC2
network_name_str REDICUC - Repositorio CUC
repository_id_str
dc.title.spa.fl_str_mv Obesity level estimation software based on decision trees
dc.title.translated.spa.fl_str_mv Software de estimación de nivel de obesidad basado en árboles de decisión.
title Obesity level estimation software based on decision trees
spellingShingle Obesity level estimation software based on decision trees
Data mining
Decision trees
Java
Logistic regression
Naive bayes
Obesity
Semma
Weka
Minería de datos
Árboles de decisión
Java
Regresión logística
Bayas ingenuas
Obesidad
Semma
title_short Obesity level estimation software based on decision trees
title_full Obesity level estimation software based on decision trees
title_fullStr Obesity level estimation software based on decision trees
title_full_unstemmed Obesity level estimation software based on decision trees
title_sort Obesity level estimation software based on decision trees
dc.creator.fl_str_mv De-La-Hoz-Correa, Eduardo
Mendoza Palechor, Fabio
De-La-Hoz-Manotas, Alexis
Morales Ortega, Roberto
Sánchez Hernández, Adriana Beatriz
dc.contributor.author.spa.fl_str_mv De-La-Hoz-Correa, Eduardo
Mendoza Palechor, Fabio
De-La-Hoz-Manotas, Alexis
Morales Ortega, Roberto
Sánchez Hernández, Adriana Beatriz
dc.subject.spa.fl_str_mv Data mining
Decision trees
Java
Logistic regression
Naive bayes
Obesity
Semma
Weka
Minería de datos
Árboles de decisión
Java
Regresión logística
Bayas ingenuas
Obesidad
Semma
topic Data mining
Decision trees
Java
Logistic regression
Naive bayes
Obesity
Semma
Weka
Minería de datos
Árboles de decisión
Java
Regresión logística
Bayas ingenuas
Obesidad
Semma
description Obesity has become a global epidemic that has doubled since 1980, with serious consequences for health in children, teenagers and adults. Obesity is a problem has been growing steadily and that is why every day appear new studies involving children obesity, especially those looking for influence factors and how to predict emergence of the condition under these factors. In this study, authors applied the SEMMA data mining methodology, to select, explore and model the data set and then three methods were selected: Decision trees (J48), Bayesian networks (Naïve Bayes) and Logistic Regression (Simple Logistic), obtaining the best results with J48 based on the metrics: Precision, recall, TP Rate and FP Rate. Finally, a software was built to use and train the selected method, using the Weka library. The results confirmed the Decision Trees technique has the best precision rate (97.4%), improving results of previous studies with similar background.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-05-16T20:17:15Z
dc.date.available.none.fl_str_mv 2019-05-16T20:17:15Z
dc.date.issued.none.fl_str_mv 2019-04-15
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.content.spa.fl_str_mv Text
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
format http://purl.org/coar/resource_type/c_6501
status_str acceptedVersion
dc.identifier.issn.spa.fl_str_mv 15493636
dc.identifier.uri.spa.fl_str_mv https://hdl.handle.net/11323/4176
dc.identifier.instname.spa.fl_str_mv Corporación Universidad de la Costa
dc.identifier.reponame.spa.fl_str_mv REDICUC - Repositorio CUC
dc.identifier.repourl.spa.fl_str_mv https://repositorio.cuc.edu.co/
identifier_str_mv 15493636
Corporación Universidad de la Costa
REDICUC - Repositorio CUC
url https://hdl.handle.net/11323/4176
https://repositorio.cuc.edu.co/
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.spa.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.coar.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.publisher.spa.fl_str_mv Universidad de la Costa
institution Corporación Universidad de la Costa
bitstream.url.fl_str_mv https://repositorio.cuc.edu.co/bitstreams/5271ca4d-f773-4752-8cee-0785377c276b/download
https://repositorio.cuc.edu.co/bitstreams/015107ce-7ab8-4052-a594-3168b06210a9/download
https://repositorio.cuc.edu.co/bitstreams/1545d5ea-c24b-4b31-a123-3260a0de2038/download
https://repositorio.cuc.edu.co/bitstreams/dfc2de2a-e7af-4da6-ba71-d452cb8fde24/download
https://repositorio.cuc.edu.co/bitstreams/e1f4a310-cd27-43b3-b9b4-96a11ea647de/download
bitstream.checksum.fl_str_mv a2e32fcd33e631ab3ed15020eec2ae09
934f4ca17e109e0a05eaeaba504d7ce4
8a4605be74aa9ea9d79846c1fba20a33
0673609984b8b8b8535b085c3ef7d7b3
cb680d3b002bfadd817fdd38fec694b4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio de la Universidad de la Costa CUC
repository.mail.fl_str_mv repdigital@cuc.edu.co
_version_ 1811760794215383040
spelling De-La-Hoz-Correa, EduardoMendoza Palechor, FabioDe-La-Hoz-Manotas, AlexisMorales Ortega, RobertoSánchez Hernández, Adriana Beatriz2019-05-16T20:17:15Z2019-05-16T20:17:15Z2019-04-1515493636https://hdl.handle.net/11323/4176Corporación Universidad de la CostaREDICUC - Repositorio CUChttps://repositorio.cuc.edu.co/Obesity has become a global epidemic that has doubled since 1980, with serious consequences for health in children, teenagers and adults. Obesity is a problem has been growing steadily and that is why every day appear new studies involving children obesity, especially those looking for influence factors and how to predict emergence of the condition under these factors. In this study, authors applied the SEMMA data mining methodology, to select, explore and model the data set and then three methods were selected: Decision trees (J48), Bayesian networks (Naïve Bayes) and Logistic Regression (Simple Logistic), obtaining the best results with J48 based on the metrics: Precision, recall, TP Rate and FP Rate. Finally, a software was built to use and train the selected method, using the Weka library. The results confirmed the Decision Trees technique has the best precision rate (97.4%), improving results of previous studies with similar background.La obesidad se ha convertido en una epidemia mundial que se ha duplicado desde 1980, con graves consecuencias para la salud en niños, adolescentes y adultos. La obesidad es un problema que ha estado creciendo de manera constante y es por eso que cada día aparecen nuevos estudios que involucran a niños obesos, especialmente aquellos que buscan factores de influencia y cómo predecir la aparición de la enfermedad bajo estos factores. En este estudio, los autores aplicaron la metodología de minería de datos SEMMA, para seleccionar, explorar y modelar el conjunto de datos y luego se seleccionaron tres métodos: árboles de decisión (J48), redes bayesianas (Naïve Bayes) y regresión logística (logística simple), obteniendo la Los mejores resultados con J48 se basan en las métricas: precisión, recuperación, TP Rate y FP Rate. Finalmente, se construyó un software para usar y entrenar el método seleccionado, utilizando la biblioteca Weka. Los resultados confirmaron que la técnica de árboles de decisión tiene la mejor tasa de precisión (97.4%), mejorando los resultados de estudios previos con antecedentes similares.De-La-Hoz-Correa, Eduardo-f50d0e8b-2e3b-4e05-816a-bcd89cf4b021-0Mendoza Palechor, Fabio-28dab11c-3464-49e6-bcdf-32623fd0055b-0De-La-Hoz-Manotas, Alexis-8c2e7635-6db0-49a2-bb3b-b7131e3bad0f-0Morales Ortega, Roberto-ec775181-8c64-4b76-a4ac-1444380e3d0b-0Sánchez Hernández, Adriana Beatriz-fe9616ba-d3f7-4b60-8651-a3fcf8a9626b-0engUniversidad de la CostaAttribution-NonCommercial-ShareAlike 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Data miningDecision treesJavaLogistic regressionNaive bayesObesitySemmaWekaMinería de datosÁrboles de decisiónJavaRegresión logísticaBayas ingenuasObesidadSemmaObesity level estimation software based on decision treesSoftware de estimación de nivel de obesidad basado en árboles de decisión.Artículo de revistahttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1Textinfo:eu-repo/semantics/articlehttp://purl.org/redcol/resource_type/ARTinfo:eu-repo/semantics/acceptedVersionPublicationORIGINALOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdfOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdfapplication/pdf6757https://repositorio.cuc.edu.co/bitstreams/5271ca4d-f773-4752-8cee-0785377c276b/downloada2e32fcd33e631ab3ed15020eec2ae09MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.cuc.edu.co/bitstreams/015107ce-7ab8-4052-a594-3168b06210a9/download934f4ca17e109e0a05eaeaba504d7ce4MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.cuc.edu.co/bitstreams/1545d5ea-c24b-4b31-a123-3260a0de2038/download8a4605be74aa9ea9d79846c1fba20a33MD53THUMBNAILOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdf.jpgOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdf.jpgimage/jpeg46203https://repositorio.cuc.edu.co/bitstreams/dfc2de2a-e7af-4da6-ba71-d452cb8fde24/download0673609984b8b8b8535b085c3ef7d7b3MD55TEXTOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdf.txtOBESITY LEVEL ESTIMATION SOFTWARE BASED ON DECISION TREES.pdf.txttext/plain1295https://repositorio.cuc.edu.co/bitstreams/e1f4a310-cd27-43b3-b9b4-96a11ea647de/downloadcb680d3b002bfadd817fdd38fec694b4MD5611323/4176oai:repositorio.cuc.edu.co:11323/41762024-09-17 12:44:06.227http://creativecommons.org/licenses/by-nc-sa/4.0/Attribution-NonCommercial-ShareAlike 4.0 Internationalopen.accesshttps://repositorio.cuc.edu.coRepositorio de la Universidad de la Costa CUCrepdigital@cuc.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=