One-pot multi-enzymatic production of purine derivatives with application in pharmaceutical and food industry

Biocatalysis reproduce nature’s synthetic strategies in order to synthesize different organic compounds. Natural metabolic pathways usually involve complex networks to support cellular growth and survival. In this regard, multi-enzymatic systems are valuable tools for the production of a wide variet...

Full description

Autores:
Acosta, Javier
Del Arco, Jon
Martínez Pascual, Sara
Clemente Suárez, Vicente Javier
Fernandez Lucas, Jesus
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Corporación Universidad de la Costa
Repositorio:
REDICUC - Repositorio CUC
Idioma:
eng
OAI Identifier:
oai:repositorio.cuc.edu.co:11323/1211
Acceso en línea:
https://hdl.handle.net/11323/1211
https://repositorio.cuc.edu.co/
Palabra clave:
2 0 -deoxyribosyltransferase
phosphoribosyltransferases
cascade reactions
purine nucleoside analogues
dietary nucleotides
Rights
openAccess
License
Atribución – No comercial – Compartir igual
Description
Summary:Biocatalysis reproduce nature’s synthetic strategies in order to synthesize different organic compounds. Natural metabolic pathways usually involve complex networks to support cellular growth and survival. In this regard, multi-enzymatic systems are valuable tools for the production of a wide variety of organic compounds. Methods: The production of different purine nucleosides and nucleoside-50 -monophosphates has been performed for first time, catalyzed by the sequential action of 2 0 -deoxyribosyltransferase from Lactobacillus delbrueckii (LdNDT) and hypoxanthine-guanine-xanthine phosphoribosyltransferase from Thermus themophilus HB8 (TtHGXPRT). Results: The biochemical characterization of LdNDT reveals that the enzyme is active and stable in a broad range of pH, temperature, and ionic strength. Substrate specificity studies showed a high promiscuity in the recognition of purine analogues. Finally, the enzymatic production of different purine derivatives was performed to evaluate the efficiency of multi-enzymatic system LdNDT/TtHGXPRT. Conclusions: The production of different therapeutic purine nucleosides was efficiently catalyzed by LdNDT/TtHGXPRT. In addition, the resulting by-products were converted to IMP and GMP. Taking all of these features, this bioprocess entails an efficient, sustainable, and economical alternative to chemical synthetic methods.